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Let R be a commutative ring with identity and let Q be the set of finitely gener-
ated semiregular ideals of R. A Q-torsion-free R-module M is called a Lucas module if
Ext1

R
(R/J, M) = 0 for any J ∈ Q. And R is called a DQ-ring if every ideal of R is a Lucas

module. It is proved that if the small finitistic dimension of R is zero, then R is a DQ
ring. In terms of a trivial extension, we construct a total ring of quotients R = D ∝ H
which is not a DQ ring. Thus in this case, the small finitistic dimension of R is not zero.
Then this fact gives a negative answer to an open problem posed by Cahen et al..
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13. T. Lucas, Krull rings, Prüfer v-multiplication rings and the ring of finite fractions, Rocky Mountain

J. Math. 35(2005), 1251–1326.
14. T. Lucas, The Mori property in rings with zero divisors II, Rocky Mountain J. Math. 35(2007),

1193–1228.
15. F. G. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Singapore: Springer,

2016.
16. F. G. Wang and D. C. Zhou, A Homological characterization of Krull domains, Bull Korean Math.

Soc. 55(2)(2018), 649–657.

2010 Mathematics Subject Classification. 13C99, 13A15.


