
Elliptic Algebras

S. Paul Smith

University of Washington
Seattle, WA 98195.

smith@math.washington.edu

August 31, 2019

China-Japan-Korea International Symposium on Ring Theory

Nagoya

S. Paul Smith Elliptic Algebras



Representation theory of non-commutative algebras

What is repn theory of non-commutative algebras about?

Compare: what is algebraic geometry about?

solutions to systems of polynomial equations

f1(x1, . . . , xn) = · · · = fr (x1, . . . , xn) = 0

with coefficients in a field k
two types of solutions

x1, . . . , xn ∈ k (1-dimensional solutions/repns) OR
(x1, . . . , xn) ∈ kn (points on an algebraic variety)
x1, . . . , xn are d × d matrices that commute with each other
(d-dimensional solutions/repns) and fj(x1, . . . , xn) = 0 ∀j

what is repn theory of non-commutative algebras about?
solutions to systems of “polyn” equations fj(x1, . . . , xn) = 0

x1, . . . , xn are d × d matrices such that fj(x1, . . . , xn) = 0 ∀j
special case: x1, . . . , xn are 1× 1 matrices (1-dim’l reps)
special case: allow ∞-dimensional matrices; i.e., linear
operators xi : V → V such that fj(x1, . . . , xn) = 0 ∀j
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Equivalent to a problem in ring theory

very important fact: solutions to a system of “polyn” equations

f1(x1, . . . , xn) = · · · = fr (x1, . . . , xn) = 0

with coefficients in a field k are the same things as

left
k〈x1, . . . , xn〉
(f1, . . . , fr )

-modules

Strategy:

understand this ring R

homological properties?

basis? noetherian? finite dimensional? center?

domain? prime? graded?

commutative? finite module over its center?

von Neumann regular?

nice subrings? nice quotient rings?

use this information to study Mod(R)
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First: classify/understand “irreducible” solutions
equivalently classify/understand simple modules

typical answers:

finitely many, combinatorial classification
infinitely many

- geometric description, one solution for each point p on an
algebraic variety X

- combinatorial + geometric parameter space

relate Mod(R) to other categories, e.g.,
- modules over other rings
- representations of Lie algebras, groups, etc.
- categories of sheaves on algebraic varieties
- methods: functors! Morita theory, quotient categories, tilting,

stable categories, derived categories, Fourier-Mukai functors,
. . .

SECRET WEAPON: algebraic geometry
Kollár: translate your problem into algebraic geometry and I will
give it to a graduate student
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§0. Origins of elliptic algebras Qn,k(E , τ)

• Elliptic algebras Qn,1(E , τ) discovered by
• Sklyanin (1982) n = 4
• Artin-Schelter (1986) n = 3
• Feigin-Odesskii (1989) n ≥ 3
• Artin-Tate-Van den Bergh (1990) n = 3
• Connes and Dubois-Violette (2005) n = 4

• different motivations:
• physics
• graded non-commutative analogs of polynomial rings

with excellent homological properties
• generalizing Sklyanin’s examples

elliptic solutions to QYBE with spectral parameter
holomorphic vector bundles on elliptic curves
• understanding Artin-Schelter’s algebras
• non-commutative 3-spheres, C∗-algebras
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§1. Feigin and Odesskii’s elliptic algebras Qn,k(E , τ)

Fix relatively prime integers n > k ≥ 1

lattice Λ = Z⊕ Zη ⊆ C and τ ∈ C− 1
nΛ

elliptic curve E := C/Λ

Θn(Λ) a space of theta functions with period lattice Λ

Θn(Λ) = irrep of the Heisenberg group of order n3

a “good basis” θ0(z), . . . , θn−1(z) for Θn(Λ)

Definition: Feigin-Odesskii (1989):

Qn,k(E , τ) :=
C〈x0, . . . , xn−1〉

(Rij(τ) | i , j ∈ Zn)
(n2 relations)

where

Rij(τ) :=
∑
r∈Zn

θj−i+r(k−1)(0)

θj−i−r (−τ)θkr (τ)
xj−rxi+r (i , j) ∈ Z2

n
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Large project: understand Qn,k(E , τ)

4 joint papers on the arXiv:

- Alex Chirvasitu (SUNY Buffalo)

- Ryo Kanda (Osaka)

- me

Feigin-Odesskii (several papers) provide few proofs

BUT many interesting assertions for τ “close to 0”

CKS: we prove some of FO’s assertions, correct some
assertions, but unable to prove or disprove most assertions

CKS: we prove results for all τ , not just τ close to 0

many, many open problems

please join us
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Remarks about Qn,k(E , τ) (fix n > k ≥ 1)

graded rings deg(xi ) = 1, homogeneous quadratic relations

Qn,k(E , 0) = polynomial ring C[x0, . . . , xn−1] (CKS)

dimQn,k(E , τ)d = dimC[x0, . . . , xn−1]d for all d ≥ 0 (CKS)

Q2,1(E , τ) = C[x0, x1] polynomial ring

Qn,n−1(E , τ) = C[x0, . . . , xn−1] polynomial ring (CKS)

Q3,1(E , τ) = 3-dimensional regular algebra
discovered by Artin-Schelter 1986 and

studied by Artin-Tate-Van den Bergh 1989-1991

Q4,1(E , τ) discovered/defined/studied by Sklyanin 1982-1983

studied by Smith-Stafford 1992, Levasseur-Smith 1993

the Qn,k(E , τ)’s are the most generic deformations of
polynomial ring on n variables
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Q3,1(E , τ) discovered by Artin-Schelter (1986)

Artin-Schelter classified non-commutative analogues of the
polyomial ring on 3 variables

with “good homological properties”

given (E , τ), ∃ (a, b, c) ∈ P2(C) such that

Q3,1(E , τ) ∼= C〈x , y , z〉 modulo relations

ax2 + byz + czy = 0

ay2 + bzx + cxz = 0

az2 + bxy + cyx = 0

(a, b, c) = (0, 1,−1) polynomial ring C[x , y , z ]

6 ∃ PBW basis except for very special (a, b, c)

methods to understand Q3,1(E , τ): algebraic geometry

elliptic curve: (a3 + b3 + c3)xyz − abc(x3 + y3 + z3) = 0

and an automorphism of E :
(x , y , z) 7→ (acy2 − b2xz , abx2 − c2yz , bcz2 − a2xy)
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Tate and Van den Bergh’s results on Qn,1(E , τ)

For all τ , Qn,1(E , τ)

same Hilbert series as the polynomial ring

for fixed n and E , the Qn,1(E , τ)’s form a flat family of
deformations of the polynomial ring parametrized by E

right and left noetherian, a domain,

finite module over its center if and only if τ has finite order

“excellent” homological properties: regular, gl.dim= n,
Gorenstein, Cohen-Macaulay, . . .

Koszul algebra

Koszul dual is a deformation of the exterior algebra Λ(Cn)

behaves like the polynomial ring on n variables

we expect all Qn,k(E , τ)’s have these properties
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§2. Why study Qn,k(E , τ)? It’s related to interesting things

quantum Yang-Baxter equation with spectral parameter:
for all u, v ∈ C,

R(u)12R(u + v)23R(v)12 = R(v)23R(u + v)12R(u)23

where R(u) : Cn ⊗ Cn −→ Cn ⊗ Cn and

R12(u)
(
v1 ⊗ v2 ⊗ v3

)
= R(u)

(
v1 ⊗ v2

)
⊗ v3 etc.

negative continued fraction

n

k
= n1 −

1

n2 − 1

. . .− 1
ng

= [n1, . . . , ng ]

unique g and unique n1, . . . , ng all ≥ 2

a distinguished invertible sheaf Ln/k on E g = E × · · · × E ,
where g = the length of the continued fraction
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the Fourier-Mukai transform

Φ := Rpr1∗(Ln/k⊗Lpr∗g ( · )) E × · · · × E
pr1

yy

prg

%%
E E

is an auto-equivalence of Db(coh(E ))

Φ provides a bijection: E(1, 0)
Φ−→ E(k, n) where

E(r , d) =

{
isoclasses of indecomposable bundles

of rank r and degree d on E

}
Feigin-Odesskii’s definition (brilliant!):

Ln/k :=
(
L⊗n12× · · ·2×L⊗ng

)
⊗

(
g−1⊗
i=1

pr∗i ,i+1P

)

- L := OE ((0))
- P := the Poincaré bundle (L−12×L−1)(∆) on E × E
- pri,i+1 : E g → E 2 is the projection (z1, . . . , zg ) 7→ (zi , zi+1)
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Definition: The characteristic variety of Qn,k(E , τ), denoted
Xn/k , is the image of the morphism

|Ln/k | : E g → Pn−1 = P(H0(E g ,Ln/k)∗)

Kanda’s talk: The characteristic variety of Qn,k(E , τ)
Definition: a distinguished automorphism

σ : E g = Cg/Λg → E g = Cg/Λg

defined by a complicated formula . . . involves τ and the
integers in the continued fraction [n1, . . . , ng ]
∃! automorphism σ : Xn/k → Xn/k such that

E g σ //

quotient
map

��

E g

quotient
map

��
Xn/k σ

// Xn/k

commutes
the pair (Xn/k , σ) “controls” (much of) the representation
theory of Qn,k(E , τ)
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Some results of Chirvasitu-Kanda-Smith:

Theorem: Xn/k
∼= E g/Σn/k

quotient by the action of a finite group determined by the
location of the 2’s in the continued fraction [n1, . . . , ng ]

Theorem: Xn/k = fiber bundle:

Xn/k

fibers ∼= Pj1 × · · · × Pjs

��
E r

where r , s, j1, . . . , js are determined by [n1, . . . , ng ]

Theorem: There are homomorphisms

Qn,k(E , τ)→ B(Xn/k , σ,Ln/k) = B(E g , σ,Ln/k)Σn/k

of graded algebras where B(·, ·, ·) =
Artin-Tate-Van den Bergh + Feigin-Odesskii’s
twisted homogeneous coordinate ring
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Theorem: When Xn/k = E g , then B(E g , σ,Ln/k) is
generated by its degree one component and
its relations are in degrees ≤ 3
Corollary: When Xn/k = E g , the homomorphism

Qn,k(E , τ)→ B(Xn/k = E g , σ,Ln/k)

is surjective and its kernel is generated by elements of deg ≤ 3
Theorem: [Artin-Van den Bergh]
we know everything about B(E g , σ,Ln/k)
Corollary: [Artin-Van den Bergh, Smith] If Xn/k = E g , there

are functors i∗ a i∗ a i !

Qcoh(E g ) i∗ // QGr(Qn,k(E , τ))

i∗
vv

i !

hh

i∗ = inverse image functor
i∗ = direct image functor
where i : E g → Projnc(Qn,k(E , τ)) is a “closed immersion”
(non-commutative algebraic geometry)
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Odesskii’s identity: If α, β ∈ Zn and z ∈ Cg , then

(∗)
∑
r∈Zn

θβ−α+r(k−1)(0)

θβ−α−r (−τ)θrk(τ)
wβ−r (z)wα+r (σ(z)) = 0

where
- w0(z), . . . ,wn−1(z) are certain theta functions in g variables
- σ : Cg → Cg lifts the automorphism
- σ : E g → E g = (C/Λ)g = Cg/Λg

(*) ⇒ Proposition: The relations for Qn,k(E , τ) vanish on
the graph of σ : Xn/k → Xn/k . Graph ⊆ Pn−1 × Pn−1

Corollary: If n = 2k + 1, then

- 2k+1
k = [3, 2, . . . , 2]

- X(2k+1)/k
∼= SkE ⊆ P2k = P(V ∗) where

- V = Q2k+1,k(E , τ)1

- σ((x1, . . . , xk)) = ((x1 + τ, . . . , xk + τ))

and the defining relations for Q2k+1,k(E , τ) are

{f ∈ V ⊗ V | f (x , σ(x)) = 0 ∀ x ∈ SkE}
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∃ a distinguished space Θn/k(Λ) of theta functions in
g variables defined in terms of [n1, . . . , ng ]

- dimC
(
Θn/k(Λ)) = n

- Θn/k(Λ) = irreducible representation of the Heisenberg group

Hn :=

1 Zn Zn

0 1 Zn

0 0 1


- ∃ basis w0, . . . ,wn−1 for Θn/k(Λ) that transforms in a nice way

with respect to the “standard” generators for Hn

there are several useful interpretations of Qn,k(E , tau)1:

- an anonymous vector space V with basis x0, . . . , xn−1

- Θn(Λ) = space of theta functions in one variable
- H0(E ,Ln) = global sections of degree-n line bundle on E
- Θn/k(Λ) = space of theta functions in g variables
- H0(E g ,Ln/k) global sections of Ln/k

Proposition: [Feigin-Odesskii]
Hn acts as automorphisms of Qn,k(E , τ)
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Feigin-Odesskii claim: Qn,k(E , τ) quantizes a “natural”

Poisson bracket {−,−} on Ext1
E (Vn,k ,OE ) where

- Vn,k = an indecomposable vector bundle on E
- with rank(Vn,k) = k and deg(Vn,k) = n

Hua-Polishchuk: Feigin-Odesskii’s claim is true when k = 1

the stratification of P(Ext1
E (Vn,k ,OE )) ∼= Pn−1 by symplectic

leaves is closely related to repn. theory of Qn,k(E , τ) (???)

Theorem: (CKS) Qn,k(E , τ) has global dimension n and is
Koszul.

Corollary: Λ := Qn,k(E , τ)! is a deformation of the exterior
algebra Λ(Cn) and has a family of indecomposable modules
Mx parametrized by x ∈ Xn/k with minimal resolution

· · · → Λ(−2)→ Λ(−1)→ Λ→ Mx → 0.

Question: Is Qn,k(E , τ)! Frobenius? If so, then Qn,k(E , τ) is
Artin-Schelter regular.
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§3. Why study Qn,k(E , τ)? Sklyanin’s motivation (1982)

Sklyanin used Baxter’s “elliptic” solutions to the QYBE to define
algebras S(α, β, γ) for

α, β, γ ∈ C− {0,±1} such that αβγ + α + β + γ = 0

Definition: S(α, β, γ) := C〈x0, x1, x2, x3〉 modulo relations

x0x1 − x1x0 = α(x2x3 + x3x2) x0x1 + x1x0 = x2x3 − x3x2

x0x2 − x2x0 = β(x3x1 + x1x3) x0x2 + x2x0 = x3x1 − x1x3

x0x3 − x3x0 = γ(x1x2 + x2x1) x0x3 + x3x0 = x1x2 − x2x1

Theorem (Sklyanin)

S(α, β, γ) ∼= Q4,1(E , τ) for some E and τ .

Smith-Stafford (1992): ring-theoretic properties of
Q4,1(E , τ): noetherian, Koszul, regular, Gorenstein, CM, . . .
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First sentence in Sklyanin’s 1982 paper:

“ One of the strongest methods of investigating the
exactly solvable models of quantum and statistical physics
is the quantum inverse problem method (QIPM). The
problem of enumerating the discrete quantum systems
that can be solved by the QIPM reduces to the problem
of enumerating the operator-valued functions L(u) that
satisfy the relation . . .”

i.e., the solutions are obtained from S(α, β, γ)-modules
i.e., find matrix solutions to the blue equations
i.e., understand/classify Q4,1(E , τ)-modules
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Sklyanin:

“ During our investigation it turned out that it is
necessary to bring into the picture new algebraic
structures, namely, the quadratic algebras of Poisson
brackets and the quadratic generalization of the universal
enveloping algebra of a Lie algebra. The theory of these
mathematical objects is surprisingly reminiscent of the
theory of Lie algebras, the difference being that it is more
complicated. In our opinion, it deserves the greatest
attention of mathematicians.”

1 we agree

2 the Qn,k(E , τ)’s are fundamental mathematical objects

3 related to other fundamental mathematical objects

4 see above

5 and a final example on the next slide
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why is αβγ + α + β + γ = 0? Riemann’s quartic identity

S(α, β, γ) determines and is determined by a quartic elliptic
curve E ⊆ P3 and translation automorphism x 7→ x + τ of E

E ∼= C/Λ where Λ = Z + Zη ⊆ C (think of τ ∈ C)

Jacobi’s theta functions θ00, θ01, θ10, θ11 with period lattice Λ{
θab(z + 1) = (−1)aθab(z)

θab(z + η) = e−πiη−2πiz−πibθab(z)

{z ∈ C | θab(z) = 0} = 1+b
2 + 1+a

2 η + Λ

define α = α00, β = α01, γ = α10

αab := (−1)a+b

(
θ11(τ)θab(τ)

θij(τ)θkl(τ)

)2

where {ab, ij , kl} = {00, 01, 10}
Riemann’s identity: θ00(τ)4 + θ11(τ)4 = θ01(τ)4 + θ10(τ)4

=⇒ αβγ + α + β + γ = 0
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What problems should we study?

A balance between examples and theory.

What is the right balance?

Herman Weyl: introduction to The Classical Groups (1939):

“Important though the general concepts and propositions
may be with the modern industrious passion for
axiomatizing and generalizing has presented us . . .
nevertheless I am convinced that the special problems in
all their complexity constitute the stock and the core of
mathematics; and to master their difficulty requires on
the whole the harder labor.”

Question: Is Qn,k(E , τ)! Frobenius? If so, then Qn,k(E , τ) is
Artin-Schelter regular.
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Theorem: (CKS) Already stated earlier.
Sometimes the homomorphism

Qn,k(E , τ)→ B(Xn/k , σ,Ln/k)

is surjective, e.g., when Xn/k = E g , Xn/k = SgE , and ???
In those cases there is an ideal I in Qn,k(E , τ) such that

QGr

(
Qn,k(E , τ)

I

)
≡ Qcoh(Xn/k).

This equivalence follows from:

Theorem: (Artin-Van den Bergh)
QGr(B(X , σ,L)) ≡ Qcoh(X ) in “good situations.”
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§4. Twisted homogeneous coordinate rings

let X be a scheme (e.g., an algebraic variety), σ : X → X an
automorphism, L an invertible OX -module
define s := (L ⊗OX

−) ◦ σ∗ : Qcoh(X )→ Qcoh(X )
the graded ring

B(X , σ,L) :=
∞⊕
n=0

HomOX
(OX , s

nOX )

is called a twisted homogeneous coordinate ring
compare to the pre-projective algebra (Minamoto’s talk)

Π(Q) =
⊕
n≥0

HomΓ(Γ, (τ−)nΓ)

where τ− = inverse of AR-translation

B(X , id,L) =
∞⊕
n=0

H0(X ,L⊗n).
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Important questions in algebraic geometry:
When is

∞⊕
n=0

H0(X ,L⊗n)

generated by its degree-one component H0(X ,L)?
What are the degrees of its relations.

The same questions about B(X , id,L) are very important in
non-commutative algebra.
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The category QGr(A), cf. Qcoh(·)

also possible to study projective algebraic geometry without
knowing what a sheaf is (but it might be a bad idea)

A = k⊕ A1 ⊕ A2 ⊕ · · · = connected graded k-algebra

Gr(A) = the category of Z-graded left A-modules and

Fdim(A) = the full subcategory of M ∈ Gr(A) such that
M =

∑
of its finite dimensional submodules, and

QGr(A) :=
Gr(A)

Fdim(A)
← quotient category

Theorem. [Serre, 1955, FAC] Let A = the polynomial ring on
n variables.

1 QGr(A) ≡ Qcoh(Pn−1)
2 if I is a graded ideal in A, then QGr(A/I ) ≡ Qcoh(Z ) where

Z = Proj(A/I ) ⊆ Pn−1 is the zero-locus of I .

Message: study QGr(A) as if it is Qcoh(?)
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Three atypical examples

QGr

(
C〈x , y〉

(xy − qyx)

)
≡ Qcoh(P1), q ∈ C−{0}

QGr

(
C〈x , y〉

(x2y − yx2, xy2 − y2x)

)
≡ Qcoh(P1 × P1)

QGr

(
C〈x , y〉

(x5 − yxy , y2 − xyx)

)
≡ Qcoh(P2 blown up at 3 points)

deg(x) = 1 and deg(y) = 2

This is not typical! Usually QGr(A) is “like” Qcoh(?)
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C〈x , y〉
(xy − qyx)

∼= B(P1, σ,OP1(1)), σ(α, β) = (α, qβ)

C〈x , y〉
(x2y − yx2, xy2 − y2x)

∼= B(P1×P1, σ,OP1×P1(1, 0)), σ(u, v) = (v , u)

C〈x , y〉
(x5 − yxy , y2 − xyx)

∼= B(X , σ,L), σ6 = 1

Philosophy:

think of these rings as non-commutative homogeneous
coordinate rings of these algebraic varieties

the equivalence of categories on the previous slide tell us
everything about the graded representation of these algebras

this is the “right” way to understand these rings

Secret weapon: algebraic geometry
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THE END
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