The chain conditions on ideals in composite generalized power series rings

Jung Wook Lim and Dong Yeol Oh

Kyungpook National University and Chosun University *Email*: jwlim@knu.ac.kr, dyoh@chosun.ac.kr

Let R be a commutative ring with identity and (Γ, \leq) a strictly ordered monoid. Let R be a commutative ring with identity and (Γ, \leq) a strictly ordered monoid. We denote by $\llbracket R^{\Gamma,\leq} \rrbracket$ the set of all mappings $f: \Gamma \to R$ such that $\operatorname{supp}(f) := \{\alpha \in \Gamma \mid f(\alpha) \neq 0\}$ is an artinian and narrow subset of Γ . With pointwise addition, $\llbracket R^{\Gamma,\leq} \rrbracket$ is an (additive) abelian group. Moreover, for every $\alpha \in \Gamma$ and $f, g \in \llbracket R^{\Gamma,\leq} \rrbracket$, the set $X_{\alpha}(f,g) := \{(\beta,\gamma) \in \Gamma \times \Gamma \mid \alpha = \beta + \gamma, f(\beta) \neq 0, \text{ and } g(\gamma) \neq 0\}$ is finite; so this allows to define the operation of *convolution*:

$$(fg)(\alpha) = \sum_{(\beta,\gamma) \in X_{\alpha}(f,g)} f(\beta)g(\gamma).$$

Then $[\![R^{\Gamma,\leq}]\!]$ is a commutative ring (under these operations) with unit element **e**, namely $\mathbf{e}(0) = 1$ and $\mathbf{e}(\alpha) = 0$ for all $\alpha \in \Gamma^*$, which is called the *ring of generalized power series* of Γ over R, which is first introduced by P.Ribenboim.

Let $D \subseteq E$ be an extension of commutative rings with identity, I a nonzero proper ideal of D, (Γ, \leq) a strictly ordered monoid, and $\Gamma^* = \Gamma \setminus \{0\}$. Set $D + \llbracket E^{\Gamma^*, \leq} \rrbracket = \{f \in \llbracket E^{\Gamma, \leq} \rrbracket | f(0) \in D\}$ and $D + \llbracket I^{\Gamma^*, \leq} \rrbracket = \{f \in \llbracket D^{\Gamma, \leq} \rrbracket | f(\alpha) \in I \text{ for all } \alpha \in \Gamma^*\}$. Then $D \subsetneq D + \llbracket I^{\Gamma^*, \leq} \rrbracket \subseteq \llbracket D^{\Gamma, \leq} \rrbracket \subseteq D + \llbracket E^{\Gamma^*, \leq} \rrbracket \subseteq \llbracket E^{\Gamma, \leq} \rrbracket$.

In this talk, we give some conditions for the rings $D + \llbracket E^{\Gamma^*, \leq} \rrbracket$ and $D + \llbracket I^{\Gamma^*, \leq} \rrbracket$ to satisfy the ascending chain condition on principal ideals (ACCP) or Noetherian.

²⁰¹⁰ Mathematics Subject Classification . 13A02, 13A15, 13B35, 13E05.