WIDE SUBCATEGORIES AND LATTICES OF TORSION CLASSES

Sota Asai

Research Institute for Mathematical Sciences, Kyoto University

Email: asaisota@kurims.kyoto-u.ac.jp

This talk is based on joint work [1] with Calvin Pfeifer (Bonn).

Let \mathcal{A} be a fixed essentially small abelian length category. A pair $(\mathcal{T}, \mathcal{F})$ of full subcategories $\mathcal{T}, \mathcal{F} \subset \mathcal{A}$ is called a *torsion pair* if

$$\mathcal{F} = \mathcal{T}^{\perp} = \{ X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(\mathcal{T}, X) = 0 \},\$$
$$\mathcal{T} = {}^{\perp}\mathcal{F} = \{ X \in \mathcal{A} \mid \mathsf{Hom}_{\mathcal{A}}(X, \mathcal{F}) = 0 \}.$$

One can show that a full subcategory $\mathcal{T} \subset \mathcal{A}$ is completed to a torsion pair $(\mathcal{T}, \mathcal{T}^{\perp})$ if and only if \mathcal{T} is closed under extensions and factor objects. We call such subcategories \mathcal{T} torsion classes in \mathcal{A} , and then, the set tors \mathcal{A} partially ordered by inclusion is a complete lattice, that is, meets and joins are well-defined for all subsets of tors \mathcal{A} .

For two torsion classes $\mathcal{U} \subset \mathcal{T}$ in \mathcal{A} , we can consider the interval $[\mathcal{U}, \mathcal{T}]$ in tors \mathcal{A} and a full subcategory $\mathcal{W} := \mathcal{U}^{\perp} \cap \mathcal{T}$. The full subcategory \mathcal{W} indicates the difference of the torsion classes $\mathcal{U} \subset \mathcal{T}$; more precisely,

$$\mathcal{T} = \mathcal{U} * \mathcal{W} := \{ X \in \mathcal{A} \mid \text{there exists } 0 \to U \to X \to W \to 0 \text{ with } U \in \mathcal{U} \text{ and } W \in \mathcal{W} \}.$$

We call $[\mathcal{U}, \mathcal{T}]$ a wide interval if \mathcal{W} is a wide subcategory, that is, \mathcal{W} is closed under taking kernels, cokernels, and extensions. In this case, \mathcal{W} is an abelian subcategory of \mathcal{A} closed under extensions, so we have another complete lattice tors \mathcal{W} .

A typical example of wide intervals is given by τ -tilting reduction established by Jasso [3] and Demonet–Iyama–Reading–Reiten–Thomas [2]; namely, let A be a finite-dimensional algebra over a field K, then a τ -rigid pair (N, Q) in the module category mod A gives a wide interval [Fac $N, ^{\perp}(\tau N) \cap Q^{\perp}$]. They showed that the wide interval [Fac $N, ^{\perp}(\tau N) \cap Q^{\perp}$] is isomorphic to tors $C_{N,Q}$ as a complete lattice, where $C_{N,Q}$ is a certain finite-dimensional K-algebra constructed from the τ -rigid pair (N, Q).

In our study, we were able to extend their result to all wide intervals.

Theorem 1. Let $[\mathcal{U}, \mathcal{T}]$ be a wide interval in tors \mathcal{A} and $\mathcal{W} := \mathcal{U}^{\perp} \cap \mathcal{T}$. Then we have mutually inverse isomorphisms of complete lattices

$$\Phi \colon [\mathcal{U},\mathcal{T}] o$$
 tors $\mathcal{W}, \quad \Psi \colon$ tors $\mathcal{W} o [\mathcal{U},\mathcal{T}]$

given by $\Phi(\mathcal{V}) := \mathcal{U}^{\perp} \cap \mathcal{V}$ and $\Psi(\mathcal{X}) := \mathcal{U} * \mathcal{X}$ for any $\mathcal{V} \in [\mathcal{U}, \mathcal{T}]$ and any $\mathcal{X} \in \mathsf{tors} \mathcal{W}$.

In this talk, I would like to explain the detail of the theorem above. If time permits, I will give several characterizations of wide intervals obtained in our study.

References

- 1. S. Asai, C. Pfeifer, Wide subcategories and lattices of torsion classes, arXiv:1905.01148.
- L. Demonet, O. Iyama, N. Reading, I. Reiten, H. Thomas, Lattice theory of torsion classes, arXiv:1711.01785.
- G. Jasso, Reduction of τ-tilting modules and torsion pairs. Int. Math. Res. Not. IMRN 2015, no. 16, <u>7190-7237.</u>

2010 Mathematics Subject Classification. 06A07, 18E40.