Auslander-Bridger theory for projective complexes over commutative Noetherian rings

Yuji Yoshino

Okayama University, Japan

Email: yoshino@math.okayama-u.ac.jp

Let R be a commutative Noetherian ring and let $\mathcal{K}(R)$ be the homotopy category of all complexes of finitely generated projective modules over R. For any $X \in \mathcal{K}(R)$ the R-dual complex $X^* = \operatorname{Hom}_R(X, R)$ is defined and the operation $(-)^*$ gives the duality on $\mathcal{K}(R)$. The main theorem of this talk is the following:

Main Theorem [2] Let $X \in \mathcal{K}(R)$ and assume that R is a generically Gorenstein ring. Then, X is acyclic if and only if X^* is acyclic.

Recall that R is called a generically Gorenstein ring if the total ring of quotients is Gorenstein. This theorem includes the Tachikawa conjecture and the dependence of totally reflexivity conditions for modules over a generically Gorenstein ring.

To prove this theorem we need to develop and establish the Auslander-Bridger type theory for $\mathcal{K}(R)$. Precisely speaking, we have a natural mapping $\rho_{X,R}^i : H^{-i}(X^*) \to$ $H^i(X)^*$ for $X \in \mathcal{K}(R)$ and $i \in \mathbb{Z}$. We say that a complex $X \in \mathcal{K}(R)$ is ***torsion-free** (resp. ***reflexive**) if $\rho_{X,R}^i$ are injective (resp. bijective) mappings for all $i \in \mathbb{Z}$. Let Add(R) be the additive full subcategory of $\mathcal{K}(R)$ consisting of all split complexes. We can show that Add(R) is functorially finite in $\mathcal{K}(R)$ and hence every complex in $\mathcal{K}(R)$ is resolved by complexes in Add(R). Define $\mathcal{K}(R)$ to be the factor category $\mathcal{K}(R)/\text{Add}(R)$. Then we are able to define the syzygy functor Ω and the cosyzygy functor Ω^{-1} on $\mathcal{K}(R)$, and as a result we have an adjoint pair (Ω^{-1}, Ω) of functors. Then we can show that Xis *torsion-free iff $X \cong \Omega^{-1}\Omega X$ in $\mathcal{K}(R)$. And under the assumption that R is generically Gorenstein, X is *reflexive iff $X \cong \Omega^{-2}\Omega^2 X$ in $\mathcal{K}(R)$.

There is a triangles of the form

$$\Delta^{(n,0)}(X) \to \Omega^{-n}\Omega^n(X) \to X \to \Delta^{(n,0)}(X)[1],$$

for $X \in \mathcal{K}(R)$ and n > 0, where $\Delta^{(n,0)}(X)$ has a finite $\operatorname{Add}(R)$ -resolution of length at most n-1. This is one of the key theorems in order to prove Main Theorem. The second key observation is that any syzygy complex $\Omega^r X$ ($\forall r > 0$) is *torsion-free if $H(X^*) = 0$.

References

- 1. M. AUSLANDER, M. BRIDGER, *Stable module theory*, Memoirs of the American Mathematical Society, No. 94 American Mathematical Society, Providence, R.I. (1969), 146 pp.
- 2. YUJI YOSHINO, Homotopy categories of unbounded complexes of projective modules, arXiv:1805.05705v3.