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44 M. Brešar, F. Perera, J. Sánchez Ortega∗, M. Siles Molina
Computing the maximal algebra of quotients of a Lie algebra

45 Kiyoichi Oshiro
Professor Haradaー Person and Work
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Derived equivalences and Serre duality for Gorenstein algebras

Hiroki Abe and Mitsuo Hoshino

Let R be a commutative noetherian ring and A a Noether R-algebra, i.e., A
is a ring endowed with a ring homomorphism R → A whose image is contained
in the center of A and A is finitely generated as an R-module. Let c ≥ 0 be an
integer. Assume ExtiR(A,R) = 0 for i �= c and set Ω = ExtcR(A,R). We call A
a Gorenstein R-algebra of codimension c if Rp is Gorenstein for all p ∈ SuppR(A)
and Ω is a projective generator for right A-modules. If A is a Gorenstein R-algebra
of codimension c, then we see that Ω lies in the center of Pic(A), the Picard group
of A, that Ω is a dualizing complex for A if sup{dim Rp | p ∈ SuppR(A)} <∞, and
that AnnR(A) contains an R-regular sequence x1, · · · , xc and A is a Gorenstein S-
algebra of codimension 0, where S is the residue ring of R over the ideal generated
by x1, · · · , xc. Also, we see that our Gorenstein algebras are Gorenstein in the sense
of [3]. In particular, commutative Gorenstein algebras are Gorenstein rings.
Our main aim is to demonstrate that Serre duality theory plays an essential role

in the theory of derived equivalences for Gorenstein algebras. We extend Serre
duality theory (cf. [2]) to Noether algebras. We see that for an arbitrary Noether
R-algebra A there exists a bifunctorial isomorphism in Mod-R

HomD(Mod-A)(Y
•, X• ⊗LA V •) ∼= RHom•A(X•, Y •)∗

for X• ∈ Db(mod-A)fpd and Y
• ∈ D(Mod-A), where V • = Hom•

R(A, I
•) with

I• a minimal injective resolution of R and (−)∗ = HomD(Mod-R)(−, R). On the
other hand, we know from [1, Theorem 4.7] that if V • is a dualizing complex for A
and if inj dim AA = inj dim AA < ∞ then − ⊗LA V • induces a self-equivalence of
Db(mod-A).
Assume A is a Gorenstein R-algebra of codimension c. Let P • ∈ Kb(PA) be a

tilting complex and B = EndK(Mod-A)(P
•). We ask when B is also a Gorenstein

R-algebra of codimension c. Set ν = − ⊗LA Ω. Then by Serre duality theory we
have an isomorphism of B-bimodules

HomD(Mod-A)(P
•, νP •[i]) ∼= Exti+cR (B,R)

for all i ∈ Z. On the other hand, denoting by S the full subcategory of D−(Mod-A)
consisting of complexes X• with HomD(Mod-A)(P

•,X•[i]) = 0 for i �= 0, we have
an equivalence HomD(Mod-A)(P

•,−) : S → Mod-B (see [4, Section 4]). Thus B
is a Gorenstein R-algebra of codimension c if and only if add(νP •) = add(P •).
Unfortunately, this is not the case in general. However, B is a Gorenstein R-
algebra of codimension c with ExtcR(B,R)

∼= B as B-bimodules if and only if A is
a Gorenstein R-algebra of codimension c with Ω ∼= A as A-bimodules.
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On generalized Jordan left derivations in certain classes of rings

SHAKIR ALI

Department of Mathematics
Aligarh Muslim University
Aligarh-202002 (India)

E-mail:shakir50@rediffmail.com, shakirali−50@yahoo.com

Let R be an associative ring. An additive mapping d : R −→ R is called
a derivation (resp. Jordan derivation) if d(xy) = d(x)y + xd(y)(resp. d(x2) =
d(x)x + xd(x)), holds for all x, y ∈ R. An additive mapping δ : R −→ R is said to
be a left derivation (resp. Jordan left derivation) if δ(xy) = xδ(y) + yδ(x) (resp.
δ(x2) = 2xδ(x)) holds for all x, y ∈ R. An additive mapping G : R −→ R is
called a generalized left derivation (resp. generalized Jordan left derivation) if there
exists a Jordan left derivation δ : R −→ R such that G(xy) = xG(y) + yδ(x) (resp.
G(x2) = xG(x) + xδ(x)) holds for all x, y ∈ R.

A mapping f : R −→ R is said to be commuting on R if f(x)x = xf(x), holds
for all x ∈ R. Comparing Jordan left derivation with commuting mapping on a ring
R, it turns out that the notion of Jordan left derivations is in a close connection with
the commuting mappings on R. There has been considerable interest for commuting
mappings on prime rings. The fundamental result in this direction is due to Posner
[Proc. Amer. Math. Soc. 8(1957), 1093 − 1100] which states that if a prime ring
R admits a nonzero derivation that is commuting on R, then R is commutative.
Using rather weaker hypotheses, Brešar and Vukman [Proc. Amer. Math. Soc. 110
(1990), 7-16] obtained a result which shows that the existence of a nonzero Jordan
left derivation on a prime ring R of charR �= 2, 3 forces R to be commutative. It
was also remarked by Brešar and Vukman that the assumption R is 3-torsion free
in the hypotheses of the above result may be avoided.

In the present paper, our objective is to generalize the above mentioned result
for generalized Jordan left derivation. Some related results are also discussed.
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THE REALIZATION PROBLEM FOR VON NEUMANN
REGULAR RINGS

Pere Ara

Universitat Autònoma de Barcelona

Email: para@mat.uab.cat

For a ring R, denote by V(R) the abelian monoid of isomorphism classes
of finitely generated projective right R-modules. This is always a conical monoid,
meaning that, for x, y ∈ V(R), the relation 0 = x+y implies x = y = 0. If moreover
the ring R is von Neumann regular (or just an exchange ring), then M := V(R) is
a refinement monoid: whenever a+ b = c + d in M there exist x, y, z, t ∈ M such
that a = x+ y, b = z + t, c = x+ z and d = y + t.

By results of Bergman [5, Theorems 6.2 and 6.4] and Bergman and Dicks [6,
page 315], any conical monoid with an order-unit appears as V(R) for some unital
hereditary ring R. We will discuss aspects of the following problem:

Realization Problem for von Neumann Regular Rings: Is every con-
ical refinement monoid representable, that is, isomorphic to V(R), for some von
Neumann regular ring R?

By results of Wehrung [7], there are conical refinement cancellative monoids
of size ≥ ℵ2 which are not representable, but the question is still open for monoids
of size ≤ ℵ1.

In the paper [2], it is shown that the above problem has a positive answer for a
large class of conical refinement monoids, associated to directed graphs. This class
of monoids was introduced and studied in [3]. We will state its characterization
within finitely generated antisymmetric refinement monoids, obtained recently in
[4]. Moreover we will describe some methods to represent classes of monoids which
are beyond the class of graph monoids [1].
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LEAVITT PATH ALGEBRAS FOR COUNTABLE GRAPHS

Gene Abrams & Gonzalo Aranda Pino1
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U.S.A.

Centre de Recerca Matemàtica, Apartat 50, E-08193, Bellaterra (Barcelona),
Spain.
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We extend the notion of the Leavitt path algebra of a graph to include all
directed countable graphs. We show how various ring-theoretic properties of these
more general structures relate to the corresponding properties of Leavitt path al-
gebras of row-finite graphs. Specifically, we identify those graphs for which the
corresponding Leavitt path algebra is simple; purely infinite simple; exchange; and
semiprime. In our final result, we show that all Leavitt path algebras have zero
Jacobson radical.
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On Lie Ideals and Generalized (θ,φ)-dervations in Rings

Mohammad Ashraf
Department of Mathematics
A.M.U., Aligarh 202002 India
E-mail:mashraf80@hotmail.com

Let R be a ring and U a Lie ideal of R such that u2 ∈ U . Let θ,φ be
endomorphisms of R and M be a 2-torsion free R-bimodule such that mRx = {0}
with m ∈ M,x ∈ R implies that either m = 0 or x = 0. An additive mapping
F : R −→ M is called a generalized (θ,φ) - derivation (resp. generalized Jordon
(θ,φ)-derivation) on U if there exists a (θ,φ)-derivation

d : R −→ M such that F (uv) = F (u)θ(v) + φ(u)d(v) (resp. F (u2) =
F (u)θ(u) + φ(u)d(u)), holds for all u, v ∈ U . It is obvious to see that every gener-
alized (θ,φ) - derivation F : R −→ M is a generalized Jordan (θ,φ) - derivation.
However, the converse need not be true in general. Corresponding results for deriva-
tion was first obtaned by Herstein [ Proc. Amer. Math. Soci. 8(1957), 1104-10]
which states that every Jordan derivation on a prime ring R is a derivation. This
result was further extended in many directions by several authors. In the present
paper, we shall discuss such types of results in the setting of generalized derivation.
In fact, in the present paper we prove that if θ is one-one and onto, then every
generalized Jordon (θ,φ)-derivation on U is a generalized (θ,φ)-derivation on U .
Further it is shown that the above result is also true in the case if the underlying
moduleM is arbitrary and the Lie ideal U of R has a commutator which is free from
zero divisor. Finally, a related result for centralizing and commuting generalized
derivation on a ring R has been obtained.
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GENERALIZED REVERSIBLE RINGS AND THEIR EXTENSIONS

Muhittin Başer

Kocatepe University

Emails: mbaser@aku.edu.tr

Throughout this paper, R denotes an associative ring with identity and α
denotes a nonzero non identity endomorphism of a given ring, unless specified oth-
erwise. Recall that a ring is reduced if it has no nonzero nilpotent elements. It is
well-known that if R is a reduced ring, then the following condition is held: ab = 0
implies ba = 0 for a, b ∈ R. Cohn [1] called a ring R reversible if it holds this con-
dition. Historically, some of the earliest results known to us about reversible rings
(although not so called at the time) was due to Habeb [2]. Another generalization
of a reduced ring is an Armendariz ring. Rege and Chhawchharia [7] called a ring
R Armendariz if whenever any polynomials f(x) = a0 + a1x+ · · ·+ amxm, g(x) =
b0 + b1x + · · · + bnxn ∈ R[x] satisfy f(x)g(x) = 0, then aibj = 0 for each i and
j. Recently, the Armendariz property of a ring was extended to skew polynomial
rings but with skewed scalar multiplication in [4,3]: For an endomorphism α of a

ring R, R is called α-Armendariz (resp. α-skew Armendariz) if for p =
m∑
i=0

aix
i

and q =
n∑
j=0

bjx
j in R[x;α], pq = 0 implies aibj = 0 (resp. aiα

i(bj) = 0) for all

0 ≤ i ≤ m and 0 ≤ j ≤ n. On the other hand, an endomorphism α of a ring R is
called rigid [6] if aα(a) = 0 implies a = 0 for a ∈ R, and R is an α-rigid ring [3] if
there exists a rigid endomorphism α of R.

Motivated by the above, for an endomorphism α of a ring R, we call right
reversible if whenever ab = 0 for a, b ∈ R, then bα(a) = 0. A ring R is called right
α-reversible if there exists a right reversible endomorphism α of R. The notation
of an α-reversible ring is a generalization of α-rigid rings as well as an extension
of reversible rings. We study characterizations of α-reversible rings and their re-
lated properties. And the relationship between α-reversible rings and generalized
Armendariz rings is also studied, and so several known results relating to α-rigid
and reduced rings can be obtained as corollaries of our results.
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Some Progress on Clean Rings

Jianlong Chen
Department of Mathematics

Southeast University
Nanjing, 210096, P.R.China

Abstract

Clean ring is introduced by Nicholson in 1977. Since then, it have attracted
many ring theory experts to do further researches. During the study of clean rings,
some related clean ring classes and many challengeable open questions are arisen,
such as five open problems about strongly clean rings asked by Nicholson. Now the
study of clean rings has been a hotspot in the ring theory. In this talk, We will give
some recent progress about clean rings. It contains the following contents.
(1) Clean ring (group ring, g(x)-clean ring, 2-clean ring).
(2) Strongly clean ring (matrix ring, triangular matrix ring and power series ring).
(3) Uniquely clean group ring
(4) Uniquely strongly clean ring (example, characterization and relation).
(5) Some questions about clean rings.
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A Class of Near-Rings from Rings

2000 Mathematics Subject Classification: 16Y30
Key Words: near-rings, (e, t)-near-rings, right permutable, LSD, RSD, prime ideals

Yong Uk Cho
Department of Mathematics Education, SillaUniversity,

Pusan 617-736, Korea
e-mail: yuchosilla.ac.kr

ABSRTRACT.
In this paper, from a given ring (R,+, ·), we will construct that a new kind

of near-ring. To construct a new class of near-rings from the base ring (R,+, ·),
the procedure is to begin with a ring (R,+, ·) and a new multiplication denoted
by ∗ on (R,+) so as to obtain a new near-ring (R,+, ∗). The new multiplication
is expressed in terms of the original addition and multiplication by defining a ∗ b
to be a polynomial in a and b with fixed (central) orthogonal idempotents e and
t in R, for all a, b in R. We will also consider some relations of substructures of
base rings and those of new kinds of near-rings, for example, subnear-rings, R-
subgroups, invariant substructures and ideals, in particular, prime like ideals of a
new near-rings and investigate some of their properties.

J. Clay [1] classified almost all abelian near-rings on given finite abelian groups
of order ≤ 7. Our purpose is to introduce a special method for constructing a new
class of abelian near-rings from arbitrary rings with (central) orthogonal idempo-
tents.
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One-sided ideals in simple rings

John Clark

Abstract

One-sided ideals in simple ringsabstract: This talk is on joint work with Dinh
Van Huynh. Using a variation on the concept of a CS module, we describe exactly
when a simple ring is isomorphic to a ring of matrices over a Bezout domain. Our
techniques are then applied to characterise simple rings which are right and left
Goldie, right and left semihereditary.

—Abstract-9—



On Divisible and Torsionfree Modules

Nanqing Ding
Department of Mathematics, Nanjing University, Nanjing 210093, China

E-mail: nqding@nju.edu.cn

Abstract

This talk is a report on joint work with Lixin Mao.
Let R be a ring. A left R-module M is said to be divisible (or P -injective)

if Ext1(R/Ra,M) = 0 for all a ∈ R. A right R-module N is called torsionfree
if Tor1(N,R/Ra) = 0 for all a ∈ R. The definitions of divisible and torsionfree
modules coincide with the classical ones in case R is a commutative domain. It is
clear that a right R-module N is torsionfree if and only if the character module N+

is divisible by the standard isomorphism Ext1(R/Ra,N+) ∼= Tor1(N,R/Ra)+ for
every a ∈ R.

In this paper, a ring R is called left P -coherent in case each principal left
ideal of R is finitely presented. A left R-module M (resp. right R-module N) is
called D-injective (resp. D-flat) if Ext1(G,M) = 0 (resp. Tor1(N,G) = 0) for
every divisible left R-module G. It is shown that every left R-module over a left
P -coherent ring R has a divisible cover; a left R-module M is D-injective if and
only if M is the kernel of a divisible precover A → B with A injective; a finitely
presented right R-module L over a left P -coherent ring R is D-flat if and only if L
is the cokernel of a torsionfree preenvelope K → F with F flat. We also study the
divisible and torsionfree dimensions of modules and rings. As applications, some
new characterizations of von Neumann regular rings and PP rings are given.

Key Words: P -coherent ring; divisible module; torsionfree module; D-injective
module; D-flat module; Warfield cotorsion module; (pre)cover; (pre)envelope.

2000 Mathematics Subject Classification: 16D50; 16D40; 16E10; 18G10.
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A TILED ORDER OF FINITE GLOBAL DIMENSION WITH NO
NEAT PRIMITIVE IDEMPOTENT

Hisaaki Fujita and Akira Oshima

Let R be a discrete valuation ring with a unique maximal ideal πR and a quotient
field K, and let F = R/πR be the residue class field. Let n ≥ 2 be an integer and
{λij | 1 ≤ i, j ≤ n} a set of n2 integers satisfying

λii = 0, λik + λkj ≥ λij , λij + λji > 0 (if i �= j)
for all 1 ≤ i, j, k ≤ n. Then Λ = (πλijR) is a basic semiperfect Noetherian R-
subalgebra of the full n× n matrix algebra Mn(K). We call such Λ a tiled R-order
in Mn(K).

Let S be a semiperfect Noetherian ring and e a primitive idempotent of S.
Following Ágoston, Dlab and Wakamatsu [1], we call e a neat primitive idempotent

if ExtiS(V, V ) = 0 for all i ≥ 1, where V is a simple right S-module with V e �= 0.
It is shown by Jategaonkar [4] that for a fixed n ≥ 2, there are only finitely

many tiled R-orders of finite global dimension in Mn(K), up to isomorphisms. It
is not known, however, what is the maximum finite global dimension among them,
while some examples of tiled R-orders having large global dimension are studied by
some authors. In such examples, neat primitive idempotents play an essential role.
Then in [3] a question was posed, that is, “Does any tiled R-order of finite global
dimension have a neat primitive idempotent?”, which can be considered as an im-
proved version of Jategaonkar’s conjecture disproved by Kirkman and Kuzmanovich
[5] and [2] for all n ≥ 6.

In this talk, for an arbitrary prime p, we construct a tiled R-order Λ in Mn(K)
such that global dimension gldΛ = 5 if characteristic charF �= p, and gldΛ = ∞ if
charF = p, where n = 4p + 5. In the case of charF �= p, Λ is a tiled R-order of
finite global dimension which has no neat primitive idempotent, so that the above
question is solved.

In order to compute global dimension of Λ, we use the theory of Rump
[6]. Namely, we compute projective resolutions in the category of finite dimen-
sional Ω-representations over F , where Ω is the infinite poset of indecomposable
Λ-projectives in a fixed simple Mn(K)-module.
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Zero-Divisor Semigroups of Some Simple Graphs 2

Tang Gaohua3, Su Huadong and Ren Beishang
Department of Mathematics, Guangxi Teachers’ College,

Nanning 530001, P. R. China

The zero-divisor graph of a commutative semigroup with zero is a graph whose
vertices are the nonzero zero-divisors of the semigroup, with two distinct vertices
joined by an edge in case their product in the semigroup is zero. In this paper, we
give formulas to calculate the numbers of non-isomorphic zero-divisor semigroups
corresponding to the graph Kn − e (the complete graph Kn deleted an edge), star
graphs K1,n, two-star graphs Tm,n and windmill graphs respectively.

1. Main Results

Theorem 1. The number of non-isomorphic zero-divisor semigroups corresponding
to the graph Kn − e(the complete graph Kn deleted an edge) is

H(n) = 4

n−2∑

i=0

K(i) + 3

n−4∑

i=0

(n− 3− i)K(i) + 1
2

n−5∑

i=0

(n− 4− i)(n− 3− i)K(i).

Where K(n) =
n∑
k=0

P (k) is the number of non-isomorphic zero-divisor semigroups

corresponding to the complete graph Kn and P (n) denotes the number of partitions
of n.

Theorem 2. Let n ≥ 2. Then the number of non-isomorphic zero-divisor semi-
groups corresponding to the star graph K1,n is

S(n) = n+ 2 + 2f(n− 1) + 2f(n).
Where f(n) denotes the number of non-isomorphic commutative semigroups with n
elements.

Theorem 3. Let m and n be positive integers. Let T (m,n) denote the number of
non-isomorphic zero-divisor semigroups corresponding to the two-star graph Tm,n.
Then
(1) T (m,n) = f(m) + f(n), if m �= n;
(2) T (m,n) = f(n), if m = n.
Where f(n) denotes the number of non-isomorphic commutative semigroups with n
elements.

Theorem 4. Let n ≥ 2, m ≥ 0 and Fn,m denotes the windmill graphs, a special
refinement of the star graph K1,2n+m. Then there are 1

2 (m + 1)(n + 1)(n + 2)
non-isomorphic zero-divisor semigroups corresponding to the graph Fm,n.

2Supported by Guangxi Natural Sciences Foundation(0575052, 0640070), Innovation Project of

Guangxi Graduate Education(2006106030701M05) and Scientific Research Foundation of Guangxi

Educational Committee
3E-mail: huadongsu@sohu.com
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Duals of Modules and Quasitriangular Hopf
Algebras
Guilong Liu
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Beijing Language and Culture University, Beijing 100083, China

Email address: liuguilong@blcu.edu.cn

Abstract
Let C be a coalgebra and M a right C-comodule then the dual space M∗ of

M is a right C∗-module. If we begin with a right A-module M , however, difficul-
ties arise. In general, M∗ is not a comodule. This paper studies the finite dual
comodule.

Let A be an algebra and M be a right A-module. We show that M0 = {f |f ∈
M∗, f(MI) = 0, for some ideal I of A such that dimA/I < ∞} is a right A0-
comodule. We also show that the finite dual comodule of Yetter-Drinfeld module,
H-module coalgebra and Hopf module are Yetter-Drinfeld module, H -comodule
algebra and Hopf module respectively. Let (H,R) be a quasitriangular Hopf al-
gebra with R =

∑
ai ⊗ bi ∈ H ⊗ H . On the set H we define a new coproduct

∆′ = R∆h =
∑
aih1 ⊗ bih2. We show that (H,∆′, ε) is a coalgebra. If we denote

this coalgrbra (H,∆′, ε) by H ′ then we show that the map u : H ′ → H by u(h) = h
is a convolution invertible. Applying this new coproduct to the Drinfeld double
D(H), we show (D(H))′ ∼= (Mn(k))

∗ as coalgebra. Here n = dimH, and Mn(k) is
the algebra of all n× n square matrices over field k.
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SYMMETRY IN NONCOMMUTATIVE NOETHERIAN RINGS

C. R. Hajarnavis

University of Warwick

Email: crh@maths.warwick.ac.uk

The Jacobson radical of a ring is left-right symmetrical. It is the intersection
of maximal right ideals as well as maximal left ideals. A similar symmetry holds
for semisimple Artinian rings. This two-sidedness plays a crucial role in the use of
these concepts. Here we recall that such a symmetry also exists for invertible ideals
and describe applications which are dependent on this property.

Let R be a prime Noetherian ring and Q the quotient ring of R . Define
I∗ = {q ∈ Q : qI ⊆ R} and I+ = {q ∈ Q : Iq ⊆ R} . Then we say that I is right
invertible if II+ = R , left invertible if I∗I = R and invertible if both hold. We
have shown [3] that in a Noetherian (semi)prime polynomial identity (PI) ring a
maximal ideal is right invertible if and only if it is left invertible. In particular, such
an ideal is projective. This result was extended to a general ideal I in [2]. Some
applications of this result are as follows [1,2]:

Theorem 1. (with Chatters and Lissaman): Let R be a Noetherian PI ring. Let
M be a non-idempotent maximal ideal of R such that MR is projective. Then M
has the left Artin-Rees property and M contains a right regular element of R .

Recall that a module MR is called a generator if RR is a direct summand of
M ⊕ ...⊕M . (finite direct sum of copies of M). We can show:

Theorem 2. (with Braun): Let R be a Noetherian PI ring. Let I be a two sided
ideal of R which is a right generator. Then I is right projective and satisfies the left
Artin-Rees property.

Thus a generator ideal is a progenerator.
Extending these methods we obtain information on the structure of the ideal

class group of the centre of certain rings of finite global dimension. This class
includes the enveloping algebra of a finite dimensional Lie algebra over a field of
characteristic p .
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GROUP ACTIONS IN A UNIT-REGULAR RING, II

Juncheol Han
Department of Mathematics Education

Pusan National University
Pusan, 609-735, Korea
email jchanpusan.ac.kr

Abstract

Let R be a ring with unity, X the set of all nonzero, nonunits of R and G the
group of all units of R. We will consider some group actions on X by G, the left
(resp. right) regular action and the conjugate action. In this paper, by investigating
these group actions we can have some results as follows: First, if E(R), the set of all
nonzero nontrivial idempotents of a unit-regular ring R, is commuting, then o
(x)
= or(x), oc(x) = {x} for all x ∈ X where o
(x) (resp. or(x), oc(x)) is the orbit of
x under the left regular (resp. right regular, conjugate) action on X by G and R
is abelian regular. Secondly, if R is a unit-regular ring with unity 1 such that G is
a finitely generated abelian group and 2 = 1 + 1 ∈ G, then G is a finite abelian
group. Finally, if R is an abelian regular ring such that G is an abelian group, then
R is a commutative ring.
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On Hochschild cohomology ring of an order of a quaternion algebra

Takao Hayami

Let R be a commutative ring and Λ an R-algebra which is a finitely generated
projective R-module. IfM is a Λ-bimodule (i.e., a Λe = Λ⊗RΛop-module), then the
nth Hochschild cohomology of Λ with coefficients in M is defined by Hn(Λ,M) :=
ExtnΛe(Λ,M). We set HH

n(Λ) = Hn(Λ,Λ). The Yoneda product gives HH∗(Λ) :=⊕
n≥0HH

n(Λ) a graded ring structure with 1 ∈ ZΛ � HH0(Λ) where ZΛ denotes

the center of Λ. HH∗(Λ) is called the Hochschild cohomology ring of Λ.
Let G denote the generalized quaternion 2-group of order 2r+2 for r ≥ 1:

Q2r = 〈x, y | x2
r+1

= 1, x2
r

= y2, yxy−1 = x−1〉.
We set e = (1 − x2r)/2 ∈ QG and denote xe by ζ, a primitive 2r+1-th root of e.
Then e is a central idempotent of QG and QGe is the quaternion algebra over the
field K := Q(ζ + ζ−1) with identity e, that is, QGe = K ⊕Ki ⊕Kj ⊕Kij where
we set i = x2

r−1
e and j = ye (see [1, (7.40)]). Note that i2 = j2 = −e, ij = −ji

hold. In the following we set R = Z[ζ + ζ−1], the ring of integers of K, and we
set Γ = ZGe = R ⊕Rζ ⊕ Rj ⊕ Rζj. Note that R is a commuting parameter ring,
because y commutes with x + x−1. Then Γ is an R-order of QGe. In particular if
r = 1, Γ = Ze⊕ Zi⊕ Zj ⊕ Zij is just the quaternion algebra over Z.

We give an efficient bimodule projective resolution of Γ , and we determine the
ring structure of the Hochschild cohomology HH∗(Γ ) by calculating the Yoneda
products using this bimodule projective resolution. We have the following theorem
(see [2]):

Theorem. (1) If r = 1, then the Hochschild cohomology ring HH∗(Γ ) is isomor-
phic to

Z[A,B,C]/(2A, 2B, 2C,A2 +B2 + C2),
where degA = degB = degC = 1.

(2) If r ≥ 2, then the Hochschild cohomology ring HH∗(Γ ) is isomorphic to

R[A,B,C,D]/((ζ + ζ−1)A, (ζ + ζ−1)B, (ζ + ζ−1)C, 2rD,

A2 +B2 + C2, BC − 2r−1ηD),
where η = 2e/(ζ + ζ−1) (∈ R), degA = degB = degC = 1 and degD = 2.

In the case r = 1, this Hochschild cohomology ring is already known by [3,
Section 3.4].
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Auslander-type Conditions

Zhaoyong Huang
Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China

E-mail: huangzy@nju.edu.cn

Let R be a two-sided noetherian ring and mod R the category of finitely
generated left R-modules. For a positive integer n, R is called a n-Gorenstein ring
if the flat dimension of the i-th term in a minimal injective resolution of RR is at
most i − 1 for any 1 ≤ i ≤ n. R is said to satisfy the Auslander condition if it
is k-Gorenstein for all n. For a module M in mod R (resp mod Rop) and a non-

negative integer i, we denote gradeM ≥ i if ExtjR(M,R) = 0 for any 0 ≤ j < i, and
denote s.gradeM ≥ i if gradeN ≥ i for any submodule N of M . It was showed by
Auslander in 1975 that R is k-Gorenstein if and only if s.gradeExtiR(M,R) ≥ i for
any M ∈mod R and 1 ≤ i ≤ n, and in particular, the notion of n-Gorenstein rings
(and hence that of the Auslander condition) is left-right symmetric.

Let n, k ≥ 0. We say that R is Gn(k) if s.gradeExt
i+k
R (M,R) ≥ i holds for

any M ∈ mod R and 1 ≤ i ≤ n. Then R is Gn(k) if and only if the flat dimension
of the i-th term in a minimal injective resolution of RR is at most i + k − 1 for
any 1 ≤ i ≤ n. Thus Gn(0) (resp. G∞(0)) is just the n-Gorenstein ring (resp. the
Auslander condition). Similarly, we say that R is gn(k) if gradeExt

i+k
R (M,R) ≥ i

holds for any M ∈ mod R and 1 ≤ i ≤ n.
Noetherian rings satisfying ‘Auslander-type conditions’ on self-injective reso-

lutions can be regarded as certain non-commutative analogs of commutative Goren-
stein rings. Such conditions, especially dominant dimension and the n-Gorenstein
ring, play a crucial role in representation theory and non-commutative algebraic
geometry. They are also interesting from the viewpoint of some homological con-
jectures.

In this talk, I summarize some developments on the study of Auslander-type
conditions.
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Characterizations of elements in prime radicals of skew polynomial
rings and skew Laurent polynomial rings

Chan Huh

Pusan National University

Abstract
We show that the θ-prime radical of a ring R is the set of all strongly θ-

nilpotent elements, where θ is an automorphism of R. Also we observe some condi-
tions under which the θ-prime radical of R coincides with the prime radical. More-
over we characterize elements in the prime radical of skew Laurent polynomial ring,
by studying ’:θ-(semi)primeness.
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Applications of Harada rings
and Kupisch series for Harada rings

Ken-ichi Iwase

In this talk, we show several results as applications of left H-rings and discuss
Kupisch series for left H-rings. Among others, we show the following results:

Theorem 1. If R is a left perfect ring whose factor rings are right QF-3, then
R is a Nakayama ring.

Theorem 2. If R is a semiprimary QF-2 ring with ACC or DCC for right
annihilator ideals, then R is QF-3.

Theorem 3. If R is a basic indecomposable left H-ring with a simple projective
right R-module, then R can be represented as a factor ring of an upper triangular
matrix ring over a division ring.

Theorem 4. For a left H-ring R, the following conditions are equivalent:
(1) R is a Nakayama ring.
(2) R/Si(RR) is a Nakayama QF-ring for i = 1, 2.
(3) R/Si(RR) is a Nakayama QF-ring for i = 0, 1, 2, · · · .
(4) R is right Kasch and R/S(RR) is right QF-2.
(5) R/Si(RR) is QF for i = 1, 2.
(6) R/Si(RR) is QF for i = 0, 1, 2, · · · .

Tennouji senior high school
attached to Osaka kyouiku University
4-88, Minami-kawahori,Tennouji, Osaka , 543-0054 JAPAN

Email: iwase@cc.osaka-kyoiku.ac.jp
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Koszul differential graded algebras
and BGG correspondence

J.-W. He Department of Mathematics, Shaoxing College of Arts and Science,

Shaoxing 312000, China
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Email: qswu@fudan.edu.cn
abstract

The concept of Koszul differential graded algebra (Koszul DG algebra) is intro-
duced. Koszul DG algebras exist extensively. It is shown that any finite dimensional
local algebra over an algebraically closed field is the Ext-algebra of some Koszul DG
algebra, and quasi-Koszul and strongly quasi-Koszul algebras can also be realized
by Koszul DG algebras. Koszul DG algebras have nice properties similar to the
classic Koszul algebras: The Yoneda algebra of the Ext-algebra of a Koszul DG
algebra A is isomorphic to the cohomology algebra H(A); There is an equivalence
(and a duality) between some subcategories of the derived category of A and of
the derived category of its Ext-algebra. When the Koszul DG algebra A is AS-
regular it is proved that the Ext-algebra E of A is Frobenius. In this case, similar
to the classical BGG correspondence, there is a correspondence between the stable
category of E and some sub quotient category of the derived category of A.
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Valuation rings in the quotient ring of a skew polynomial ring

John S. Kauta
Department of Mathematics, Faculty of Science, Universiti Brunei Darussalam,
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e-mail: kauta@fos.ubd.edu.bn

Let K be a field, and let σ be an automorphism of K of finite order, say
n. One can form a skew polynomial ring K[X,σ] over K with the usual rules
of multiplication defined by the commutation rule: Xa = σ(a)X ∀ a ∈ K. Let
K(X,σ) denote the skew field of quotients of K[X,σ]. If F is the fixed field of σ
and a ∈ F \ {0}, then one can also form the cyclic algebra (K/F,σ, a). The aim
of this talk is to describe the connection between the noncommutative valuation
theories of K(X,σ) and (K/F,σ, a). In particular, we will discuss semihereditary
orders and Dubrovin valuation rings of the two central simple algebras.
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ON NON-δ-M-COSINGULAR COMPLETELY
⊕-δM -SUPPLEMENTED MODULES

Derya Keskin Tütüncü, Fatma Kaynarca and M. Tamer KOŞAN

Hacettepe University and Afyonkarahisar Kocatepe University

Emails: keskin@hacettepe.edu.tr and fatmakaynarca@hotmail.com and
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In this note all modules will be unital right R-modules.
A module N in σ[M ] is called M-singular if N ∼= L/K for an L ∈ σ[M ] and

K is essential in L. Let A ≤ N ∈ σ[M ]. A is called a δM -small submodule of N if
whenever N = A+X and N/X is M -singular for X ≤ N we have N = X and we
denote it by A �δM N . Note that δM -small submodules are the generalization of
δ-small submodules in the category of Mod−R defined by Zhou in [3].

Let A ≤ B ≤ N ∈ σ[M ]. A is called a δM -coessential submodule of B in N
if B/A �δM N/A and we denote it by ”A ⊆δMce B in N”. A submodule A of N
is said to be δM -coclosed in N if it has no proper δM -coessential submodule in N
and we denote it by ”A ⊆δMcc N”. Let A ≤ B ≤ N ∈ σ[M ]. If A ⊆δMce B in N
and A ⊆δMcc N , then we say that A is a δM -coclosure of B in N . By [1], A is a
δM -coclosure of B in N if and only if A is a minimal δM -coessential submodule
of B in N (because the class of M -singular modules is closed under homomorphic
images).

Inspired by the definitions and characterizations of the class ZM (N) given in
[2], one may define the submodule ZδM (N) =

⋂
{Kerg | g : N −→ T, T ∈ DM}

where DM is the class of δ-M -small modules. Any module N ∈ σ[M ] is called a
δ-M-cosingular (non-δ-M -cosingular)module if ZδM (N) = 0 (ZδM (N) = N).

Let N ∈ σ[M ] and X ≤ N . A δM -supplement of X in N is a submodule K
of N with N = K +X and X ∩K �δM K. If every submodule of N has a direct
summand δM -supplement in N , then N is called ⊕-δM -supplemented. We call any
module N in σ[M ] completely ⊕-δM -supplemented if every direct summand of N is
⊕-δM -supplemented.

Some of our main results can be stated as follows:
THEOREM 1: Let N ∈ σ[M ] be a non-δ-M -cosingular ⊕-δM -supplemented
module. Then N is (D3) if and only if N has the summand intersection property.
THEOREM 2: Let N ∈ σ[M ] such that ZδM (N) has a coclosure (or δM -
coclosure) in N . Then N is (completely) ⊕-δM -supplemented if and only if N =

Z
2

δM
(N)⊕K for some submoduleK of N such thatK and Z

2

δM
(N) are (completely)

⊕-δM -supplemented.
THEOREM 3: Let N ∈ σ[M ]. Then N is lifting if and only if N = Z

2

δM
(N)⊕K

for some submoduleK ofN such thatK and Z
2

δM
(N) are lifting andK and Z

2

δM
(N)

are relatively projective.
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ON THE RELATIVE (QUASI-) DISCRETENESS OF MODULES

Derya Keskin Tütüncü and Nil Orhan Ertaş

Hacettepe University and Süleyman Demirel University
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In recent years, several authors (c.f. [1]-[5]) have studied discrete modules and
other related concepts as interesting generalizations of the concept of projectivity
and lifting property of modules. Although relative projectivity has been studied in
detail, it appears that not much work has yet been done to study the discreteness
of an arbitrary module M with respect to another module N , namely the N -
discreteness of M . In [3], Oshiro generalized the concepts of lifting, quasi-discrete
and discrete modules only for submodules taken from a given family A. This was
done by considering the properties

A− (D1) For all A ∈ A there exists a direct summand N of M such that A/N �
M/N .

A− (D2) For any A ∈ A with A ≤d M , any sequence M −→M/A −→ 0 splits.
A− (D3) For any A ∈ A and B ≤M with A,B ≤d M andM = A+B, A∩B ≤d M .
Throughout this paper A will be a family of submodules of any unital right R-
module M which is closed under coessential submodules (namely, if A ∈ A and
A/B �M/B, then B ∈ A) and (α):
(α) For A ∈ A and B ≤M , M/A ∼=M/B implies that B ∈ A.
Oshiro called the module M A-lifting, A-quasi-semiperfect or A-semiperfect, if M
satisfies A− (D1), A− (D1) and A− (D3), or A− (D1) and A− (D2), respectively.
In this paper we use the terms of quasi-discrete and discrete instead of quasi-
semiperfect and semiperfect, respectively. When A consists of all submodules of
M then M is A-lifting, A-quasi-discrete or A-discrete, respectively, iff M is lifting,
quasi-discrete or discrete.

Let M and N be modules. Consider the class
B(M,N) = {A ≤ M | ∃X ≤ N, ∃f ∈ Hom(M,N/X), Kerf/A � M/A}. M

is said to be N -lifting, N -quasi-discrete or N -discrete whenM is A-lifting, A-quasi-
discrete or A-discrete for A = B(M,N), respectively. In this paper we prove the
following:

Theorem 1. Let 0 −→ N ′ f−→ N
g−→ N ′′ −→ 0 be an exact sequence. If M is

N -lifting((quasi)-discrete), then it is both N ′- and N ′′-lifting((quasi)-discrete).

Theorem 2. Let 0 −→ N ′ f−→ N
g−→ N ′′ −→ 0 be an exact sequence and let M be

an N -amply supplemented module. Assume that B(M/T,N) is closed under supple-
ment submodules for every factor module M/T of M . Then M is N -lifting(quasi-
discrete) iff it is both N ′-lifting(quasi-discrete) and N ′′-lifting(quasi-discrete).
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ON IRREDUCIBLE FACTORS OF THE POLYNOMIAL f(x)− g(y)
Sudesh K. Khanduja
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E-mail: skhand@pu.ac.in

Abstract. A well known result of Ehrenfeucht states that a polynomial f1(x1)+ ...+
fn(xn) with complex coefficients is irreducible over the field of complex numbers
provided the degrees of f1(x1), ..., fn(xn) have the greatest common divisor one. In
1964, Tverberg extended this result by showing that when K is a field of charac-
teristic zero, then each polynomial f1(x1)+ ...+fn(xn) over K in n ≥ 3 variables is
irreducible. He also proved that a polynomial f1(x1)+f2(x2) with degrees of f1 and
f2 coprime, is always irreducible over a field of arbitrary characteristic. In 2001,
Bhatia and Khanduja generalized the above result by proving that if r is the g.c.d.
of the degrees of the polynomials f(x) and g(y) in the variables x and y having
leading coefficients c and d, then f(x)− g(y) is irreducible over a field K provided
xr − c

d
is K-irreducible. Indeed the above result was proved for Generalized Differ-

ence polynomials. In this lecture, all irreducible factors of polynomials of the form
f(x) − g(y) over an arbitrary field are described. It will also be proved that the
number of irreducible factors of f(x)− g(y) over a field K (counting multiplicities)
does not exceed the greatest common divisor of the degrees of f(x), g(y). It will
be deduced that if f(x) and g(y) are non-constant polynomials with coefficients in
the field Q of rational numbers and degf(x) is a prime number, then f(x) − g(y)
is a product of at most two irreducible polynomials over Q. This contributes to
a problem raised by J. W. S. Cassels which asks for what polynomials f, is the

polynomial f(x)−f(y)
x−y reducible. These results have jointly been proved with Prof.

A. J. Engler, State University of Campinas, Brazil.
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The generalized finite intersection property

Hong Kee Kim

Gyeongsang National University

Abstract

A generalization of Baer ring and Noetherian ring is the generalized finite
intersection property that is defined by the following; A ring R is said to have the
generalized left finite intersection property if there exists a finite subset X’ of R such
that the left annihilator of any subset X of R is the left annihilator of X’. In this
talking, there exists a ring having the generalized left finite intersection property
but neither Baer ring nor Noetherian ring. Also, we find some results about a ring
having the generalized left finite intersection property.
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On quasi continuous rings

Jin Yong Kim∗
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Jae Kyung Doh and Jae Keol Parka
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In this paper, two-sided quasi-continuous rings or left CS rings with certain
chain conditions are QF. For example, it is shown that two-sided quasi-continuous
left perfect rings with DCC on left annihilators are QF. Also it is proved that left
CS left GP-injective rings with ACC on left annihilators are QF.
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Morita duality and recent development

Kazutoshi Koike

About 50 years ago, Morita and Azumaya published epoch-making papers [6]
and [1] independently, which are origins of the theory of Morita duality. Morita [6]
studied equivalences (covariant category equivalences) between the full categories of
modules over two rings and dualities (contravariant category equivalence) between
resonably large subcategories of right and left modules over two rings. Azumaya [1]
studied dualities between the category of finitely generated right and left modules
over two artinian rings, as a generalization of dualities induced by quasi-Frobenius
rings. Now the equivalence and duality of Morita are called Morita equivalence and
Morita duality, respectively, and play very important roles of the ring theory. The
duality of Azumaya is interpretated as an essential case of Morita duality.

Following these works, many ring-theorists had investigated Morita duality.
Particularly, they had been interested in (Morita) self-duality. There are few classes
of rings with self-duality. Finite dimensional algebras over fields, quasi-Frobenius
rings and (artinian) serial rings are such classes of rings. Azumaya [2] conjectured
that every artinian exact ring has a self-duality. The class of artinian exact rings
contains serial rings and commutative rings, which are known as rings with self-
duality. However the conjecture still remains open.

In this talk, we shall present fundamental results about Morita duality (self-
duality) and recent development including the authors results of [3, 4, 5] for self-
duality of Harada rings (certain QF-3 artinian rings, which can be regarded as a
generalization of quiasi-Frobenius rings and serial rings) and Azumaya’s conjecture.
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Representation theory from a certain point of view

Shigeo Koshitani (Chiba University)

Abstract

We will be discussing representation theory, first of all, of finite dimensional
algebras and also of finite groups over a sufficiently large field. We will be trying
to explain what is going on in the area in terms of several conjectures and so on.
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Compartible algebra structures of Lie algebras
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1. Introduction

The compartible algebra products ∗ of a finite-dimensional semisimple Lie
algebra g with a Lie bracket [−,−] is defined to be satisfying the Leibniz law:

[x, y ∗ z] = [x, y] ∗ z + y ∗ [x, z].
If g is simple of all the types except An of n ≥ 2, then the compartible algebra
products must be the scalar multiples of the Lie bracket [−,−]. In case that g is
simple of type An of n ≥ 2, such a product is a sum of a scalar multiple of [−,−]
and a deformed one of the ordinal associative products on the full (n+1)× (n+1)
matix algebra. Then we give an alternative proof to the triviality of the compartible
associative algebra structures of a semisimple Lie algebra g which was shown in
Kubo [3].

2. Explicit forms

We can consider such a product as an element of Homg(g⊗ g, g), and give the
explicit form of it.

Theorem 1. Let g be a simple Lie algebra over k.
(1) If g is not of type An of n ≥ 2 then Homg(g ⊗ g, g) = kL.
(2) If g is of type An of n ≥ 2 then Homg(g ⊗ g, g) = kL⊕ kD.
Here L and D are of the forms:

L(x⊗ y) := [x, y], D(x⊗ y) = xy − 1

n+ 1
Tr(xy)E.

We will give an elementary proof based on the basic knowldge found in the text
books [1, 2].

As for the compartible associative algebra structures, we have the following
interesting result.

Corollary 2 (Kubo[3]). Let g be a semisimple Lie algebra with a Lie bracket [−,−].
If φ ∈ Homg(g⊗g, g) satisfies the associative law: φ(φ(x⊗y)⊗z) = φ(x⊗φ(y⊗z))
for x, y, z ∈ g, then φ = 0.
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On Broué’s abelian defect group conjecture in representation theory of
finite groups

Naoko Kunugi

Tokyo University of Science

In modular representation theory of finite groups, it is important to consider
relations between representations of a given finite group and representations of its
p-local subgroups. In fact, there are several conjectures based on such a concept. I
will talk about, in particular, Broué’s abelian defect group conjecture.

Let G be a finite group. Let p be a prime and (K,O, k) a p-modular system,
that is, O is a complete discrete valuation ring, K is a quotient field of O of
characteristic 0 and k is a residue field of O of characteristic p.

For R ∈ {O, k}, we have an indecomposable decompositon
RG = A0 ⊕ · · ·⊕An

of RG as algebras. We call each Ai a block of RG. For an indecomplsable (right)
RG-module U , there is a unique block A such that U ·A �= 0. In this case, we say
that U belongs to A. We call a block to which the trivial RG-module belongs the
principal block of RG.

Let A be a block of RG. A defect group of A is a minimal p-subgroup D of
G such that the multiplication map A ⊗RD A → A splits as an (A,A)-bimodule
homomorphism.

The following theorem is very important.

Theorem 1 (Brauer’s first main theorem). Let D be a p-subgroup of G. Then
there is a one to one correspondence between the set of blocks of RG with defect
group D and the set of blocks of RNG(D) with defect group D.

The theorem does not say anything about relations between representations
of corresponding blocks. On the other hand, Broué conjectures the following.

Abelian Defect Group Conjecture (Broué [1, 2]). Let A be a block of RG with
defect group D and B the Brauer correspondent block in NG(D) with defect group
D. If D is abelian, then two blocks A and B would be derived equivalent.
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Extended Armendariz rings and rigid rings
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A ring R is called Armendariz if whenever the product of any two polynomials
in R[x] over R is zero, then so is the product of any pair of coefficients from the
two polynomials. Such rings have been extensively studied in literature. For a
ring endomorphism α, we introduce the notions of α-Armendariz rings and α-
skew Armendariz rings which are generalizations of α-rigid rings and extensions
of Armendariz rings, by considering the polynomials in the skew polynomial ring
R[x;α] in place of the ring R[x]. We investigate their properties and study on the
relationship between the Baerness and p.p.-property of a ring R and these of the
skew polynomial ring R[x;α] in case R is extended Armendariz. In particular, we
show that there is a strong connection among extended Armendariz rings and rigid
rings. Several known results follow as consequences of our results.
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On strongly NI rings

Chang Ik Lee, Yang Lee and Sung Ju Ryu
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Kim and Lee [5] called a ring strongly 2-primal if every factor rings of itself
are 2-primal. The study of strongly 2-primal rings was initiated by Birkenmeier at
el. [1]. Commutative rings are more similar to such rings than to 2-primal rings.
In this talk, we define the concept of strongly NI rings which is a generalization
of both strongly 2-primal rings and NI rings. Thus, it is related to NIness, 2-
primalness and strong 2-primalness. Using some examples, each of them is not
equivalent to strong NIness.

First, we show that a ring is strongly NI if and only if every strongly prime
ideals are completely prime.
Next we also study the basic structure of strongly NI rings. We see whether new
rings of old ones preserve strong NIness. Moreover we see some examples and
counter examples suitable for questions raised naturally.
Finally, we also see some classes of rings under which NI rings and strongly NI rings
coincide.
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On the Behrens radical of matrix rings and polynomial rings

P.-H. Lee and E. R. PuczyMlowski

keywords: Brown-McCoy radical,Behrens radical, polynomial ring

It is shown that the Behrens radical of a polynomial ring, in either commuting
or non-commuting indeterminates, has the form of “polynomials over an ideal” and,
in the case of non-commuting indeterminates, for a given coefficient ring, the ideal
does not depend on the cardinality of sets of indeterminates. However, in contrast to
the Brown-McCoy radical, it is not true that if the polynomial ring in an infinite set
of commuting indeterminates over a ring R is Behrens radical, then the polynomial
ring in an infinite set of non-commuting indeterminates over R is Behrens radical.
This is connected with the fact that matrix rings over Behrens radical rings need
not be Behrens radical. The class of Behrens radical rings, which is closed under
taking matrix rings, is described.
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ORE EXTENSIONS WHICH ARE GPI-RINGS

Chen-Lian Chuang and Tsiu-Kwen Lee
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Abstract. Let R be a prime ring and δ a σ-derivation of R, where σ is an auto-
morphism of R. It is proved that the skew polynomial ring R[t;σ, δ] is a GPI-ring
(PI-ring resp.) if and only if R is a GPI-ring (PI-ring resp.), δ is quasi-algebraic, and

σ is quasi-inner. If R[t;σ, δ] is a GPI-ring then soc(Q[t;σ, δ]C̃) =
(
soc(Q)[t;σ, δ]

)
C̃,

where Q is the symmetric Martindale quotient ring of R and where C̃ denotes the
extended centroid of Q[t;σ, δ]. If R[t;σ, δ] is a PI-ring, its PI-degree is determined
as follows:

(1) PI-deg(R[t;σ, δ]) = PI-deg(R)×Out-deg(δ) if δ is X-outer, and
(2) PI-deg(R[t;σ, δ]) = PI-deg(R)×Out-deg(σ) if δ is X-inner.

† 2000 Mathematics Subject Classification. 16W20, 16W25, 16A05, 16R50.
‡ Key words and phrases. Prime ring, PI-degree, skew polynomial ring, GPI, quasi-
algebraic, quasi-inner.
Members of Mathematics Division, NCTS (Taipei Office).
Corresponding author: Tsiu-Kwen Lee.
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On Property (A)
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One of important properties for commutative Noetherian rings is that the annihilator of an

ideal I consists entirely of zero-divisors is nonzero [6, Theorem 82]. However this result fails for

some non-Noetherian rings, even if the ideal I is finitely generated.

Huckaba and Keller [5] introduced the following: a commutative ring R has Property (A) if

every finitely generated ideal of R consisting entirely of zero-divisors has a nonzero annihilator.

Property (A) was originally studied by Quentel [9]. Quentel used the term Condition (C) for

Property (A). The class of rings with Property (A) contains many important kinds of commutative

rings, e.g., Noetherian rings, rings whose prime ideals are maximal, the polynomial rings and

rings whose classical ring of quotients are von Neumann regular. Using Property (A), Hinkle and

Huckaba [3] extend the concept of Kronecker function rings from integral domains to rings with

zero-divisors. Many useful results for commutative rings with Property (A) can be found in [1, 2,

4, 5, 7, 8, 9, etc.], and they contain several results which are useful studying commutative rings

with zero-divisors.

Property (A) is closely connected with the following annihilator condition. Lucas [7] said

that a commutative ring R has the annihilator condition (briefly, a.c.) provided that given a

finitely generated ideal I of R, there exists an element b ∈ R such that the annihilator of I is

equal to the annihilator of b. Property (a.c.) was originally introduced by Henriksen and Jerison [2]

on reduced rings. Noet that polynomial rings over reduced rings, Bezout rings (finitely generated

ideals are principal), and many other important kinds of commutative rings have Property (a.c.).

Property (A) and (a.c.) are equivalent conditions on a reduced ring whose space of minimal prime

ideals is compact. However, these two conditions are not equivalent in general [7]. Recently, Lucas

[8] also studied the zero-divisor graph of rings with Property (A).

We continue the study of rings with Property (A) on noncommutative rings. We first extend

the concept of Property (A) to noncommutative rings, and observe structures of that and related

rings.

We will say that a ring (possibly noncommutative) R has right (left) Property (A) if for

every finitely generated ideal I consists entirely of left (right) zero-divisors, there exists nonzero

a ∈ R (b ∈ R) such that Ia = 0 (bI = 0). A ring R is called to have Property (A) if R has right

and left Property (A).

It is shown that biregular rings have Property (A).

We next study several extensions of rings with Property (A) including matrix rings, poly-

nomial rings, and classical quotient rings. It is proved that the Property (A) can go up to matrix

rings. Adding to those, we also study when the space of minimal prime ideals of rings with

Property (A) is compact.
Furthermore we will observe the Property (A) in other kinds of extensions and related

concepts with some conditions (if necessary).
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Abstract

We study the weak global dimension of coherent rings in terms of the left FP -
injective resolutions of modules. Let R be a left coherent ring and FI the class
of all FP -injective left R-modules. It is shown that wD(R) ≤ n (n ≥ 1) if and
only if every nth FI-syzygy of a left R-module is FP -injective; and wD(R) ≤ n
(n ≥ 2) if and only if every (n − 2)th FI-syzygy in a minimal FI-resolution of a
left R-module has an FP -injective cover with the unique mapping property. Some
results for the weak global dimension of commutative coherent rings are also given.

Key Words: weak global dimension; FP -injective dimension; syzygy; (pre)cover.
2000 Mathematics Subject Classification: 16E10; 16E05; 16D50.
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On τ -coherent rings

Kanzo Masaike

Let R be a ring with identity and τ the Lambek torsion theory, which is
cogenerated by the injective hull of the left (or right) R-module R. In the following
we shall say that R is left τ -coherent, if every finitely generated left ideal is τ -finitely
presented. An R-homomorphism f :M → N is called τ -epimorphism, if coker f is
τ -torsion.

On the other hand, R is said to be a left (resp. right) TF ring, if every finitely
generated τ -torsion free left (resp. right) R-model is embedded into a free module.
Furthemore, we shall say that a submodule N of a left R-module M is rationally
closed, if M/N is τ -torsion free. We give a necessary and sufficient condition of left
TF ring R for which R becomes a right TF ring.

Theorem 1. Let Q be a maximal left quotient ring of R. Then R is a left TF
ring, if and only if Q is a left TF ring and for every q ∈ Q, q−1R is a τ -finitely
generated dense right ideal of R, where q−1R = {r ∈ R|qr ∈ Q} .

Theorem 2. Let R be a left TF ring. Then, the following conditions are
equivalent.

(1) R is a right TF ring.
(2) R is left τ-coherent, and for every inverse system of τ-epimorphism {fλ :

R→Mλ}λ∈Λ with each Mλ a torsionless left R-module, lim←− fλ is a τ-epimorphism
.

Proposition 3. Let Q be a maximal left quotient ring of R such that every
finitely generated left Q-submodule of ⊕ni=1Q, a finite direct sum of copies of the left
Q-module Q, is a rationally closed. Then, the following conditions are equivalent.

(1) R is left τ-coherent.
(2) Q is flat as a right R-module.
(3) Q is Π-flat as a right R-module.

Department of Mathematics
Tokyo Gakugei University
Koganei, Tokyo, JAPAN

Email: masaike@u-gakugei.ac.jp
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Totally Projective Modules And The Extentions Of Bounded
QTAG-Modules
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Abstract:A QTAG-module M is a unital module over an associative ring with
unity such that every finitely generated submodule of any homomorphic image of
M is a direct sum of uniserial modules.For a uniform element x ∈M , height of x is
sup{d(U/xR)} where U runs through all the uniserial modules containing x. Hk(M)
is the submodule of M generated by the elements of height atleast k and M1 =
∞⋂
k=0

Hk(M) or HωM . M is k-bounded if H(x) ≤ k for all x ∈M . A submodule N

of M is h-pure in M if Hk(N) = Hk(M) ∩N for all k ∈ Z+ and it is nice if for all
ordinals σ, Hσ(M/N) = (Hσ(M) +N)/N . M is σ-projective if Hσ(Ext(M,C) = 0
for all QTAG-modules C and it is totally projective if it is σ-projective for all
ordinals σ. For a submodule N ⊂ M and ordinal α, αth Ulm-Kaplansky invariant
of M with respect to M is defined as fα(M,N) which is the cardinality of the
minimal generating set of (Soc(Hα(M))/(Soc(Hα(M))∩ (Soc(Hα+1(M)+M))). If
N = 0, fα(M,N) = fM (α).

In this paper we study totally projective QTAG-modules and the extensions
of bounded QTAG-modules.In the first section we study totally projective mod-
ules M/N and M ′/N ′ where N ,N ′ are isomorphic nice submodules ofM andM ′

respectively.In fact the height preserving isomorphism between nice submodules is
extented to the isomorphism fromM ontoM ′ with the help of Ulm-Kaplansky in-
variants.In the second section extensions of the bounded QTAG-modules are stud-
ied.Here the invariants are automorphism classes of bounded submodules of the
extending module together with the cardinality of the minimal generating set of
maximal summand of the extension module. The equivalence of epimorphisms is
the main tool in this study.
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An Introduction to Noncommutative Algebraic Geometry
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Since classification of low dimensional projective schemes has been active and
successful in algebraic geometry for many years, one of the major projects in non-
commutative algebraic geometry is to classify low dimensional noncommutative
projective schemes defined by Artin and Zhang [4] (1994). In this talk, we will
survey this project. Classification of noncommutative projective curves were com-
pleted by Artin and Stafford [2] (1995). For classification of noncommutative pro-
jective surfaces, we have the following conjecture due to Artin [1] (1997); every
noncommutative projective surface is birationally equivalent to either (1) a quan-
tum projective plane, (2) a quantum ruled surface, or (3) a surface finite over its
center. Classification of quantum projective planes were completed by Artin, Tate
and Van den Bergh [3] (1990), however, classification of other types of surfaces
together with the above conjecture are still open.
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Some congruences concerning finite groups

Kaoru Motose

In this talk, we present a lemma about orders of normal subgroups in a
transitive group of prime degree. This lemma has an application to prove sim-
plicity of the alternative group A5 of degree 5, and 4-transitive Mathieu groups
M11,M12,M23,M24. Please use this lemma for your lecture to your students about
group theory or Galois theory.

In the remaining time, if it is possible, I would like to propagandize Feit-
Thompson conjecture because it is not so popular, to mathematician, even to finite
group theorists and number theorists.
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Hochschild Cohomology of Algebras with Stratifying Ideals

Hiroshi Nagase

This is joint work with Steffen Koenig.

1. long exact sequences

When studying Hochschild cohomology it is natural to try relating cohomology
H(B) of a finite dimesional algebra B to H(A) of an ’easier’ or ’smaller’ algebra
A. In the case that B is a one-point extension of A, by Happel [?], two long
exact sequences with terms of H(B) and H(A) have been studied . Happel’s long
exact sequences have been generalized to triangular matrix algebras, for example
by Michelena and Platzeck [5].

We would like to try generalizing these results. We consider the case that B
has an ideal I which gives a fully faithful functor from derived category of B/I to
that of B. Such an ideal is called a stratifying ideal by Cline, Parshall and Scott[2].
Heredity ideals are examples of stratifying ideals and any triangular matrix algebra
has a stratifying ideal.

It is known that stratifying ideals are idempotent ideals, namely any stratify-
ing ideal of B has the form of BeB for some idempotent e in B. By using of this
idempotent e , we get the following two long exact sequences;

· · ·→ ExtnBe(B,BeB)→ Hn(B)→ Hn(A)→ Extn+1Be (B,BeB)→ · · · , and

· · · → ExtnBe(A,BeB) → Hn(B) → Hn(A) ⊕ Hn(eBe) → Extn+1Be (A,BeB) →
· · · ,
where A = B/BeB and Be = B ⊗Bop.

2. Nakayama algebras

We apply the second long exact sequence above to Nakayama algebras. For
any Nakayama algebra B, if B is not self-injective algebra, then B has a stratifying
ideal BeB with B/BeB a ground field. Since eBe is also Nakayama algebra, if
eBe is not self-injective, then eBe also has a stratifying ideal. So we can continue
this reduction until the algebra is reduced into a self-injective algebra. Hochschild
cohomology of self-injective Nakayama algebras have been studied by Erdmann and
Holm [3], and also by Bardzell, Locateli and Marcos [1]. By using their results and
the second long exact sequence above, we will compare the Hochschild cohomology
of the Nakayama algebra B and that of a self-injective Nakayama algebra.
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PRIMITIVITY OF GROUP RINGS
OF EXTENSIONS OF FREE GROUPS

Tsunekazu Nishinaka

Okayama Shoka University

Email: nishinak@po.osu.ac.jp

1. Abstract

Let G be a group, and let ϕ : G −→ G be a monomorphism. The ascending
HNN extension corresponding to ϕ is the group Gϕ = 〈G, t|t−1gt = ϕ(g)〉. Let n
be a positive integer and Gnm = 〈x1, · · · , xm | xni , (xixj)n, 1 ≤ i, j ≤ m〉. A ring
is (right) primitive if it has a faithful irreducible (right) module. Let F be a free
group and K a field. Our purpose of this lecture is the study of primitivity of group
rings KFϕ and KG

n
m.

If G �= 1 is a finite group or an abelian group, then the group ring KG can
never be primitive. The first nontrivial example of primitive group ring was offered
by Formanek and Snider [3] in 1972. After that, several examples which include a
result for primitivity of group rings of free products of groups [2] were constructed.
However, there is at present no viable conjecture as to when KG is primitive for
arbitrary groups.

The ascending HNN extensionGϕ of a groupG is a well-studied class of groups.
Recently, Borisov and Sapir, in their paper [1], have shown that the ascending
HNN extension Fϕ of a finitely generated free group F is residually finite (cf.[4]).
Then by reduction method based on residual properties and on series in groups,
we can see that KFϕ is semiprimitive if the characteristic of K is zero. One might
therefore hope that KFϕ is semiprimitive for any field K. We showed that KFϕ is
semiprimitive for all K even if the rank of F is countably infinite. In fact, KFϕ is
primitive except the case with nontrivial center.

Now, let Ri (i = 0, 1, 2, · · · ) be the set of positive reduced words of length i in
the free group 〈x1, · · · , xm〉, and let B(m,n, i) = 〈x1, · · · , xm | wn, w ∈ ∪ik=0Rk〉.
Then B(m,n, 0) is simply a free group of rank m, and B(m,n, 1) a free product of
cyclic groups of order n. It is known that these groups are residually finite, and
that B(m,n,∞), which is called the m-generator free Burnside group of exponent
n, is not residually finite for any sufficiently large n. It is also known that group
rings KB(m,n, 0) and KB(m,n, 1) are primitive if m > 1 and n > 2. We can show
that Gnm = B(m,n, 2) is an extension of a free group if n > 2 and n ≥ 2m− 3 > 0.
As a concequence, in this case, it can be seen that Gnm is residually finite, and that
KGnm is primitive for any K.
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Partial Skew Polynomial Rings and Jacobson Rings

Wagner de Oliveira Cortes

Pure and Applied Mathematics
Federal University of Rio Grande do Sul (UFRGS)

We consider rings R with a partial action α of a cyclic infinite group G on
R, R[x;α] the partial skew polynomial rings and R < x;α > the the partial skew
Laurent of polynomial. We generalized the well known results about Jacobson
rings and strongly Jacobson rings in skew polynomial rings and skew Laurent of
polynomial rings to partial skew polynomial rings and partial skew Laurent of
polynomial rings.
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Computing the maximal algebra of quotients of a Lie algebra

M. Brešar, F. Perera, J. Sánchez Ortega∗, M. Siles Molina
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The theory of algebras of quotients of associative algebras has a rich history
and is still an active research area. The notion of “being an algebra of quotients”
has found recently parallels for Jordan systems (see e.g. [4, 1, 3]).

In [6] M. Siles Molina initiated the study of algebras of quotients of Lie alge-
bras. She introduced the notion of a general (abstract) algebra of quotients of a Lie
algebra, and also, as a special concrete example, the notion of the maximal algebra
of quotients Qm(L) of a semiprime Lie algebra L. In order to foresee the impor-
tance of this concept in the non-associative setting, F. Perera and M. Siles Molina
undertook in [5] a study of the relationship between Lie and associative quotients.
M. Cabrera and J. Sánchez Ortega have proved in [2] that similar results hold for
the skew case.

Our main goal is to compute Qm(L) for some Lie algebras L. Specifically, we
are interested in Lie algebras of the form L = A−/Z, where A− is the Lie algebra
associated to a prime associative algebra A and Z is the center of A, and in Lie
algebras of the form L = K/ZK , where K is the Lie algebra of skew elements of
a prime associative algebra with involution and ZK is its center. We also study
natural questions, namely, whether Qm(I), where I is an essential ideal of a Lie
algebra L, is equal to Qm(L) and whether taking the maximal algebra of quotients
is a closure operation, that is, Qm(Qm(L)) = Qm(L). We will be able to give a
positive answer to the first question provided that L satisfies a certain condition.
On the other hand, we will show that in some special situations the answer to the
second question is positive, namely, if L is a simple Lie algebra or if L = A−/Z,
where A is either a simple algebra (satisfying a minor technical assumption) or an
affine PI prime algebra (i.e. a finitely generated prime algebra which satisfies a
polynomial identity). In general, however, it is not true.
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Professor Haradaー Person and Work

Kiyoichi Oshiro

Yamaguchi University

Email: oshiro@yamaguchi-u.ac.jp

I introduce “Person and Work” of Professor Manabu Harada by talking fol-
lowing:

Person

(1) University days at Osaka City University as a student of Professor Keizo
Asano.

(2) Professor days for almost 40s at Osaka City University.
(3) After retired from Osaka City University.

Research field

(1) Hereditary order, hereditaruy noetherian prime rings.
(2) Krull-Remak-Schmidt-Azumaya’s Theorem.
(3) Non-small modules and non-cosmall modules.
(4) Lifting property and extending property for modules.
(5) Simple injective modules and mini-injective modules.
(6) New artinian rings (H-rings), and its sense and applications.

—Abstract-45—



δ-M-SMALL and δ-HARADA MODULES

M. Tamer KOŞAN 1 and A. Çiğdem ÖZCAN 2

1 Kocatepe University, Department of Mathematics,ANS Campus, Afyon, Turkey
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In the early 1980s, Harada found a new class of Artinian rings, and Oshiro in
[1] calls these rings Harada rings (briefly H-ring). Generalizing the concept of H-
rings to module theory, Harada modules were introduced by Jayaraman and Vanaja
in [2] by using the category σ[M ].

In this article, as a generalization of Harada modules, δ-Harada modules are
defined by using the concept of ”δ—small submodules” of Zhou in [3]. Some prop-
erties of δ-Harada modules are investigated and the following characterization of
H-rings is also obtained.
Theorem. The following are equivalent for a ring R.

1. R is a right H-ring.
2. R is right Noetherian and every non-δ-small right R-module contains a

non-zero injective submodule.
3. R is right Artinian and every non-δ-small right R-module contains a non-

zero injective submodule.

4. R is right perfect and for any exact sequence of right R-modules P
f−→

N −→ 0 where N is injective and Ker(f) is δ-small in P , P is a direct sum of an
injective module and a semisimple projective module.
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Quasi-Baer Ring Hulls and Applications to C∗-Algebras

Jae Keol Park
Department of Mathematics
Busan National Univesity
Busan 609-735, South Korea
E-mail: jkpark@pusan.ac.kr

Recall that a ring with identity is called quasi-Baer if the right annihilator of
each ideal is generated by an idempotent as a right ideal. In this talk, we discuss
the existence of quasi-Baer ring hulls of semiprime rings and their applications to
C∗-algebras. We consider connections between the concepts of boundedly centrally
closed and quasi-Baer for the class of C∗-algebras. In particular, we characterize a
C∗-algebra whose local multiplier algebra is a direct product of prime C∗-algebras.
As a corollary, we characterize those C∗-algebras which satisfy a PI and have only
finitely many minimal prime ideals (This is a joint work with Gary F. Birkenmeier
and S. Tariq Rizvi).
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GENERALIZED DERIVATIONS IN PRIME RINGS

Nadeem-ur-Rehman
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Let R be an associative ring with center Z(R). For each x, y ∈ R denote the
commutator xy − yx by [x, y] and the anti-commutator xy + yx by x ◦ y. Recall
that a ring R is prime if for any a, b ∈ R, aRb = {0} implies that a = 0 or b = 0.
For any a, b ∈ R we set [a, b]α,β = aα(b)− β(b)a. An additive function F : R −→ R
is called a generalized inner derivation if F (x) = ax + xb for fixed a, b ∈ R. For
such a mapping F , it is easy to see that

F (xy) = F (x)y + x[y, b] = F (x)y + xIb(y) for all x, y ∈ R.
This observation leads to the following definition, given in [Comm. Algebra 26(1998),
1149-1166]: an additive mapping F : R −→ R is called a generalized derivation with
associated derivation d if

F (xy) = F (x)y + xd(y) for all x, y ∈ R.
Familiar examples of generalized derivations are derivations and generalized inner
derivations. Since the sum of two generalized derivations is a generalized derivation,
every map of the form F (x) = cx + d(x), where c is fixed element of R and d is
a derivation, is a generalized derivation; and if R has 1, all generalized derivations
have this form.

Let α and β be the endomorphisms of R. An additive map d : R −→ R is
called an (α,β)-derivation if d(xy) = d(x)α(y) + β(x)d(y) holds for all x, y ∈ R.
An (1, 1)-derivation is called simply a derivation, where 1 is the identity map.
For fixed a, the map da : R −→ R given by da(x) = [a, x]α,β for all x ∈ R
is an (α,β)-drivation which is said to be an (α,β)-inner derivation. An additive
mapping F : R −→ R will be called a generalized (α,β)-inner derivation if F (x) =
aα(x) + β(x)b for some fixed a, b ∈ R and all x ∈ R. A simple computation yields
that if F is a generalized (α,β)-inner derivation, then we have for all x, y ∈ R,
F (xy) = F (x)α(y) + β(x)d−b(y), where d−b is an (α,β)-inner deivation. In this
viewpoint, an additive map F : R −→ R will be called generalized (α,β)-derivation
associated with d if there exists an (α,β)-derivation d : R −→ R such that

F (xy) = F (x)α(y) + β(x)d(y) for all x, y ∈ R.
An (1, 1)-genaralized derivation is called simply a generalized derivation, where 1 is
an identity map. In the present paper, we shall discuss the commutativity of prime
rings admitting a generalized (α,β)-deviation F satisfying any one of the properties:
(i) [F (x), x]α,β = 0, (ii) F ([u, v]) = 0, (iii) F (u ◦ v) = 0, (iv) F ([x, y]) = [x, y]α,β ,
(v) F (xy) = α(xy), (vi) F (x ◦ y) = (x ◦ y)α,β , (vii) F (xy) − α(xy) ∈ Z(R) and
(viii) F (x)F (y)− α(xy) ∈ Z(R), for all x, y in some appropriate subset of R.
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The relevance and the ubiquity of Prüfer modules

C.M.Ringel

Let R be a ring. An R-module M will be said to be a Prüfer module provided
there exists a locally nilpotent, surjective endomorphism of M which has kernel of
finite length. In the lecture we want to outline the relevance, but also the ubiquity
of Prüfer modules. Any Prüfer module which is not of finite type gives rise to
a generic module, thus to infinite families of indecomposable modules with fixed
endo-length (here we are in the setting of the second Brauer-Thrall conjecture).
The aim of the lecture is to exhibit a construction procedure for Prüfer modules
which yields a wealth of such modules.
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The work of Tachikawa on finite-dimensional algebras and their
representations

C.M.Ringel

The aim of the lecture is to outline some of the main contributions of Tachikawa
to the representation theory of finite-dimensional algebras. We mainly will concen-
trate on the early years: on results concerning the classification of indecomposable
modules, the importance of the dominant dimension and on the structure of selfin-
jective aLgebras and their generalisations (such as QF-1 and QF-3 algebras). Key
topics will be the double centralizer condition (and Schur-Weyl duality), the repet-
itive algebras and trivial extensions as well as the various homological conjectures.
Tachikawa’s considerations had a lasting effect on the modern development of the
representation theory of finite-dimensional algebras and we want to sketch in which
way these results have been used, extended and transformed in recent years.
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On structure of rings of quotients

S. Tariq Rizvi

Department of Mathematics

Ohio State University

Lima, OH 45804-3576

E-mail: rizvi.1osu.edu

Abstract. We introduce the notion of Johnson dimension (jdim) of an S − R
bimodule M where S and R are any rings. We use our methods to provide a
characterization of an arbitrary ring R for which Q(R), the maximal right ring of
quotients of R, is a direct product of prime rings. This removes the condition of
nonsingularity from a result of of Jain, Lam and Leroy and generalizes it. As a
consequence, we obtain a structure theorem for the idempotent closure RB(Q(R),
the subring of Q generated by R and the central idempotents of Q(R). Some related
results on dimensions of rings will be presented. (This is a joint work with Gary F.
Birkenmeier and Jae K. Park.)
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ON DIRECT SUMS OF EXTENDING
AND BAER MODULES

Cosmin S. Roman

The Ohio State University, Lima

Email: cosmin@math.ohio-state.edu

Let R be a ring with unit, not necessarily commutative; all modules are con-
sidered to be right R-modules.

An open question, that has only received partial answers till to date, is to
find necessary and sufficient conditions for a direct sum of extending modules to be
extending. An extending R-module is one for which every submodule is essential
in a direct summand. The concept generalizes those of injective and (quasi-) con-
tinuous modules. A closely related concept is that of a Baer Module. We define an
R-module M to be Baer if, denoting by S = EndR(M) the ring of endomorphisms
of M , the left annihilator in S of any submodule of M is a left ideal of S generated
by an idempotent; equivalently, the right annihilator in M of any left ideal of S is
a direct summand of M .

Using this concept, we will present some newer developments which may pro-
vide an answer to the above question in some situations under the assumption of
nonsingularity (and even under some weaker form of nonsingularity). Some appli-
cations of our results will be discussed (joint work with S.Tariq Rizvi).

References

1. Chase, S.U., Direct Products Of Modules, Trans. Am. Math. Soc. 1960, 97, no. 3, 457—473

2. Cohn, P.M., Free Rings and Their Relations, Academic Press: London & New York, 1971

3. Dung, N.V.; Huynh, D.V.; Smith, P.F.; Wisbauer, R., Extending Modules, Pitman Research

Notes in Mathematics Series, 313; Longman Scientific & Technical: Harlow, 1994

4. Faith, C., Embedding Torsionless Modules in Projectives, Publ. Mat. 1990, 34, no. 2, 379—387

5. Mohamed, S.H.; Mller, B.J., Continuous and Discrete Modules, London Mathematical Society

Lecture Note Series, 147, Cambridge University Press, Cambridge, 1990

6. Rizvi, S.T.; Roman, C.S., Baer And Quasi-Baer Modules, Comm. Alg. 2004, 32(1), 103—123

7. Rizvi, S.T.; Roman, C.S., Baer Property of Modules and Applications, Advances in Ring The-

ory, (Proceedings of the 4th China-Japan-Korea International Conference) ((eds.)), publisher,

city, 2005, 225-241

8. Tsukerman, G.M., Rings of Endomorphisms of Free Modules, Sibirsk. Mat. Ž. 7 1966, 7,
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ON DERIVATIONS IN NEAR RINGS

Mohammad Shadab Khan
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Let N be a left near-ring. An additive mapping d : N −→ N is said to be a
derivation on N if d(xy) = xd(y) + d(x)y for all x, y ∈ N . An additive mapping d :
N −→ N is called a (σ, τ)-derivation if there exist endomorphisms σ, τ : N −→ N
such that d(xy) = σ(x)d(y) + d(x)τ (y) for all x, y ∈ N .

There is an increasing body of evidence that prime near-rings with deriva-
tions have ring like behavior, indeed, there are several results, see for example;
Bell[Kluwer Academic Publishers Netherlands (1997), 191-197], Beidar et.al[Comm.
Algebra 24(5)(1996), 1581-1589], Wang[Proc. Amer. Math. Soc. 121 (1994), 361-
366] and Ashraf et. al[Arch. Math. 40(2004), 281-286] asserting that the existence
of a suitably-constrained derivation on a prime near-ring forces the near-ring to be
ring.

In this paper, our aim is to generalizes some results due to Wang [Proc. Amer.
Math. Soc. 121 (1994), 361-366] on near-rings admitting a special type of derivation
namely (σ, τ )-derivation, where σ and τ are endomorphisms of the near-ring.
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Characterizations of QF Rings

Liang Shen
A joint work with Jianlong Chen
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Let R be a ring. A right ideal I of R is called small if for any proper right ideal
K of R, I+K �= R. R is called right small injective if every homomorphism from a
small right ideal of R to RR can be extended to a homomorphism from RR to RR.
R is called right ℵ0-injective if every homomorphism from a countably generated
right ideal of R to RR can be extended to a homomorphism from RR to RR.

Some characterizations of QF rings are given by small injectivity, mininjectiv-
ity, simple injectivity and ℵ0-injectivity. It is proved that:
(1) If R is left and right mininjective, with ACC on right annihilators such that
Sr ⊆ess RR, then R is QF.
(2) If R is right simple injective, with ACC on right annihilators such that Sr ⊆ess
RR, then R is QF.
(3) If R is right small injective, with ACC on right annihilators such that Sr ⊆ess
RR,

then R is QF.
(4) If R is left perfect, left and right small injective, then R is QF.
(5) If R is semilocal, right small injective and with ACC on right annihilators, then
R is QF.
(6) If R is right noetherian and left ℵ0-injective, then R is QF.
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A Note on The Finitistic Dimension Conjecture

Hongbo Shi

Nanjing University of Finance and Economics

Email: dshi782000@yahoo.com

For a large class of rings R, we first observe some relationships between the
R-projective and respectively eRe-projective resolutions, where e is certain well-
chosen idempotent of R, and then use the observations to draw some relations
between the finitistic dimensions of the two rings. The results are then applied to
relations algebras in an effort to offer some insight into the nature of the finitistic
dimension conjecture for this special and important class of algebras.
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Leavitt path algebras of row-finite graphs have attracted a good deal of at-
tention recently. Although their origin can be traced back to the pioneering work
of Leavitt in his quest for finding universal rings failing to satisfy the IBN property
(see [?]:SILES), they have only come to life as such in recent years (see, e.g. [1],
and [4]). Speaking informally, a Leavitt path algebra is a graph K-algebra over
a field K together with two naturally occurring relations, known as the Cuntz-
Krieger relations. This terminology evolves from the construction due to Cuntz
and Krieger of algebras defined out of finite {0, 1}-matrices towards the so-called
graph C∗-algebras (see [9]).

As with their analytic relatives, Leavitt path algebras provide a source of ex-
amples of rings whose algebraic structure is determined by highly visual properties
of the underlying graph (see [7]). For example, conditions on the graph allow us
to decide when the corresponding Leavitt path algebra is simple [1], purely infi-
nite simple [2], exchange [6], finite-dimensional [3]. Some of the graph conditions
parallel the corresponding structural properties that one encounters in C∗-algebras
(notably simplicity and the exchange property), but the routes towards the proofs
are in general quite different.

A whole range of examples of algebras arise as Leavitt path algebras. Besides
the (now already) classical examples investigated by Leavitt, we also find alge-
braic analogues of the Toeplitz algebra (which will be described here), arbitrary
matrices over the Laurent polynomial ring K[x, x−1] over a field K, and, up to
Morita equivalence, all K-ultramatricial algebras (i.e. countable direct limits of
K-matricial algebras).

In this talk we will start by showing that the Leavitt path algebra of a (row-
finite) graph is an algebra of quotients of the corresponding path algebra. The
path algebra is semiprime if and only if whenever there is a path connecting two
vertices, there is another one in the opposite direction. Semiprimeness is studied
because, for acyclic graphs, the Leavitt path algebra is a Fountain-Gould algebra
of right quotients of any semiprime subalgebra containing the path algebra (and
a Moore-Penrose algebra of right quotients of any subalgebra with involution that
contains the path algebra). The maximal algebras of quotients of Leavitt path
algebras with essential socle (equivalently the associated graph satisfies that every
vertex connects to a line point) can be obtained.
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The chain conditions in question are of the following type: given a positive
integer n, an algebraic object satisfies the ascending chain condition on n-generated
subobjects. For example, every free group satisfies the ascending chain condition on
n-generated subgroups, for every positive integer n. If R is a right Noetherian ring
then sometimes every free right R-module satisfies the ascending chain condition
on n-generated submodules, for every positive integer n, but sometimes this does
not happen.
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The notion of a contravariantly finite subcategory, which is also called a
(pre)covering class, was first introduced over artin algebras by Auslander and Smalø
[4] in connection with studying the problem of which subcategories admit almost
split sequences. The notion of a resolving subcategory was introduced by Auslander
and Bridger [1] in the study of modules of G-dimension zero, which are now also
called totally reflexive modules. Auslander and Reiten [3] proved that the notion
of a contravariantly finite resolving subcategory is closely related to tilting theory.
There is also an application of contravariantly finite resolving subcategories to the
study of the finitistic dimension conjecture.

In this talk, we will study contravariantly finite resolving subcategories over
commutative rings. Let R be a commutative noetherian henselian (e.g. complete)
local ring. (Note that any commutative artinian local ring is complete, hence
henselian.) We denote by modR the category of finitely generated R-modules,
by F(R) the subcategory of free R-modules, by C(R) the subcategory of maxi-
mal Cohen-Macaulay R-modules, and by G(R) the subcategory of totally reflexive
R-modules. The subcategory F(R) is always a contravariantly finite resolving sub-
category, and so is C(R) provided that R is Cohen-Macaulay. The latter fact is
known as the Cohen-Macaulay approximation theorem, which was proved by Aus-
lander and Buchweitz [?]. The subcategory G(R) is always resolving, and coincides
with C(R) if R is Gorenstein.

The main result of this talk is the following.

Theorem 1. If R is Gorenstein, then all the contravariantly finite resolving sub-
categories of modR are F(R), C(R) and modR.

Actually we can prove several more general results than the above theorem.
One of them yields another proof of the following theorem, which is the main result
of [5].

Theorem 2. Suppose that there is a nonfree R-module in G(R). If G(R) is con-
travariantly finite in modR, then R is Gorenstein.
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Finitely generated modules over commutative valuation rings have been inves-
tigated since 1980’s (see [1]). We will report some results about finitely generated
modules over non-commutative valuation rings.

A subring R of a division ring D is said to be an total valuation ring if, for any
non-zero element d of D, we have d ∈ R or d−1 ∈ R. Furthermore, if dRd−1 = R
holds for any non-zero element d of D, then R is called an invariant valuation ring.

An R-submodule N of a left R-module M is said to be relatively divisible (an
RD-module for short) if aN = N ∩ aM for any a ∈M .

Then we have the following results:

Proposition 1. Let R be an invariant valuation ring and let M be a finitely gen-
erated left R-module. Then there exists a sequence

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

of R-submodules of M such that

(1) each Mi is an RD-submodule of M , and
(2) Mi/Mi−1 is cyclic (i = 1, 2, · · · , n).

The sequence in Proposition 1 is called an RD-composition series of M .

Proposition 2. Let R be an invariant valuation ring. Then any two RD-composition
series of a finitely generated left R-module M is isomorphic and the length of RD-
composition series of M is equal to the number of minimal generators of M .
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skew-matrix ring and applications to QF-ring
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In this talk, we discuss a skew-matrix ring which is introduced by Kupisch
and Oshiro through the study on Nakayama rings. As applications of these rings,
we show several results on QF-rings as follows:

(1) Let R be a skew-matrix ring over a local QF-ring Q;

R �



Q · · · Q

· · ·
Q · · · Q



σ,c,n

with c ∈ J(Q),σ ∈ Aut(Q).Then R is a QF-ring with non-identity cyclic
Nakayama permutation.

(2) Let R be a basic indecomposable artinian ring R is said to be a strongly
QF-ring if and only if eRe is QF for any e = e2 ∈ R. Followring are
equivalent:
(a) R is a strongly QF-ring
(b) R is a QF-ring with identity Nakayama permutation or R is rep-

resented as a skew-matrix ring (Q)σ,c,n over a local QF-ring with
c ∈ J(Q).

(3) For a given permutation ξ =

(
1 2 · · · n
p1 p2 · · · pn

)
, there is a basic inde-

composable QF-ring R = e1R ⊕ · · · ⊕ enR with a Nakayama permutation(
e1 e2 · · · en
ep1 ep2 · · · epn

)

where {e1, . . . , en} is a complete set of orthogonal primitive idempotents.
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Recall that a derivation on a ring R is an additive mapping δ : R → R
with δ(rs) = δ(r)s + rδ(s) for all r, s ∈ R. An additive mapping d : M → M
on a right R-module M is a δ-derivation if d(xr) = d(x)r + xδ(r) for all x ∈ M
and r ∈ R. As these concepts are not intrinsically ring theoretic notions, it is
of interest to study how they agree with the concepts that are intrinsically ring
theoretic. Specifically, continuing the study from [1], [2], and [3], we study how
derivations agree with hereditary torsion theories. In [1], a torsion theory is said
to be differential if d(T (M)) is in the torsion submodule T (M) for every module
M and every derivation d. Equivalently, a torsion theory is differential if every
derivation on a module extends uniquely to a derivation on its module of quotients.

In this talk, we review some results from [3] and continue the study of exten-
sions of derivations to rings and modules of quotients. Firstly, we demonstrate that
every perfect torsion theory for a ring R is differential. Perfect torsion theories are
those in which the module of quotients MF of every module M is isomorphic to
the tensor product M ⊗R RF where RF is the right ring of quotients. Thus, every
module of quotients is determined solely by the right ring of quotients. Since the
classical torsion theory of a right Ore ring has this property, a perfect torsion the-
ory is a way to generalize the classical torsion theory in cases when the ring might
not be right Ore. We prove that a perfect torsion theory is differential and give an
explicit construction of the extension of a derivation from a right R-module M to
the module of quotients MF. Secondly, we prove that the Lambek and Goldie tor-
sion theories for any ring are differential. Lastly, we address the following question:
assuming that a ring derivation can be extended to a ring of quotients Q1 contained
in another ring of quotients Q2, when can a derivation on Q1 be extended to Q2? In
the cases when it can, we say that the extensions agree. More generally, we consider
the following question: when does a derivation on module of quotients extends to
the module of quotients with respect to a larger torsion theory? We prove that
such extension is possible if both torsion theories are differential or if the smaller is
differential and the module of quotients with respect to the smaller torsion theory is
torsion-free in the larger torsion theory. We derive some corollaries of this results.
In particular, we prove that the extensions on the maximal right ring of quotients,
the classical right ring of quotients, the ring of quotients with respect to the Goldie
torsion theory, and the total right ring of quotients (the largest perfect right ring
of quotients) all agree.
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Using quiver technique, we construct a class of (non)graded bi-Frobenius algebras.
In particular, this kind of bi-Frobenius algebras are not Hopf algebras. We also classify a
class of graded bi-Frobenius algebras via certain equations of structure coefficients.

1. Introduction

Typical Frobenius algebras are finite group algebras. In general, a finite-dimensional
Hopf algebra is a Frobenius algebra (see Larson and Sweedler [LS], or 2.1.3 in Montgomery
[M]). Relations of the Frobenius algebras with the Yang-Baxter equations and with the
topological quantum field theory can be founded in [Kad] and [A], respectively. As a
natural generalization of finite-dimensional Hopf algebras, the concept of a bi-Frobenius
algebra was introduced by Doi and Takeuchi [DT] (see also [Kop]). Roughly speaking, this
is a Frobenius algebra as well as a Frobenius coalgebra together with an antipode. Except
for an example given in 2.5 in [DT], there are few explicit constructions of bi-Frobenius
algebras which are not finite-dimensional Hopf algebras. The aim of this note is to provide
such an explicit construction via quivers.

Motivations of our construction is the quiver method in the representation theory
of algebras, see Ringel [R], coalgebra structure on quivers considered by Chin and Mont-
gomery [CM], and constructing Hopf quiver and quiver quantum groups by Cibils and
Rosso [C], [CR], and E. Green and Solberg [GS], etc.

We start from the algebra KZn/Jd, where KZn is the path algebra of the basic cycle
with n vertices and J is the ideal generated by arrows with d ≥ 2 an integer. This is an
augmented Frobenius algebra, and it is a symmetric if and only if d ≡ 1(mod n) (see The-
orem 2.3 below). Endowed with a suitable Frobenius coalgebra structure, this Frobenius
algebra becomes a bi-Frobenius algebra, which is not a Hopf algebra (see Theorem 3.3).

The authors thank the referee for pointing out the reference [D]. By Lemma 1.2 in

[D], one can prove the both Frobeniusness of KZn/Jd by showing that it has a bijective
bi-Frobenius antipode. So we leave the proof of the Frobeniusness of algebra (see Lemma
2.1 (ii)) and of coalgebra (see Lemma 3.2) to Theorem 3.3.

Throughout let K be a field. All algebras and coalgebras are over K. The notations
Hom and ⊗ are over K.
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Let 〈C,∆, ε〉 be a coalgebra, 〈A, µ, η〉 an algebra and a k—linear map ψ :
C ⊗ A → A ⊗ C such that ψ(C ⊗ µ) = (µ ⊗ C)(A ⊗ ψ)(ψ ⊗ A), (A ⊗ ∆)ψ =
(ψ⊗C)(C ⊗ ψ)(∆⊗A), ψ(C ⊗ η) = η⊗C, (A⊗ ε)ψ = ε⊗A. Then C and A are
said to be entwined by ψ and the triple (A,C,ψ) is called an entwining structure,
denoted by (A,C)ψ. Let M

C
A(ψ) be the category of right entwined modules such

that A ∈ MC
A(ψ) with the action a J b = ab and the coaction ρA(a) = a0 ⊗ a1.

For any M ∈ MC
A(ψ), set M

coC = {m ∈ M | ρM (m J a) = m0 J aα ⊗ mα
1 =

m J a0 ⊗ a1, ∀a ∈ A}. The main result is the theorem.

Theorem 1. Let (A,C)ψ be an entwining structure. If there exists a right C—
comodule map φ : C → A, which is convolution invertible, then for any right
entwined module M ∈MC

A(ψ),

(1) Θ :M coC ⊗B A→M, m⊗ a .→ m J a

is an isomorphism of entwined modules.
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In late sixties of last century, M. Auslander introduced various homological
conditions on noetherian rings, which turned out very important in non-commutative
ring theory. Our main object in this talk is Auslander-Gorenstein rings, which can
be viewed as a non-commutative analogue of commutative local Gorenstein rings
and as a generalization of quasi-Frobenius rings. Besides some well-known exam-
ples such as rings of differential operators (Weyl algebras) and universal envelop-
ing algebras of finite dimensional Lie algebras, non-commutative Iwasawa algebras
over compact p-adic Lie groups ([5]) and noetherian PI Hopf algebras (quantum
groups)([7]) are Auslander-Gorenstein.

Let A-Mod stand for the category of left A-modules, and A-mod for the full
subcategory of finitely generated left A-modules. Also, we denote by Aop-Mod and
Aop-mod their right analogues.

If A is a Frobenius algebra, or more generally, a quasi-Frobenius ring, it is
well known that the pair of the exact contravariant functors

F = HomA(−,AA) : A-mod→ Aop-mod and G = HomA(−, AA) : Aop-mod→ A-mod

gives a duality between A-mod and Aop-mod.
This duality was generalized to a so called step-duality for an Auslander-

Gorenstein ring with injective dimension d in [1]. In the talk, we will define the grade
for bounded complexes in Db

fg(A-Mod). Using the generalized Ischebeck spectral

sequence, we will give a step-duality between certain subcategories of Db
fg(A-Mod)

and Db
fg(A

op-Mod) when A is an Auslander-Gorenstein ring. The step-duality in

[1] between A-mod and Aop-mod can be induced from the one between Db
fg(A-Mod)

and Db
fg(A

op-Mod) by using the heart of the t-structures of triangulated categories

([3]).
This is a joint work with G. -B. Zhuang.
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Let M be a module over a ring with an identity. In the case when M is
quasi-injective, by a classical theorem of Faith — Utusmi, Lambek and Johnson, the
endomorphism ring H of M has the following properties:

(1) an idempotent of H RadH can be lifted to H ,
(2) H RadH is a (von Neumann) regular ring.

Moreover, in this case, RadH coincides with the ideal L(H) of endomorphisms
with large kernel. Thus, in this talk, we consider the problem: do the properties
(1)(2) essentially depend on the Jacobson radical or the ideal L(M)? As an appli-
cation, it will be shown a class of modules M with the properties with respect to
L(M) but not RadH.
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Let R be a ring with identity. An element in R is said to be clean if it is the
sum of a unit and an idempotent. If this representation is unique, then the element
is said to be uniquely clean. R is said to be clean (uniquely clean) if all its elements
are clean (uniquely clean). In this talk, we discuss some characteristics of clean
rings and related rings as well as relations between these rings. We also present
some results on group rings whose nontrivial homomorphic images are uniquely
clean.
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On Simple Connectedness of Minimal

Representation-Infinite Algebras

Hailou Yao Guoqiang Han

(College of Applied Science, Beijing University of Technology,

100 Pingleyuan, Chaoyang District, Beijing 100022, P.R. China)

email: yaohl@bjut.edu.cn

Abstract: Let A be a connected minimal representaion-infinite
algebra over an algebraically closed field k, in this article we inves-
tigate the simple connectedness and strongly simple connectedness
of the algebra A, we obtained that A is simply connected if and
only if its first Hochschild cohomology group H1(A) is trivial. We
also give other equivalent conditions for simple connectedness of
A. Finally, we give a condition for strongly simple connectedness
of the algebra A.
Our main results are as follows.
Theorem 2.1 Suppose that an algebra A is minimal
representation-infinite with a preprojective component, then A is
simply connected if and only if H1(A) = 0.
Theorem 2.2 Suppose that A is a minimal representation-infinite
connected algebra, e is a primitive idempotent in A, If H1(A) = 0,
then H1(A/AeA) = 0.
Theorem 2.3 If A is a minimal representation-infinite connected
algebra, then A is simply connected if and only if H1(A) = 0 .
Theorem 3.1 Let A be a minimal representation-infinite algebra,
then the following conditons are equivalent.
(a) A is simply connected;
(b)A is triangular, moreover, there exists one presentation A ∼=
kQA/IA such that each irreducible cycle in QA is an irreducible
contour, and for each irreducible contour (p, q), we have p, q �∈ IA
and p− λq ∈ IA for some nonzero λ ∈ k.
(c) A is triangular, and for any presentation A ∼= kQA/IA all ir-
reducible cycles in QA are irreducible contours, and, for each irre-
ducible contour (p, q) we have p, q �∈ IA and p− λq ∈ IA for some
nonzero λ ∈ k.
Theorem 4.1 Let A be a minimal representation-infinite simply
connected algebra, then A is strongly simply connected if and only
if A/AexA is strongly simply connected for each source or sink x in
QA where (QA, IA) is any presentation of A and ex is a primitive
idempotent corresponding to x.

Keywords Simple connected Algebras, Minimal
Representaion-Infinite Algebras, Hochschild Cohomology
Groups.
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LOCAL QF RINGS WITH RADICAL CUBED ZERO II

Hiroshi Yoshimura

Graduate School of Science and Engineering
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Email: yoshi@yamaguchi-u.ac.jp

This is a joint work with Isao Kikumasa and Kiyoichi Oshiro.
For a given (not necessarily commutative) field k, how can we construct local

quasi-Frobenius (QF) rings Λ satisfying the condition

(∗) Λ/RadΛ ∼= k and (RadΛ)3 = 0 ?

Local QF rings Λ with (∗) which are algebras over a commutative field k can be
constructed by factor algebras of free algebras over k and the k-isomorphism classes
of those algebras can be determined under some condition ([1]), but the situation
in case Λ are not algebras over a commutative field is considerably complicated. In
this talk, for a given field k, we give a construction of local QF rings Λ with (∗) of
split type (i.e., Λ ∩ RadΛ = 0) and consider the number of isomorphism classes of
those local QF rings.
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Pushout Artin-Schelter Regular algebras of Global Dimension Four

Jun Zhang

Abstract: in general k algebra pushouts of AS-regular algebras are not regular.
We notice that with some restrictions, if two quadratic regular 3 dimensional alge-
bras A and B both contain the same cubic regular 3 dimensional algebras C, then
the k algebra pushout of A and B over C is a quadratic regular algebra of global
dimension 4. Under our restrictions, we give a description of all such pushout
algebras.
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Professor Liu Shaoxue – Life and work

Zhang Yingbo

School of Mathematics, Beijing Normal University, 100875 China

Email: zhangyb@bnu.edu.cn

Professor Liu Shaoxue was born on November 6 of 1929 in Liaoyang, a city of
Liaoning Province in Northern China. He graduated from the Department of
Mathematics of Beijing Normal University in 1951. In September 1953, he was
sent to study in the Mechanics and Mathematics Department of Moscow
University of the Formal Soviet Union under the guidance of A.G.Kurosh, a

prestigious expert in Algebra, and received Ph.D degree in 1956.

Professor Liu Shaoxue’s Ph.D thesis ‘On Decomposition of Infinite Algebras’
proves that an extension Jordan algebra of a locally finite algebra by a locally
finite algebra is still locally finite; and an extension Lie algebra of a locally finite
algebra by a locally finite algebra is still locally finite in case it is an algebraic Lie
algebra. Thus an Jordan algebra has Livitzki radical, and a solvable Lie algebra is
locally finite. His another paper ‘On algebras in which every subalgebra is an
ideal’ published in 1964 gives a complete description of the Hamilton algebras.
Professor’s textbook book ‘Rings and Algebras’ published in 1983 for the

graduated students is wildly used in China.

During a visit to Tsukuba University in 1988, Professor Liu and Professor
H.Tachikawa suggested to hold the China-Japan international Symposium on ring

theory, and the first Symposium was held in Guangxi of China.

Professor Liu decided to change the research project to the representation theory
of algebras for his Ph.D students at the age of 56. Because of his personality of
kindness and humorous, he makes a lot of good friends. Many foreign experts,
especially Claus Ringel, gave great helps to establish a research group of
representation theory of algebras in China. Now most of Liu’s students are

working in several best Universities of China as Professors. Since the efforts in the
education of graduated students, Professor Liu won an award for excellent

teaching of Beijing City in 1991.

Professor Liu is a distinguished Mathematician and mathematical Educationist.
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A study on gamma nearrings with derivations

Moharram A. Khan
Centre for Interdisciplinary Research in Basic Sciences (CIRBSc) Jamia Millia

Islamia, Jamia Nagar New Delhi-110025, India
Email: moharram a@yahoo.com

Abstract

In this talk, we first discuss how close the gamma nearrings are to gamma
rings and then generalize results from gamma rings to gamma nearring with suit-
able constraints on gamma rings. Secondly, we introduce the notion of Gamma
(a,b)-derivation on prime and semi prime gamma rings as well as gamma prime
and semi prime nearring and to obtain some related results using derivations and
generalized derivations on prime and semi prime gamma nearring. At last, we close
our discussion with some open problems.
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Classification of Element Systems over Finite Commutative Groups

Shouchuan Zhang a, Min Wu a,b, Hengtai Wang a

a: Department of Mathematics, Hunan University, Changsha, 410082
b: Department of Mathematics, Tsinghua University, Beijing, 100084

Classification of Hopf algebras was developed and popularized in the last
decade of the twentieth century, which would have applications to a number of
other areas of mathematics, aside from its intrinsic algebraic interest. In mathe-
matical physics, Drinfeld’s and Jambo’s work was to provide solutions to quantum
Yang-Baxter equation. In conformal field theory, I. Frenkel and Y. Zhu have shown
how to assign a Hopf algebra to any conformal field theory model[8]. In topology,
quasi-triangular and ribbon Hopf algebras provide many invariants of knots, links,
tangles and 3-manifolds[9, 10, 12, 13]. In operator algebras, Hopf algebras can be
assigned as an invariant for certain extensions.

Researches on the classification of Hopf algebra is in the ascendant. N. An-
druskiewitsch and H. J. Schneider have obtained interesting result in classification
of finite-dimensional pointed Hopf algebras with commutative coradical [1, 2, 3, 4].
More recently, they have also researched this problem in case of non-commutative
coradical. Pavel Etingof and Shlomo Gelaki gave the complete and explicit classi-
fication of finite-dimensional triangular Hopf algebras over an algebraically closed
field k of characteristic 0 [7]. The classification of monomial Hopf algebras, which
are a class of co-path Hopf algebras, and simple-pointed sub-Hopf algebras of co-
path Hopf algebras were recently obtained in [6] and [11], respectively.

Assume that k is an algebraically closed field of characteristic zero with a
primitive |G |th root of 1 and G is a finite abelian group. Element systems with
characters can be applied to classify quiver Hopf algebras, multiple Taft algebras
over G and Nichols algebras in FG

FGYD (see [15, Theorem 3, Theorem 4] ). In this
paper, we obtained the formula computing the number of isomorphic classes of
element systems with characters over finite commutative group G.
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Auslander-Reiten conjecture on Gorenstein rings

Tokuji Araya
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Auslander and Reiten conjectured the generalized Nakayama conjecture (GNC)
in [1]

(GNC) For an Artin algebra Λ, every indecomposable injective Λ-module appears
as a direct summand in the minimal injective resolution of Λ.

They showed that (GNC) is equivalent to the following;

For an Artin algebra Λ, ifM is a finitely generated Λ-module and ExtiΛ(M,M⊕Λ) =
0 (∀i > 0), then M is projective.

M. Auslander, S. Ding, and Ø. Solberg widened the context to algebras over
commutative local rings [2].

(ARC) For a commutative Noetherian local ring R, if M is a finitely generated

R-module and ExtiR(M,M ⊕R) = 0 (∀i > 0), then M is projective.

They showed in [2] that if R is a complete intersection, then R satisfies (ARC).
The main theorem of this lecture is following;

Theorem 1. Let R be a Gorenstein ring whose Krull-dimension d is at least 2. If
Rp satisfies (ARC) for all p ∈ SpecR with ht p ≤ 1, then R satisfies (ARC).

References

1. M. Auslander and I. Reiten, On a generalized version of the Nakayama conjecture, Proc. Amer.

Math. Soc. 52 (1975), 69—74.

2. M. Auslander, S. Ding and Ø.Solberg, Liftings and Weak Liftings of Modules, J. Algebra 156

(1993), 273—317.

3. Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, London Mathematical So-

ciety Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990.

—Abstract-73—



On Colocal Pairs

Yoshitomo BABA

In [1] K. R. Fuller characterized indecomposable injective projective mod-
ules over artinian rings using i-pairs. In [2] the Fuller’s theorems were generalized
to indecomposable projective quasi-injective modules and indecomposable quasi-
projective injective modules over artinian rings. And in [3] the Fuller’s theorems
were studied minutely. Further in [4], [5] M. Hoshino and T. Sumioka extended
these results to perfect rings. In my talk, we studies the results in [2] from the
point of view of [3], [4].
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Approximations of algebras
Vlastimil Dlab (Carleton University, Ottawa, Canada)

Expanding the idea of standardization introduced by Dlab—Ringel earlier,
Ágoston—Dlab—Lukács have introduced two operators, Σ and Ω, acting on all finite
dimensional associative algebras. These operators define the ∆- and ∆̄-equivalences
whose equivalence classes are in bijection with the standardly stratified algebras,
and partition all algebras into rooted trees of finite length labelled by properly strat-
ified algebras. The linear representations of the semigroups athcalSn = 〈a, b | a2 =
a, b2 = b, (ab)n−1a = (ab)n−1〉 acting via Σ and Ω on the algebras with n irre-
ducible representations can be fully described: There are just 2(2n − 1) indecom-
posable representations of Sn and all are uniserial.
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