AS-regularity of geometric algebras of plane cubic curves

Masaki Matsuno

Shizuoka University

Email: matsuno.masaki.14@shizuoka.ac.jp

A geometric algebra $A = \mathcal{A}(E, \sigma)$ introduced by Mori [4] is a quadratic algebra which determines and is determined by the pair (E, σ) where E is a projective scheme and $\sigma \in \text{Aut } E$. In noncommutative algebraic geometry, AS-regular algebras are the most important class of algebras to study, and Artin-Tate-Van den Bergh [1] showed that every 3-dimensional quadratic AS-regular algebra is a geometric algebra where E is \mathbb{P}^2 or a cubic curve in \mathbb{P}^2 . In this talk, we study its converse.

Suppose that E is a cubic curve in \mathbb{P}^2 . If E is singular, then a geometric algebra $A = \mathcal{A}(E, \sigma)$ is AS-regular for almost all $\sigma \in \operatorname{Aut} E$ by [3]. This is not the case if E is smooth. If E is smooth, then we choose a suitable $\tau \in \operatorname{Aut} E$ of finite order as in [2] so that every $\sigma \in \operatorname{Aut} E$ can be written as $\sigma = \sigma_p \tau^i$ where $p \in E$, $i \in \mathbb{Z}_{|\tau|}$ and $|\tau|$ is the order of τ . One of the main results of [3] is that we characterize AS-regularity of a geometric algebra $A = \mathcal{A}(E, \sigma_p \tau^i)$ in terms of the pair (p, i). It turns out that if i = 0, then A is always an AS-regular algebra (called a Sklyanin algebra). On the other hand, if $i \neq 0$, then A is hardly ever AS-regular.

If time permits, we will explain how to check AS-regularity using a twist of a superpotential in the sense of [5].

References

- M. Artin, J. Tate and M. Van den Bergh, Some algebras associated to automorphisms of elliptic curves, The Grothendieck Festschrift, vol. 1, Progress in Mathematics vol. 86 (Brikhäuser, Basel, 1990) 33–85.
- A. Itaba and M. Matsuno, Defining relations of 3-dimensional quadratic AS-regular algebras, to appear in Mathematical Journal of Okayama Univ., (arXiv:1806.04940).
- 3. A. Itaba and M. Matsuno, Twisted superpotentials of 3-dimensional quadratic AS-regular algebras, arXiv:1905.02502.
- I. Mori, Non commutative projective schemes and point schemes, Algebras, Rings and Their Representations, World Sci. Hackensack, N. J., (2006), 215–239.
- 5. I. Mori and S. P. Smith, m-Koszul Artin-Schelter regular algebras, J. Algebra. 446 (2016), 373–399.

²⁰¹⁰ Mathematics Subject Classification. 16W50, 16S37, 16D90, 16E65.