Is Ware's problem true or not?

Masahisa Sato

Aichi University & Yamanashi University

Email: msato@yamanashi.ac.jp

R. Ware gave the following problem in his paper: *Endomorphism rings of projective modules*, Trans. Amer. Math. Soc. **155** (1971), 233-256.

Problem: If a projective right R-module P has unique maximal submodule L, then L is the largest maximal submodule of P.

In the paper, A. Facchini, D. Herbera, I. Sakhajev *Finitely Generated Flat Modules and a Characterization of Semiperfect Rings*, Comm. in Algebra, Vol.**31** No.9(2003), 4195–214 asserts this problem is negative by showing the following properties:

Let _RU be a uniserial R-module and $S = \text{End}_R(U)$ an endomorphism ring of _RU. Then he following conditions are equivalent.

(1) U_S is not quasi-small.

(2) U_S is countable generated and a simple left R-module $_RR/K$ is flat and $\sum_{f \in K} f(U_S) =$

 U_S . Here $K = \{f \in S | f \text{ is not epimorphism}\}.$

In this case, $_{R}K$ is an infinitely generated projective module with unique maximal submodule.

Here, U_S is called quasi-small if $U \cong T$ for a direct summand T of $\bigoplus_{i \in \Gamma} M_i$, then there is a finite subset $\Delta \subset \Gamma$ such that $T \subset \bigoplus_{i \in \Delta} M_i$. We emark T is a direct summand of $\bigoplus_{i \in \Delta} M_i$.

In this talk, we give some interesting example:

Example: Let F be a field Z a commutative F-algebra with bases $\{v_x \mid 0 < x \leq 1\}$ with the multiplication $v_x \cdot v_y = v_{xy}$

which seems to be a counter example of the above properties.

Also we report Ware's problem is true by using Nakayama-Azumaya Lemma for projective modules.

Furter, we investige sturctures of a module with unique maximal submodule.

One structure theorem is:

Theorem: Let R be a ring and M a right R-module with unique maximal submodule L. then M is indecomposable or $M = M_1 \oplus M_2$ such that

 M_1 has unique maximal submodule and M_2 does not have any maximal submodules.

²⁰¹⁰ Mathematics Subject Classification. 08B30, 16D40, 16W99.