Density of *g*-vector cones from triangulated surfaces

Toshiya Yurikusa

Nagoya University

Email: m15049q@math.nagoya-u.ac.jp

This talk is based on [2]. Let A be a finite dimensional algebra over a field k. Adachi-Iyama-Reiten introduced τ -tilting theory which is generalization of tilting theory from the viewpoint of mutation. We denote

- $s\tau$ -tilt $A = \{\text{isomorphism classes of basic support } \tau$ -tilting A-modules},
- $s\tau$ -tilt⁺ $A \subseteq s\tau$ -tilt A consists of mutation equivalence classes containing A,
- $s\tau$ -tilt⁻ $A \subseteq s\tau$ -tilt A 0.

Problem. s τ -tilt $A \setminus (s\tau$ -tilt⁺ $A \cup s\tau$ -tilt⁻ A) = ?.

In this talk, we consider the Jacobian algebras defined from triangulated surfaces.

- (S, M): a connected compact oriented Riemann surface with marked points.
- Q_T : a quiver associated with a triangulation T of (S, M).
- W: a non-degenerate potential of Q_T such that the associated Jacobian algebra $J = J(Q_T, W)$ is finite dimensional.

Remark 1. For the cluster algebra $\mathcal{A}(Q_T)$ associated with Q_T , there are bijections

 $s\tau$ -tilt⁺ $J \leftrightarrow \{$ clusters in $\mathcal{A}(Q_T)\} \leftrightarrow \{$ tagged triangulations of $(S, M)\},\$

where if (S, M) is a closed surface with exactly one puncture, then tags are plain.

We give an answer of Problem for A = J.

Theorem 2. We have $s\tau$ -tilt $J = s\tau$ -tilt⁺ $J \cup s\tau$ -tilt⁻ J. More precisely, if (S, M) is a closed surface with exactly one puncture, then $s\tau$ -tilt $J = s\tau$ -tilt⁺ $J \sqcup s\tau$ -tilt⁻ J; otherwise, $s\tau$ -tilt $J = s\tau$ -tilt⁺ $J \sqcup s\tau$ -tilt⁻ J.

The key ingredient to prove Theorem 2 is an invariant, called *g*-vector cone, of τ -tilting modules. The *g*-vector cone of a τ -tilting module M is a cone $C_J(M)$ in $K_0(J) \otimes_{\mathbb{Z}} \mathbb{R}$, where $K_0(J)$ is the Grothendieck group of J. They have the following property.

Theorem 3. [1, Theorem 2.4] Any g-vector cone is of full-dimensional.

The following is the main result in [2].

Theorem 4. We have

$$\bigcup_{M \in s\tau - \text{tilt}^+ J \cup s\tau - \text{tilt}^- J} C_J(M) = K_0(J) \otimes_{\mathbb{Z}} \mathbb{R} \,.$$

Theorem 2 immediately follows from Theorems 3 and 4.

References

- R. Dehy and B. Keller, On the combinatorics of rigid objects in 2-Calabi-Yau categories, Int. Math. Res. Not. Vol. 2008 (2008) Art. ID rnn029.
- 2. T. Yurikusa, Density of g-vector cones from triangulated surfaces, arXiv:1904.12479.

2010 Mathematics Subject Classification. 13F60, 05E45, 16G10.