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Introduction

Objects to study

We know the symmetric group Sn. The group algebra is generated by
Coxeter generators s1, . . . , sn−1 and subject to the Coxeter relations.

We may introduce a parameter q to deform the group algebra to the
Hecke algebra. Through the development in the past decades, they have
been generalized to cyclotomic Hecke and the cyclotomic quiver Hecke
algebras associated with Lie theoretic data.

Those algebras are the objects we want to study.

The key to introduce the latter algebras was the discovery of the
Khovanov-Lauda(-Rouquier) generators.

One consequence by Brundan and Kleshchev:

The group algebra of the symmetric group is a graded algebra.

In this talk, I shall explain how Fock spaces from physics plays a role in the
study of cyclotomic quiver Hecke algebras of affine Lie type.
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Fock spaces

Soliton theory

Let us begin by the paper

Transformation Groups for Soliton Equations
– Euclidean Lie Algebras and

Reduction of the KP Hierarchy –

by Etsuro Date, Michio Jimbo, Masaki Kashiwara and Tetsuji Miwa, which
was published in Publ. RIMS, Kyoto Univ. 18 (1982), 1077–1110.

There, they write the Kadomtsev-Petviashvli equations (the KP equations
for short) and their reductions in the Hirota bilinear form. For example,
the famous KdV equation has the Hirota form (D4

1 − 4D1D3)τ · τ = 0,
where P(D1,D2, . . . )τ · τ is defined by

P(
∂

∂y1
,
∂

∂y2
, . . . )τ(x1+y1, x2+y2, . . . )τ(x1−y1, x2−y2, . . . )|y1=y2=···=0.
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Fock spaces

Soliton theory (cont’d)

Those nonlinear differential equations admit the infinitesimal symmetry
gl(∞), i.e. the central extension of∑

i ,j∈Z
aijEij | aij = 0, if |i − j | is sufficiently large.

 ,

or its reduction (Chevalley generators are infinite sums of Eij ’s), namely

the set of τ -functions form the orbit through |vac⟩:
τ(x) = ⟨vac | expH(x)|L⟩, where L runs through the orbit,

in the Fock representation of the infinite dimensional Lie algebra.

The similar result holds for the BKP equations, where the infinitesimal
symmetry is go(∞).
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Fock spaces

Soliton theory (cont’d)

The reduction mentioned above is a simple procedure to obtain Chevalley
generators of the affine Lie algebras as infinite sums of the generators of
gl(∞) or go(∞).

In this setup, the affine Lie algebras A
(1)
ℓ appear as the reduction

of the KP hierarchy, A
(2)
2ℓ and D

(2)
ℓ+1 appear as the reduction of

the BKP hierarchy.

The Fock space for the KP or the BKP is based on charged fermions or
neutral fermions, respectively. We may rewrite those Fock spaces in terms
of partitions/shifted partitions, which form a basis of the Fock space.

The nodes of partitions/shifted partitions are given residue
0, 1, . . . , ℓ and the action of the Chevalley generator fi on each of
the partitions/shifted partitions adds one node of residue i .
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Fock spaces

Affine Dynkin diagrams arising from the soliton theory

We consider the affine Dynkin diagrams

A
(2)
2ℓ (= B̃C ℓ), D

(2)
ℓ+1(= B̃ℓ), A

(1)
ℓ (= Ãℓ), C

(1)
ℓ (= C̃ℓ)

in this talk. (All of them have ℓ+ 1 vertices.)

We will introduce cyclotomic quiver Hecke algebras (aka cyclotomic KLR
algebras), and we will use those Fock spaces to obtain dimension formulas
for the algebras.

Remark 2.1

In their paper, A
(2)
2ℓ−1(= C̃Dℓ) and D

(1)
ℓ appear as the reductions from the

two component BKP. But we do not use them here.
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Fock spaces

Combinatorial Fock spaces : A
(2)
2ℓ

A
(2)
2ℓ = (aij)i ,j∈I =



2 −2 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −2
0 0 0 . . . 0 −1 2


.

When ℓ = 1, the Cartan matrix of type A
(2)
2 is ( 2 −4

−1 2 ).
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Fock spaces

Combinatorial Fock spaces : A
(2)
2ℓ (cont’d)

The Fock space is the vector space whose basis is the set of
shifted partitions. We color the nodes of shifted partitions with
the residue pattern which repeats 01 · · · ℓ · · · 10 in each row.

For example, if ℓ = 2 then

0 1 2 1 0 0

0 1
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Fock spaces

Combinatorial Fock spaces : D
(2)
ℓ+1

D
(2)
ℓ+1 = (aij)i ,j∈I =



2 −2 0 . . . 0 0 0
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
0 0 0 . . . 0 −2 2


.

When ℓ = 1, the Cartan matrix of type D
(2)
2 is defined to be A

(1)
1 .
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Fock spaces

Combinatorial Fock spaces : D
(2)
ℓ+1 (cont’d)

The Fock space is the same as A
(2)
2ℓ but the residue pattern is

different. It repeats 01 · · · ℓℓ · · · 10 in each row.

For example, if ℓ = 2 then

0 1 2 2 1 0

0 1
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Fock spaces

Combinatorial Fock spaces : A
(1)
ℓ

A
(1)
ℓ = (aij)i ,j∈I =



2 −1 0 . . . 0 0 −1
−1 2 −1 . . . 0 0 0
0 −1 2 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 2 −1 0
0 0 0 . . . −1 2 −1
−1 0 0 . . . 0 −1 2


.

When ℓ = 1, the Cartan matrix of type A
(1)
1 is ( 2 −2

−2 2 ).
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Fock spaces

Combinatorial Fock spaces : A
(1)
ℓ (cont’d)

The Fock space is the vector space whose basis is the set of
partitions. The residue pattern involves s ∈ Z/(ℓ+ 1)Z:

the cell on the r th row and the cth column of a
partition has the residue s − r + c modulo ℓ+ 1.

We denote the Fock space with the residue pattern by Fs .

For example, if ℓ = 2 and s = 1 then

1 2 0 1 2 0

0 1 2
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Fock spaces

Folding A
(1)
2ℓ−1 to C

(1)
ℓ

By the folding procedure, we obtain C
(1)
ℓ from A

(1)
2ℓ−1.

OO

��

OO

��

OO

��

C
(1)
ℓ = (aij)i ,j∈I =



2 −1 0 · · · 0 0 0
−2 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −2
0 0 0 · · · 0 −1 2
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Fock spaces

Combinatorial Fock spaces : C
(1)
ℓ

Recall that the residue pattern of the Fock space Fs=0 for A
(1)
ℓ is

0 1 · · · ℓ 0 1 · · ·
ℓ 0 1 · · · ℓ 0 · · ·
...

...
. . .

. . .
. . .

. . .
. . .

namely, we repeat 01 · · · ℓ on the rim. We slide the residue sequence on
the rim to obtain Fs , where s sits on the corner instead of 0.

The Fock space for C
(1)
ℓ is the same as A

(1)
ℓ , but the residue

sequence on the rim repeats 01 · · · ℓ · · · 21. We denote the Fock
space by Fs again.
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Fock spaces

Integrable highest weight modules

In all the cases A = A
(2)
2ℓ ,D

(2)
ℓ+1,A

(1)
ℓ ,C

(1)
ℓ , the residue pattern defines

the action of the Kac-Moody Lie algebra g(A).

In the Fock spaces, the vacuum vector generates the highest weight
module V (Λ0) of the corresponding affine Lie algebra.

If A = A
(1)
ℓ or A = C

(1)
ℓ , we may deform the Fock space to

the deformed Fock space which is a Uq(g(A))-module.

Moreover, we may define the higher level Fock space associated with
a multi-charge (s1, . . . , sr ):

F(s1,...,sr ) = Fs1 ⊗ · · · ⊗ Fsr .

The vacuum vector generates the highest weight module Vq(Λ) where
Λ = Λs1 + · · ·+ Λsr is the corresponding dominant integral weight.
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Fock spaces

Integrable highest weight modules and Hecke algebras

The level one and level two Fock spaces in type A
(1)
ℓ are those

Fock spaces we have been using for studying Hecke algebras
associated with irreducible Weyl groups of classical type, which
are important algebras in Lie theory.

The use of the Fock spaces will be explained later. The algebras were
generalized to cyclotomic Hecke and cyclotomic quiver Hecke algebras.

In the next several slides, we define the cyclotomic quiver Hecke algebra,
which categorify the integrable highest weight module Vq(Λ) over the
quantized enveloping algebra Uq(g(A)), where A = (aij)i ,j∈I is a
symmetrizable Cartan matrix.
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Quiver Hecke algebras

Definition of cyclotomic quiver Hecke algebras

Let P be the weight lattice.

Let Π = {αi}i∈I be the set of simple roots.

We fix a dominant integral weight Λ ∈ P.

Let K be a field.

We fix a system of polynomials Qi ,j(u, v) ∈ K [u, v ], for i , j ∈ I :

Qi ,j(u, v) =

{∑
p(αi ,αi )+q(αj ,αj )+2(αi ,αj )=0 ti ,j ;p,qu

pvq if i ̸= j ,

0 if i = j ,

where ti ,j ;p,q ∈ K are such that ti ,j ;−aij ,0 ∈ K× and

Qi ,j(u, v) = Qj ,i (v , u).
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Quiver Hecke algebras

Definition (cont’d)

The cyclotomic quiver Hecke algebra RΛ(n) associated with polynomials
(Qi ,j(u, v))i ,j∈I and a dominant integral weight Λ ∈ P is the Z-graded
unital associative K -algebra generated by

{e(ν) | ν ∈ I n} ∪ {x1, . . . , xn} ∪ {ψ1, . . . , ψn−1}

subject to the following relations.

e(ν)e(ν ′) = δν,ν′e(ν)∑
ν∈I n

e(ν) = 1

xre(ν) = e(ν)xr , xrxs = xsxr

ψre(ν) = e(srν)ψr
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Quiver Hecke algebras

Definition (cont’d)

ψrxs = xsψr (if s ̸= r , r + 1)

ψrψs = ψsψr (if r ̸= s ± 1)

xrψre(ν) = (ψrxr+1 − δνr ,νr+1)e(ν)

xr+1ψre(ν) = (ψrxr + δνr ,νr+1)e(ν)

ψ2
r e(ν) = Qνr ,νr+1(xr , xr+1)e(ν)

(ψr+1ψrψr+1 − ψrψr+1ψr )e(ν)

=

{
Qνr ,νr+1 (xr ,xr+1)−Qνr ,νr+1 (xr+2,xr+1)

xr−xr+2
e(ν) if νr = νr+2,

0 otherwise.

and the cyclotomic condition x
⟨α∨

ν1
,Λ⟩

1 e(ν) = 0.

It is known that RΛ(n) are symmetric algebras.
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Quiver Hecke algebras

The polynomials Qi ,j(u, v)

The quiver Hecke algebras for A = A
(2)
2ℓ , D

(2)
ℓ+1 and C

(1)
ℓ do not

depend on the choice of the polynomials Qi ,j(u, v).

For A
(1)
ℓ , we may assume that the polynomials are

Q0,1(u, v) = u2 + λuv + v2,

if ℓ = 1, and

Qi ,i+1(u, v) = u + v (0 ≤ i ≤ ℓ− 1),

Qℓ,0(u, v) = u + λv ,

Qi ,j(u, v) = 1 (j ̸≡ i ± 1 mod (ℓ+ 1)),

if ℓ ≥ 2. Here λ is a parameter and the isomorphism class of RΛ(n)
depends on λ in general.
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Quiver Hecke algebras

The affine quiver Hecke algebras

The algebra RΛ(n) is finite dimensional. If we drop the last cyclotomic
condition, we denote the algebra by R(n).

I wish to call it the affine quiver Hecke algebra. It is infinite dimensional.

Remark 3.1

Recently, they are used in the monoidal categorification of cluster algebras
Aq(n(w)) by Kang, Kashiwara, Kim and Oh.
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Quiver Hecke algebras

The grading and block decompositions

The algebra RΛ(n) and R(n) are given Z-grading as follows.

deg(e(ν)) = 0, deg(xre(ν)) = (ανr , ανr ),

deg(ψse(ν)) = −(ανs , ανs+1).

For β ∈ Q+ with ht(β) = n, set

I β = {ν ∈ I n | αν1 + · · ·+ ανn = β}.

Then e(β) =
∑

ν∈Iβ e(ν) is a central idempotent and

RΛ(n) =
⊕
β∈Q+

ht(β)=n

RΛ(β), where RΛ(β) = RΛ(n)e(β).
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Quiver Hecke algebras

Categorification of integrable modules

Theorem 3.2 (Kang-Kashiwara)

Let A be a symmetrizable Cartan matrix.

The complexified Grothendieck group of finite dimensional
RΛ(β)-modules may be identified with the weight space Vq(Λ)Λ−β of
the highest weight Uq(g(A))-module Vq(Λ).

There exist exact functors Ei and Fi from the module category of
RΛ(β) to the module category of RΛ(β ± αi ) which descend to the
action of Chevalley generators ei and fi on Vq(Λ).
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Quiver Hecke algebras

Block algebras and weight spaces of integrable modules

Theorem 3.3 (Lyle-Mathas)

If A = A
(1)
ℓ and λ = (−1)ℓ+1 if ℓ ≥ 2, λ = −2 if ℓ = 1 then RΛ(β) is an

indecomposable algebra. Namely, it is a block algebra of RΛ(n).

Thus, the weight spaces of Vq(Λ) correspond to the block algebras of
RΛ(n), where n = 0, 1, . . . , in this case.

Conjecture 3.4

The algebras RΛ(β) are indecomposable for any affine Lie type.

Susumu Ariki Cyclotomic quiver Hecke algebras The 8th CJK 24 / 33



Quiver Hecke algebras

Cyclotomic Hecke algebras (AK and Broué-Malle)

Recall that the cyclotomic Hecke algebra HG(m,1,n)(q,Q1, . . . ,Qm) is
defined by generators T0,T1, . . . ,Tn−1 subject to the relations

(T0 − Q1) · · · (T0 − Qm) = 0, (Ti − q)(Ti + 1) = 0 (1 ≤ i ≤ n − 1)

(T0T1)
2 = (T1T0)

2, TiTj = TjTi (j ̸= i ± 1)

TiTi+1Ti = Ti+1TiTi+1 (1 ≤ i ≤ n − 2)

Theorem 3.5 (Brundan-Kleshchev)

Suppose that q is a primitive (ℓ+ 1)th root of unity and Qi = qsi . We set

A = A
(1)
ℓ , Λ = Λs1 + · · ·+ Λsm and λ = (−1)ℓ+1. Then

RΛ(n) ≃ HG(m,1,n)(q,Q1, . . . ,Qm).

The similar result holds for the degenerate cyclotomic Hecke algebra.
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Quiver Hecke algebras

Dimension formulas: A
(2)
2ℓ

Using the embedding of V (Λ0) into the Fock space, we may deduce the

dimension formulas for A
(2)
2ℓ and D

(2)
ℓ+1.

Theorem 3.6 (A-Park)

We assume that the Cartan matrix is A
(2)
2ℓ . Then,

dim e(ν ′)RΛ0(n)e(ν) =
∑
λ⊢n

2−⟨d ,wt(λ)⟩−l(λ)K (λ, ν ′)K (λ, ν),

dimRΛ0(β) =
∑

λ⊢n, wt(λ)=Λ0−β

2−⟨d ,wt(λ)⟩−l(λ)|ST(λ)|2,

dimRΛ0(n) =
∑
λ⊢n

2−⟨d ,wt(λ)⟩−l(λ)|ST(λ)|2,

where ν, ν ′ ∈ I n and K (λ, ν) is the number of standard tableaux whose
residue sequence is ν.
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Quiver Hecke algebras

Dimension formulas: D
(2)
ℓ+1

Theorem 3.7 (A-Park)

We assume that the Cartan matrix is D
(2)
ℓ+1. Then,

dim e(ν ′)RΛ0(n)e(ν) =
∑
λ⊢n

2−⟨d,wt(λ)⟩−l(λ)K (λ, ν ′)K (λ, ν),

dimRΛ0(β) =
∑

λ⊢n, wt(λ)=Λ0−β

2−⟨d,wt(λ)⟩−l(λ)|ST(λ)|2,

dimRΛ0(n) =
∑
λ⊢n

2−⟨d,wt(λ)⟩−l(λ)|ST(λ)|2.

Oh and Park have obtained graded dimension formulas for A
(2)
2ℓ and D

(2)
ℓ+1

by using Young walls, generalization of Young diagrams.
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Quiver Hecke algebras

Graded dimension formulas: A
(1)
ℓ and C

(1)
ℓ

For A
(1)
ℓ and C

(1)
ℓ , we use the embedding of Vq(Λ) to the deformed Fock

space to deduce graded dimension formulas. We may define the statistics
deg(T ) and Kq(λ, ν) is the sum of qdeg(T ) over ST(λ, ν).

Theorem 3.8 (Brundan-Kleshchev-Wang, A-Park)

Assume that the Cartan matrix is A
(1)
ℓ or C

(1)
ℓ . For ν, ν ′ ∈ I n, we have

dimq e(ν)R
Λ(β)e(ν ′) =

∑
λ⊢n,wt(λ)=Λ−β

Kq(λ, ν)Kq(λ, ν
′),

dimq R
Λ(β) =

∑
λ⊢n,wt(λ)=Λ−β

Kq(λ)
2,

dimq R
Λ(n) =

∑
λ⊢n

Kq(λ)
2,

where dimq M :=
∑

k∈Z dim(Mk)q
k for M = ⊕k∈ZMk .
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Quiver Hecke algebras

Chuang-Rouquer derived equivalence

Since V (Λ) is an integrable module, there exists action of the affine Weyl

group. For example, if the Cartan matrix is A
(1)
ℓ then the affine Weyl

group is the affine symmetric group. Let e = ℓ+ 1. Then⟨
{si}i∈Z/eZ | si sjsi = sjsi sj (j − i ± 1 ∈ eZ), si sj = sjsi (otherwise)

⟩
.

Theorem 3.9 (Chuang-Rouquier)

Suppose that two weights Λ− β and Λ− β′ belong to the same affine
Weyl group orbit. Then, RΛ(β) and RΛ(β′) are derived equivalent.

In the application to cyclotomic Hecke algebras, e is identified with the
quantum characteristic min{k ∈ N | 1 + q + · · ·+ qk−1 = 0 in K}.
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Applications

Tame block algebras of Hecke algebras

We use the graded dimension formula in type A
(1)
e−1 to analyze the

idempotent truncation of block algebras RΛ(β). The advantage of the
KLR generators compared with the classical Coxeter generators is that it is
easy to construct idempotents and compute the Gabriel quiver of the
idempotent truncation.

Suppose that the characteristic of the base field is odd. Computation
based on the above tools plus various results such as Ohmatsu’s theorem,
Rickard’s star theorem, criterion of tilting discreteness by Adachi, Aihara
and Chan for Brauer graph algebras, we may show that the basic algebras
of tame block algebras are very restricted. Here, the cellularity in the sense
of Graham and Lehrer plays an important role.

Note that block algebras are cellular by old results by Dipper, James and
Murphy for type A and B, by Geck for type D.
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Applications

Tame block algebras of Hecke algebras (cont’d)

Theorem 4.1 (A)

We consider block algebras of Hecke algebras of classical type over an
algebraically closed field of odd characteristic and q ̸= 1, e ≥ 2.

If it is finite, then it is Morita equivalent to a Brauer line algebra. If it is
infinite-tame, then it is Morita equivalent to one of the algebras below.

(1) In type A or D, we must have e = 2 and it is a Brauer graph algebra
whose Brauer graph is 2 2 or 2 2 .

(2) In type B with e = 2, it is either one of the Brauer graph algebras in
(1), or the symmetric Kronecker algebra, which is the Brauer graph
algebra with one non-exceptional vertex and one loop. Otherwise, we
must have e ≥ 4 is even and Q = −1 and it is the Brauer graph
algebra whose Brauer graph is 2 2 2 .
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Applications

Specht modules in affine type C

The following is another application of the categorification.

Theorem 4.2 (A-Park-Speyer)

We may define Specht modules Sλ, for multi-partitions λ ⊢ n. If n is small

enough such that the height n part of V (Λ) for C
(1)
ℓ and C∞ are the same,

then ST(λ) form a basis of Sλ and we have the graded character formula:

chqS
λ =

∑
T∈ST(λ)

qdeg(T )res(T ).

Conjecture 4.3

Supose that the Cartan matrix is of affine type C . Then, the Specht
modules give a cellular algebra structure on RΛ(n).
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Applications

Thank you for your attention.
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