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k : an algebraically closed field of characteristic not 2.
.
Theorem 1 (Knörrer’s periodicity theorem)
..

......

S = k[x1, . . . , xn] deg xi ∈ N+,

0 ̸= f ∈ S2e (homog. polynomial of even degree 2e).

Then
CMZ(S/(f )) ∼= CMZ(S [u, v ]/(f + u2 + v2))

where deg u = deg v = e.

.
Theorem 2
..

......

S = k[x1, . . . , xn] deg xi = 1, f = x21 + · · ·+ x2n ∈ S2.

(1) If n is odd, then

CMZ(S/(f )) ∼= CMZ(k[x1]/(x
2
1 ))

∼= Db(mod k).

(2) If n is even, then

CMZ(S/(f )) ∼= CMZ(k[x1, x2]/(x
2
1 + x22 ))

∼= Db(mod k2).
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In this talk, we study a “skew version” of Theorem 2.
.
Setting
..

......

For ε := (εij) ∈ Mn(k) s.t. εii = 1 and εij = εji = ±1, we fix the
following notation:

Sε := k⟨x1, . . . , xn⟩/(xixj − εijxjxi ) deg xi = 1

((±1)-skew polynomial algebra generated in degree 1).

fε := x21 + · · ·+ x2n ∈ Sε (cental element).

Aε := Sε/(fε).

CMZ(Aε) := {M ∈ mod ZAε | ExtiAε
(M,Aε) = 0 (i > 0)}

(the category of graded MCM modules).

CMZ(Aε): stable category of CMZ(Aε) (triang. cat.).

.
Aim
..

......To study CMZ(Aε).
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.. Example

Sε = k⟨x1, x2, x3⟩/(x1x2+x2x1, x1x3+x3x1, x2x3+x3x2)

(ε12 = ε13 = ε23 = −1)
fε = x21 + x22 + x23 .

Then we have

fε =(x1 + x2 + x3)(x1 + x2 + x3) = (x1 − x2 + x3)(x1 − x2 + x3)

=(x1 + x2 − x3)(x1 + x2 − x3) = (x1 − x2 − x3)(x1 − x2 − x3)

in Sε (matrix factorizations of fε of rank 1).

M1 = Aε/(x1 + x2 + x3)Aε, M2 = Aε/(x1 − x2 + x3)Aε

M3 = Aε/(x1 + x2 − x3)Aε, M4 = Aε/(x1 − x2 − x3)Aε

are non-isomorphic MCM modules over Aε(= Sε/(fε))．
In fact,

CMZ(Aε) ∼= Db(mod k4).
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.. Graphical methods for computation of CMZ(Aε)

.
Definition 3
..

......

For ε := (εij) ∈ Mn(k) s.t. εii = 1 and εij = εji = ±1, we define
the graph Gε by

(vertices) V (Gε) := {1, 2, . . . , n}
(edges) E (Gε) := {(i , j) | εij = εji = 1}

.
Example
..

......

(n = 4) ε12 = ε13 = ε14 = +1 ε23 = ε24 = ε34 = −1

Then

Gε =

1

2

3

4
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.. Two Mutations

.
Definition 4
..

......

G : a simple graph, v ∈ V (G ).

µv (G ) : the mutation of G at v
def⇐⇒

µv (G ) is the graph such that V (µv (G )) := V (G ) and

for u ̸= v , (v , u) ∈ E (µv (G )) :⇔ (v , u) ̸∈ E (G ),

for u, u′ ̸= v , (u, u′) ∈ E (µv (G )) :⇔ (u, u′) ∈ E (G ).

.
Example
..

......

G =

1

2

3

4 =⇒ µ2(G ) =

1

2

3

4
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.
Definition 5
..

......

G : a simple graph, v ,w ∈ V (G ).

µv←w (G ) : the relative mutation of G at v by w
def⇐⇒

µv←w (G ) is the graph such that V (µv (G )) := V (G ) and

for u ̸= v ,w , (v , u) ∈ E (µv←w (G )) :⇔
(v , u) ∈ E (G ), (w , u) ̸∈ E (G ) or (v , u) ̸∈ E (G ), (w , u) ∈ E (G ),

(v ,w) ∈ E (µv←w (G )) :⇔ (v ,w) ∈ E (G ),

for u, u′ ̸= v , (u, u′) ∈ E (µv←w (G )) :⇔ (u, u′) ∈ E (G ).

.
Example
..

......

G =

1
2

3
4

5

6
=⇒ µ6←5(G ) =

1
2

3
4

5

6
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.
Theorem 6 (Mutation [MU])
..

......

If Gε′ = µv (Gε), then

CMZ(Aε) ∼= CMZ(Aε′).

.
Theorem 7 (Relative Mutation [MU])
..

......

Assume that Gε has an isolated vertex u.

If Gε′ = µv←w (Gε) (v ,w ̸= u), then

CMZ(Aε) ∼= CMZ(Aε′).
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.. Two Reductions

.
Theorem 8 (Knörrer Reduction [MU])
..

......

Assume that Gε has an isolated segment [v ,w ].

If Gε′ = Gε \ [v ,w ], then

CMZ(Aε) ∼= CMZ(Aε′).

.
Example
..

......

Gε =

1
2

3
4

5

6
=⇒ Gε \ [5, 6] =

1

2

3

4

.
Remark 9
..

......

Knörrer reduction is a consequence of noncommutative Knörrer’s
periodicity theorem presented in Mori’s talk.
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.
Theorem 10 (Two Points Reduction [MU])
..

......

Assume that Gε has two distinct isolated vertices v ,w.

If Gε′ = Gε \ {v}, then
CMZ(Aε) ∼= CMZ(Aε′)

×2.

.
Theorem 11 ([MU])
..

......

By using mutation, relative mutation, Knörrer reduction, and two
points reduction, we can completely compute CMZ(Aε) up to
n = 6.

This result suggests that these methods are powerful!
I plan to generalize for any n in future work.
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.. Demonstration

(n = 6) Sε = k⟨x1, . . . , x6⟩/(xixj − εijxjxi ) where
ε12 = ε14 = ε23 = ε25 = ε35 = ε36 = ε46 = ε56 = +1

ε13 = ε15 = ε16 = ε24 = ε26 = ε34 = ε45 = −1
fε = x21 + · · ·+ x26 ∈ Sε

Aε = Sε/(fε)

Then

Gε =

1
2

3
4

5

6

We can transform Gε to a disjoint union of two isolated segments
and two isolated vertices by applying mutation and relative
mutation several times. Hence we have
.

...... CMZ(Aε) ∼= CMZ(k[x ]/(x2))×2 ∼= Db(mod k)×2 ∼= Db(mod k2).
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Eε :=
∩

εijεjhεhi=−1 V(xixjxh) ⊂ Pn−1 (point scheme of Sε)

.
Corollary 12 ([MU])
..

......

Let ℓ be the number of irreducible components of Eε that are
isomorphic to P1. Assume that n ≤ 6.

(1) If n is odd, then ℓ ≤ 10 and

ℓ = 0 ⇐⇒ CMZ(Aε) ∼= Db(mod k),

0 < ℓ ≤ 3 ⇐⇒ CMZ(Aε) ∼= Db(mod k4),

3 < ℓ ≤ 10 ⇐⇒ CMZ(Aε) ∼= Db(mod k16).

(2) If n is even, then ℓ ≤ 15 and

0 ≤ ℓ ≤ 1 ⇐⇒ CMZ(Aε) ∼= Db(mod k2),

1 < ℓ ≤ 6 ⇐⇒ CMZ(Aε) ∼= Db(mod k8),

6 < ℓ ≤ 15 ⇐⇒ CMZ(Aε) ∼= Db(mod k32).

Note that this corollary does not hold in the case n = 7.
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