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Frobenius ring homomorphisms

Mitsuo Hoshino, Noritsugu Kameyama and Hirotaka Koga

Let R be a left and right noetherian ring. We call a ring homomorphism ¢ : R — A Frobenius if A
is a finitely generated right R-module with Ext% (A, R) = 0 for all i > 1 and if Homg(A, R) is a finitely
generated projective generator for right A-modules (cf. [1, 7, 8]). Our aim is to show that if a Frobenius
ring homomorphism ¢ : R — A is given then A inherits various homological properties from R.

Assume that a Frobenius ring homomorphism ¢ : R — A is given. Then A also is left and right
noetherian (cf. [5]). Furthermore, if R is Auslander-Gorenstein then so is A with inj dim A < inj dim R
(cf. [3, 4, 6, 9]). Also, in connection with the generalized Nakayama conjecture ([2]), we notice that
Ext% (X, R) = 0 if and only if Ext%(X, R) = 0 for any right A-module X and i > 0, and that a ring
homomorphism v : A — T" is Frobenius if and only if so is 1) o ¢. On the other hand, it seems in general
that one can not expect R to inherit any homological property from A. For instance, if R is an arbitrary
finite dimensional algebra over a field k, then Endg(R) is a Frobenius algebra and the canonical ring
homomorphism R — Endg(R),z — (y — yz), is Frobenius.
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Centers of modular group algebras
Yoshihiro Otokita

This talk deals with the Loewy structure of the center of a modular group algebra.

Let G be a finite group and F' an algebraically closed field of characteristic p > 0. We denote by Z the
center of the group algebra F'G. Then the dimension of Z is equal to the number of conjugacy classes of
G. For a primitive idempotent b in Z, Zb is the center of a block ideal of F'G and it is a local algebra in
the sense that the Jacobson radical J(Zb) has codimension 1. Our studies focus on the relation between
Zb and defect group D. Then it is known that D = {1} if and only if J(Zb) =0 (i.e. dim Zb =1). In [1]
Héthelyi and Kiilshammer conjectured that :

2y/p—1<dimZbif D # {1} ¢
In order to solve this problem we examine the algebraic structure of Zb. Our main theorem in this talk
gives a lower bound for its Loewy length LL(Zb):
m -2
% < LL(Zb) where p™ is the exponent of the center of D.
p—
As a corollary, we conclude that p 4+ 2 < dim Zb provided m > 2.
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HOMOLOGICAL METHODS IN
COMBINATORIAL COMMUTATIVE ALGEBRA

Kohji Yanagawa
Let S = K[z1,...,2,] be a polynomial ring over a field K.

Definition 1. For a simplicial complex A C 2{17} consider the monomial ideal I := (ILepmi | F C
{1,....,n},F ¢ A) C S. We call K[A] := S/Ia the Stanley-Reisner ring of A.

Using this concept, R. Stanley proved Upper Bound Conjecture for simplicial spheres. Since then,
this has been one of the central tools in the combinatorial study of finite simplicial complexes (c.f. [2]).
Moreover, the algebraic study of Stanley-Reisner rings is still very active. It is a classical result that the
Cohen—Macaulay-ness of K[A] only depends on the topology of the underlying space |A| (and char(K)).
For example, if |A| is homeomorphic to a sphere, then K[A] is Cohen-Macaulay for all K (moreover, it
is Gorenstein).

In [3], I introduced the following notion, to use homological methods more systematically.

Definition 2. We say a finitely generated Z"-graded S-module M is squarefree, if it is N™ graded
(i.e., My = 0 for a ¢ N™), and the multiplication map My > y — 2,y € Mayte, is bijective for all
a=(ay,...,a,) € N and all i with a; > 0.

Many modules appearing in the Stanley-Reisner ring theory are squarefree. At the same time, the
class of squraefree modules is quite small. In fact, the category Sq .S of squarefree S-modiles is equivalent
to the category of finitely generated left modules over the incidence K-algebra of the poset 2{1:m},

The following are selected results on this notion.

e There is a duality functor A : Sq.S — Sq .S such that A(K[A]) = Iov, where AV is the Alexander
dual of A.

e RHomg(—,ws) gives a duality functor D from D®(Sq.S) to itself, where wg is the Z"-graded
canonical module (it is just S itself as an underlying module). Moreover, we have (A o D)3 =
T—2", where T stands for the translation of D’(Sq ).

e For M € Sq S, we have a constructible sheaf MT on the (n — 1)-simplex B. For example, K[A]f
is the K-constant sheaf on |A| C B (more precisely, its direct image to B). In this context, the
above mentioned duality D corresponds to Poincaré-Verdier duality on B.

On the other hand, I have begun to recognized that some “ring theoretic” arguments (e.g., Lef-
schetz property of artinian graded algebras, see [1]) are indispensable for further development of the
Stanley-Reisner ring theory. Unfortunately, the compatibility between squarefree modules and such a
ring theoretic argument is quite bad now. If time allows, I will discuss these problems.
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Finite dimensional algebras arising from dimer models and their derived equivalences

Yusuke Nakajima

A dimer model T is a bipartite graph described on the torus, and we can define the quiver Q as the
dual of a dimer model. Precisely, we assign a vertex of ) dual to each face of I', an arrow of @) dual to
each edge of I'. For the quiver @) obtained as the dual of a “consistent” dimer model, the path algebra
with certain relations, which is called the Jacobian algebra, has nice properties, for example it gives a
non-commutative crepant resolution of a 3-dimensional Gorenstein toric singularity.

In the theory of dimer models, the notion of perfect matchings is so important. Here, we say that a
subset D of edges of a dimer model I' is a perfect matching if for any node n of I" there is a unique edge
in D containing n as the endpoint. We can also define a perfect matching of @) associated with I' as the
dual of D. By using a perfect matching D of ), we define the degree dp on each arrow a € @1 of Q as

1 ifaeD
dp(a) = {() otherwise
and this makes the Jacobian algebra a graded algebra. Then, it is known that this graded Jacobian algebra
arising from a consistent dimer model is a bimodule 3-Calabi- Yau algebra of Gorenstein parameter 1 [1, 2].
Moreover, if the degree zero part of such an algebra is finite dimensional, then it is a 2-representation
infinite algebra (or quasi 2-Fano algebra in the context of noncommutative algebraic geometry) which is
a generalization of a representation infinite hereditary algebra (see [3, 4]).

On the other hand, by using perfect matchings we can assign a lattice polygon Ar, which is called
the perfect matching polygon, to each consistent dimer model I'. In this talk, we first show that internal
perfect matchings which correspond to interior lattice points of Ar give 2-representation infinite algebras.

Theorem 1 ([3]). Let Q be the quiver obtained as the dual of a consistent dimer model I, and A be the
graded Jacobian algebra whose degree is induced by a perfect matching D. Then, we see that D is an
internal perfect matching of Q if and only if the degree zero part Ag is a finite dimensional algebra, in
which case Ny is a 2-representation infinite algebra.

After that, I also discuss the relationship between internal perfect matchings by using the mutations
of perfect matchings.

Theorem 2 ([3]). For a consistent dimer model T, internal perfect matchings of T' are transformed into
each other by the mutations if and only if they correspond to the same interior lattice point of Ar. When
this is the case, 2-representation infinite algebras arising from these internal perfect matchings are derived
equivalent.
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Torsion classes for algebras with radical square zero
Toshitaka Aoki

Let A be a finite dimensional algebra over a field k. A torsion class of the category mod A of finitely gen-
erated right A-modules is a full subcategory which is closed under factor modules, extensions and isomor-
phisms. We denote by tors A the set of torsion classes of mod A, then it forms a complete lattice with re-
spect to inclusion [3]. In general, tors A can be decomposed into subsets tors. A (:= [Filt (top eA), FaceA]),
intervals associated with idempotents € in A. We denote by faithful-tors A the set of faithful torsion classes
of mod A, that is, containing all injective modules. From the point of view of tilting theory, torsion classes
have been extensively studied. Recently, it is shown in 7-tilting theory that a class of modules, called
support 7-tilting modules, corresponds to functorially finite torsion classes. Note that tilting modules
are precisely faithful support 7-tilting modules.

In this talk, we give a classification of torsion classes for an arbitrary algebra with radical square
zero in terms of faithful torsion classes for hereditary algebras. A connection between the two classes of
algebras were first studied by Gabriel [2]. Let A be a finite dimensional k-algebra with radical square
zero. To a given idempotent € in A we can attach a factor algebra A, of A, which is a hereditary algebra
with radical square zero. Then we have the following result.

Theorem 1. Let A be a finite dimensional k-algebra with radical square zero. For each idempotent € in
A, we have the following commutative diagram of partially ordered sets:

torsc A ——— torsc A. ——— faithful-tors AP

I I I

sT-tilte A ———— sr-tilte A, ——— tilt AP

where st-tilte A (respectively, tilt A) is the set of isomorphism classes of support T-tilting modules corre-
sponding to functorially finite torsion classes in tors. A (respectively, tilting modules over A).

A key observation is that there is a reflection functor mod Ac — mod A2*. We can get numerical
data on tors A through these isomorphisms. This result is a refinement of the previous work [1] from a
categorical perspective.
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Auslander correspondence for triangulated categories

Norihiro Hanihara

The classical Auslander correspondence [2] ‘for abelian categories’ states a bijection between abelian
categories with finitely many indecomposables and algebras with certain homological invariants, which
provides an important viewpoint in representation theory. The aim of this talk is to give a triangulated
analogue of this theorem. Namely, we give a homological characterization of triangulated categories
satisfying some finiteness conditions. Let k& be a field and 7 be a k-linear, Hom-finite, idempotent-
complete triangulated category.

We consider two finiteness conditions. The first one is that 7T is finite, that is, 7 has an additive gen-
erator M. In this case, we call Endy(M) the Auslander algebra of T. We have the following homological
characterization of Auslander algebras of finite triangulated categories:

Theorem 1. Let k be a perfect field. Then, the following are equivalent for a basic finite dimensional
algebra A.

(1) A is the Auslander algebra of a finite triangulated category.
(2) A is self-injective and there exists an automorphism a of A such that Q3 ~ (=), on mod A.

Our proof depends on Amiot’s result [1] as well as Green-Snashall-Solberg’s [3], which plays an essential
role in introducing a triangle strucure on certain additive categories.
The second finiteness condition is the following:

e There exists M € T such that T = add{M|n] | n € Z}.
e For any X,Y € T, Hom7(X,Y[n]) = 0 for almost all n € Z.

In this case, we say T is [1]-finite. For example, the bounded derived categories of representation-
finite hereditary algerbas are [1]-finite. We have the following Auslander correspondence for [1]-finite
triangulated categories:

Theorem 2. Let k be an algebraically closed field. Then, there exists a bijection between the following.

(1) The set of triangle equivalence classes of [1]-finite algebraic triangulated categories.

(2) The set of graded Morita equivalence classes of finite dimensional graded self-injective algebras
such that Q3 ~ (—1).

(3) A disjoint union of Dynkin diagrams of type A, D, and E.

A key step toward this bijection is, as is stated in (3), the classfication of [1]-finite algebraic triangulated
categories, which is base on the tilting theorem due to Keller [5].

Applying this classification, we obtain the following result, which partially recovers an equivalene
between the stable categories of simple singularities and the derived categories of Dynkin quivers.

Corollary 3. Let k be an algebraically closed field and A = @nzo A, be a positively graded CM-finite
Twanaga-Gorenstein algebra such that each A, is finite dimensional over k and Ag has finite global dimen-
sion. Then, there exists a triangle equivalence CMZA ~ DP(mod kQ) for a disjoint union Q of Dynkin
quivers.
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THE CHAMBER STRUCTURES OF THE GROTHENDIECK GROUPS COMING
FROM BRICKS

Sota Asal

Let A be a finite-dimensional algebra over a field K, and mod A be the category of finite-dimensional
A-modules, and proj A C mod A be the subcategory consisting of the projective A-modules.

For the Grothendieck groups Kq(proj A) and Ko(mod A), there exists a non-degenerate Z-bilinear form
Ko(projA) x Ko(mod A) — Z called Euler form. The indecomposable projective A-modules and the
simple A-modules give dual bases of Ky(proj A) and Ky(mod A) with respect to Euler form.

By [4, 6], there is a bijection from the set 2-silt A of 2-term silting complezes of the homotopy category
KP(proj A) to the set 2-smc A of 2-term simple-minded collections of the derived category DP(mod A).
Let n be the number of isomorphic classes of simple A-modules. If T' = @ | T; € 2-silt A with all T;
indecomposable is sent to X = {X;}/; € 2-smc A, then the g-vectors [T1],...,[Tn] € Ko(proj A) and the
c-vectors [X1],...,[Xn] € Ko(mod A) form dual bases [1].

Now we consider the real-valued Grothendieck group Ky (proj A)g := Ko(proj A)®zR. Then Ky(proj A)r
is identified with the Euclidean space R™. We define the cone C(T') C Ko(proj A)g for each T € 2-silt A
by C(T) :={a1[Th] + - + an[Tn] | a1, ..., an € Rxg}. The cone C(T) has n walls, and each wall corre-
sponds to a mutation of 7. The wall for the mutation of T" at T; is contained in the orthogonal space of
[X;] € Ko(mod A) with respect to Euler form [2].

For 6 € Koy(proj A)r, we can define the numerical torsion class Tg C mod A as in [3]. By [7], if 6 is
an element in the interior of the cone C(T') for T' € 2-silt A, then Ty coincides with the functorially finite
torsion class 77 := Fac H°(T) corresponding to T in [1]. In particular, the set of @ satisfying Ty = Tr
coincides with C(T') up to boundaries, and we can say that the numerical torsion class Ty changes in each
time 6 € Ko(proj A)r leaps a wall of cones.

Moreover, 6 € Ky(proj A)r also gives the semistable subcategory Wy of mod A defined in [5]. It is an
abelian subcategory of mod A, so every simple object of Wy is a brick. Thus, for each brick S, we set
O(S) := {0 € Ko(projA)r | S € Wy} and consider the chamber structure of Ko(proj A)g with the walls
given by ©(S) for all bricks S. If A is 7-tilting finite, then each chamber is nothing but the cone for a
2-term silting complex. However, if A is not 7-tilting finite, then this observation is incomplete, because
the Euclidean space Ky(proj A)r is not covered by the cones for the 2-term silting complexes.

To solve this problem, we define an equivalence relation ~7 called T -equivalence by 0 ~7 0’ : <
To = To:. 1 have obtained the following two important results on the chamber structure of Ky(proj A)g.

Theorem 1. The walls ©g determine the T -equivalence classes.

Theorem 2. Let 0 € Ky(proj A)g, then the interior of the T -equivalence class of 0 is not empty if and
only if Ty is functorially finite.
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Decorated Marked Surfaces
Qiu, Yu

Abstract: We introduce the decorated marked surface Sa to study the associated Calabi-Yau-3 cate-
gory D(S) of an unpunctured marked surface S. In particular, we prove the following:
e [DMS I] There is a bijection X from the set CA(Sa) of closed arcs on Sa to the set SphD(S)/[Z]
of shifts orbits of (reachable) spherical objects in D(S).
e [DMS I] X induces an isomorphism between the braid twist group BT(Sa ), which is a subgroup
of the mapping class group of Sa, to the spherical twist group ST D(S).
o [DMS I(B)] There is a bijection from the set of open arcs on Sa to a class of rigid indecomposable
objects in the corresponding perfect category per S.
e [DMS II] The intersection number between arcs equals the dimension of Hom® between objects
under the bijections above.
e [DMS III] The composition of Keller-Yang equivalences for a sequence of mutations in the surface
is path-independent.
e [DMS IV] We give finite presentations of the group BT(Sa) = ST D(S) w.r.t. triangulations or
quivers with potentials.
[DMS V] The corresponding space Stab® D(S) of stability conditions is simply connected.
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Connectedness of the Balmer spectrum of the right bounded derived category of a
commutative noetherian ring

Hiroki Matsui

This talk is based on the paper [2]. Tensor triangulated geonetry is a theory introduced by Balmer
[3] to study tensor triangulated categories by algebro-geometric methods. Let (7,®,1) be a tensor
triangulated category (i.e., a triangulated category equipped with a symmetric monoidal tensor product
® which is compatible with the triangulated structure). Then we can define the notion of ideals, radical
ideals, and prime ideals as in the case of commutative rings when we regard ® as multiplication. For
instance, a prime ideal of 7 is a proper thick subcategory P of T such that

(1) (ideal) VX € T, VY € P, one has X ® Y € P, and

(2) (prime) if X @Y € T, then X € P or X € P.
Then Balmer defines a topological space SpcT as the set of all prime ideals of 7 with Zariski topology.
Balmer’s celebrated result says that

Theorem 1 (Balmer). There is an order-preserving one-to-one correspondence between

(1) the set of radical thick tensor ideals of T and
(2) the set of Thomason subsets of SpcT.

From this result, if we want to classify the radical thick tensor ideals of T, we have only to understand
the topological structure of SpcT .

In this talk, we consider the right bounded derived category D~ (modR) of a commutative noetherian
ring R. This triangulated category is a tensor triangulated category with respect to derived tensor product
®|1'?,7 and we can consider its Balmer spectrum SpcD~(modR). We discuss some topological structures of
this topological space SpcD™ (modR). The following theorem is one of the main result in this talk.

Theorem 2. The Balmer spectrum SpcD~(modR) is connected (irreducible) if and only if so is the
Zariski spectrum SpecR.

The key to prove our main theorem is the classification of thick tensor ideals of D~ (modR) generated
by bounded complexes given in [3].
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Dimensions of singular categories of hypersurfaces of countable representation type
Tokuji Araya, Kei-ichiro Ilima, Maiko Ono, Ryo Takahashi

Throughout this talk, let &k be an algebraically closed field of characteristic zero, and let R be a
complete local hypersurface over k with countable representation type. Denote by Dy, (R) the singularity
category of R, and let Dg, (R) be the full subcategory of Dy (R?) consisting of objects locally zero on the
punctured spectrum.

Let T be a triangulated category. For a subcategory X of T we denote by (X) the smallest subcat-
egory of 7 containing X which is closed under isomorphisms, shifts, finite sums and summands. For
subcategories X', ) of T we denote by X x) the subcategory consisting of objects M € T such that there
is an exact triangle X — M — Y — X[1] with X € X and Y € ). Set X oY := ((X) = (¥)). For a
subcategory X of T we put (X), := 0, (X), := (&), and inductively define (&), = Xo(X),_, forn > 2.
The dimension of T with respect to X, denote by dimy 7, is the infimum of {n > 0| T = (X)

The main results in this talk are the following two theorems.

n+1}'

Theorem 1. For all nonzero objects M of Dgg(R), the residue field k belongs to ({M})?Sg(m.

Theorem 2. Let T be a nonzero thick subcategory of Dgg(R), and let X be a full subcategory of T. Then
the following statements hold.

(1) T coincides with either Dgg(R) or Dg, (R).

(2) (a) If T = Dgg(R), then

0 (X)="7),
dimy T =41 ((X)£T, (X
5o ((X) C DY(R
(b) If T = DS (R), then

0 (x)=T7),
dimy 7T =91 ((X)#T, #ind(X) = 00),
00 (#ind(X) < 00).
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Resolution of DG-modules and their applications for commutative DG-algebras

Hiroyuki Minamoto

Differential graded (DG) algebra lies in the center of homological algebra and allows us to use tech-
niques of homological algebra of ordinary algebras in much wider context. Projective resolutions and
injective resolutions which are the fundamental tools of homological algebra already have their DG-
versions, which are called a DG-projective resolution and a DG-injective resolution. The aim of this talk
is to introduce a different DG-versions of projective resolution (sup-projective resolution) and injective
resolutions (inf-injective resolutions) for DG-modules over a connective DG-algebra.

Recall that a (cohomological) DG-algebra R is called connective if the vanishing condition H>%(R) = 0
of the cohomology groups is satisfied. There are rich sources of connective DG-algebras: the Koszul
algebra Kr(z1, -+ ,x4) in commutative ring theory, and an endomorphism DG-algebra RHom(S, S) of a
silting object S. We would like to point out that a commutative connective DG-algebras are regarded as
the coordinate algebras of derived affine schemes in derived algebraic geometry (see e.g. [1]).

The motivation for this work came from the projective dimensions and the injective dimensions for
DG-modules introduced by Yekutieli. In the paper [3] he introduced projective dimension and injec-
tive dimension of DG-modules by generalizing the characterization of projective dimension and injective
dimension of ordinary modules by vanishing of Ext-group. An important feature of newly introduced
resolutions is that, roughly speaking, the “length” of these resolutions give projective or injective dimen-
sions.

Theorem 1. Let R be a connective DG-algebra. Then a DG-R-module M is of pdpM = d if and only
if it has a sup-projective resolution P, of length e such that

d=e+supM —sup P..

Other conditions for pdM = d will be given in the talk or the poster.

We show that these resolutions allows us to investigate basic properties of projective and injective
dimensions of DG-modules. As an application we introduce the global dimension of a connective DG-
algebra and show that finiteness of global dimension is derived invariant.

If time permits, we will discuss a commutative DG-algebra. We observe that a DG-counter part
Er(R/p) of the class of indecomposable injective modules are parametrized by prime ideals p € SpecH’(R)
of the 0-th cohomology algebra. This fact is compatible with the view point of derived algebraic geometry
that the base affine scheme of the derived affine scheme SpecR associated to a CDGA R is the affine
scheme SpecH"(R). We give a structure theorem of minimal injective resolution of dualizng complex.

This talk is a report of my paper [2].
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Relations for Grothendieck groups
and representation-finiteness

Haruhisa Enomoto

A Grothendieck group is the abelian group associated with an exact category. It was known that the
defining relations of the Grothendieck group is closely related to the representation-finiteness. My aim
of this talk is to unify and generalize several known results about this.

Let £ be a Krull-Schmidt exact category. A Grothendieck group Ko (&) of € is defined to be the quotient
group Ko(€,0)/Ex(E), where Ko(€,0) is the free abelian group with basis ind€ (the set of isomorphism
classes of indecomposables in £) and Ex(&) is the subgroup of Ko(€) generated by

{[X] = [Y] + [Z] | there exists a short exact sequence 0 - X - Y — Z — 01in E}.

Among short exact sequences, AR sequences are minimal in some sense, and have played an essential
role in the representation theory of algebras and commutative rings. We denote by AR(E) the subgroup
of Ex(E) generated by AR sequences.

For an artin algebra A, it was proved by Butler [Bu] and Auslander [Au] that AR(mod A) = Ex(mod A)
holds if and only if mod A has finitely many indecomposables. Similar results were obtained for cer-
tain subcategories of mod A, e.g. [MMP, PR]. Our result about artin algebras is the following, which
generalizes all of these results.

Theorem 1. Let A be an artin algebra and € a contravariantly finite resolving subcategory of mod A.
Then & has finitely many indecomposables if and only if AR(E) = Ex(E) holds.

Next I will discuss what happens if we drop the assumption of artin-ness. Similar equivalences was
proved for the category CM A of A-lattices over an order A under some restrictions: [AR, Hi], and we
have a partial result [Ko]. T will give a partial result on this which generalizes these results:

Theorem 2. Let R be a complete Cohen-Macaulay local ring and A an R-order. Then the following
holds.

(1) If CM A has finitely many indecomposables, then AR(CM A) = Ex(CM A) holds.
Suppose that AR(CM A) = Ex(CM A) holds. Then we have the following.

(2) QCM A, the category of syzygies of modules in CM A, has finitely many indecomposables.
(3) Assume that A is a Gorenstein order or has finite global dimension. Then CM A has finitely many
indecomposables.

We use the functorial method to prove these results. If time permits, I will give a general relations,
which is used to prove above, between the conditions: (a) having finitely many indecomposables, (b)
some functorial condition and (¢) AR=Ex.
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Sortable elements and torsion pairs for quivers

Yuya Mizuno

Path algebras are one of the most fundamental and important classes of algebras. In this talk, we
discuss torsion pairs for the module category of a path algebra, and explain a close relationship between
torsion pairs and the elements of the Coxeter group of the quiver.

Let @ be acyclic quiver and W the Coxeter group of ). Then the result of [ORT] asserts that there
exists a bijection between the elements of W and the set of cofinite quotient-closed subcategories of
modk@. Thus, for a given w € W, we can give a cofinite quotient-closed category C,,. Then we pose the
following natural questions.

Question: (1) When is C,, a torsion class of modk@ for w € W ?
(2) When C,, is a torsion class, how can we describe the corresponding torsion free class ?

In this talk, we will give an answer for the above question. Our method is the theory of preprojective
algebra IT of Q. The result [BIRS] allows a connection between the representation theory of IT and W.
Using this connection, we parametrize torsion pairs of modkQ@ by some elements of W, called sortable
elements, and we explain a conjecture by [ORT].

This is based on our work [MT].
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A geometric model of Brauer graph algebras
Takahide Adachi and Aaron Chan

Given a surface, we can construct various triangulated categories which are usually motivated by the
homological mirror symmetry conjecture and related Calabi-Yau algebras/categories. In the construc-
tions, curves on a surface frequently give rise to an important class of objects. Since a Brauer graph
can be embedded into a certain surface with marked points and boundary, we can also ask if curves of
the surface give us any interesting objects in the triangulated categories associated to a Brauer graph
algebra. Generalizing ideas from works by Khovanov-Seidel [1], Seidel-Thomas [3] and Marsh-Schroll [2],
we associate curves on the surface with complexes in the bounded homotopy category. In this talk, we
give details on this construction and show how one can interpret some homological phenomenons and
problems of a Brauer graph algebra using the combinatorics of the associated surface.
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Cyclotomic polynomials

Kaoru Motose

In this talk, I present about relationship between the fundamental results about cyclotomic polynomials
and the next mathematical items, 1. Order, 2. Decomposition of cyclotomic polynomials over fields,
3. Feit Thomphson conjecture, and 4. Rational primes.
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Batalin-Vilkovisky algebra structures on the Hochschild cohomology of self-injective
Nakayama algebras

Tomohiro Ttagaki

In this talk, we give Batalin-Vilkovisky (BV) algebra structures on the Hochschild cohomology of
self-injective Nakayama algebras over an algebraically closed field.

Tradler [2] discovered that Hochschild cohomology of arbitrary symmetric algebra has a BV algebra
structure given by a symmetric bilinear form. Later, Lambre, Zhou and Zimmermann [1] discovered that
Hochschild cohomology of Frobenius algebras with diagonalizable Nakayama automorphism has a BV
algebra structure. However, it is not known that Hochschild cohomology of Frobenius algebras has a BV
algebra structure in general, and there are few examples of complete calculation of BV differentials on
Hochschild cohomology of Frobenius algebras which are not symmetric.

Recently, for any Frobenius algebra A, Volkov [3] defined the cohomology HH*(A)*T of Hochschild com-
plex related to Nakayama automorphism v, which induces Gerstenhaber algebra (HH*(A4)*T,—,[, ]).
Moreover, Volkov also found a BV algebra structure on (HH*(A)"",—,[, ]). In particular, if the
Nakayama automorphism v is diagonalizable, then HH*(A4)*T = HH*(A) and the BV differential on
(HH*(A)T,—,[, ]) induces the one on the Gerstenhaber algebra (HH*(A),—,[, ]).

We give BV differentials on the Hochschild cohomology of self-injective Nakayama algebras by dividing
the computation into two cases: (a) the characteristic of the ground field does not divide the order of the
Nakayama automorphism; (b) the characteristic of the ground field divides the order of the Nakayama
automorphism. For a self-injective Nakayama algebra A in case (b), by computing HH*(A)*T and BV
differentials on (HH*(A)*T,— [, ]), we have HH*(A)*T = HH*(A) and [, | = 0. On the other hand,
[, ] # 0 on Hochschild cohomology of A in case (a) in general.
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An application of Hochschild cohomology to the moduli of subalgebras
of the full matrix ring

Kazunori Nakamoto and Takeshi Torii

Let us begin with the definition of the moduli of subalgebras of the full matrix ring.

Definition 1. We say that a subsheaf A of Ox-algebras of M,,(Ox) is a mold of degree n on a scheme
X if M,,(Ox)/A is a locally free sheaf. We denote by rank.A the rank of A as a locally free sheaf.

Proposition 2. The following cotravariant functor is representable by a closed subscheme of the Grass-
mann scheme Grass(d,n?):
Mold,, 4 : (Sch)®? — (Sets)
X — {A‘ A is a rank d mold of degree n on X }

Let A be the universal mold on Mold,, 4. For z € Mold,, 4, set A(z) :== A ®0,,14, , k(2), where k(z)
is the residue field of . We describe the dimension of the Zariski tangent space 7T, zMold,, 4 and the
smoothness of Mold,, 4 — Z at x by using Hochschild cohomology H*(A(z), M, (k(z))/A(z)).

Theorem 3. Set N(A(z)) := {Y € M, (k(z)) | [X,Y] € A(z) for X € A(x)}. The dimension of the
Zariski tangent space T,;Mold,, 4 is given by

dim T Mold,, 4 = dim H*(A(z), M, (k(x))/A(x)) +n? — dim N (A(z)).

By using cohomology classes of H%(A(x), M, (k(x))/A(z)), we can describe the smoothness of Mold,, 4 —
Z at z. In particular, we have

Theorem 4. If H?(A(z), M, (k(x))/A(x)) = 0, then Mold,, 4 — Z is smooth at x.

Let A be an R-subalgebra of M,,(R) over a commutative ring R. Assume that M, (R)/A is a projective
R-module. We introduce several results on H*(A, M,,(R)/A).

Let @ = (Qo, Q1) be an ordered quiver. For a,b € Qq, we say that a > b if a = b or there exists
an oriented path from b to a. The incidence algebra RQ)/I can be written by A = @y>pRep,. Fix
a numbering Qo = {1,2,...,n}. By regarding e, as Ep, € M, (R), A can be identified with the R-
subalgebra @,>REp, of M,,(R). In a similar way as [1], we have the following theorem:

Theorem 5 ([2]). Let A be as above. Then H*(A,M,,(R)/A) =0 fori > 0.
Theorem 6 ([2]). Forni+---+n, =n, we set Py, n,....n, (R) = {(a;j) € Mp(R) | ai; =0 if Y 7_ynk <

i <y and § < S5 k). Then HY(Puy ..., (R), My (R)/Pry iy, (R)) = 0 for i > 0.
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Some remarks on Avella-Alaminos-Geiss invariants of gentle algebras
Hiroyuki Nakaoka

In [1], Avella-Alaminos and Geiss have introduced derived invariants ¢ 4 : NxN — N for gentle algebras
A= KQ/I. Since these invariants can be calculated combinatorially from the bound quiver (@, I), they
are effectively used in the classifiation of gentle algebras with some conditions, e.g. in [2]. They also have
relation with the dimensions of the Hochschild cohomologies HH"(A), as shown in [3] and [4].

In this talk, I would like to introduce its definition and properties from related literatures, and possibly
give an experimental construction of algebras related to these invariants.
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On projective modules with unique maximal submodule

ME— DB KER D INEF Z R D HRMEFIC DLW T

Masahisa Sato
Aichi University & Yamanashi University

INTRODUCTION

It passed 47 years after R.Ware gave the following problem in Endomorphism rings of projective
modules, Trans. Amer. Math. Soc. 155 (1971), 233-256.;

Let R be a ring and P a projective right R-module with unique maximal submodule L, then L is the
largest submodule of P.

In this talk, we report affirmative answer for this problem.

Before we solve this problem, we show the following fact;

Any projective module has a mazximal submodule.

This implies the following fact which generalizes Nakaya-Azumaya Lemma for projective modules.
If PJ(R) = P for a projective module P, then P = 0.

ON PRIMITIVE RINGS AND IDEALS

We review the definition of primitive rings and primitive ideals and their basic properties.

Definition 1. A ring R is called a right primitive ring if there is a faithful simple right R-module. A
two sided ideal T' of R is called a primitive right ideal if the factor algebra R/T is a primitive ring.

The Jacobson radical J(R) of R is the intersection of all maximal right ideals of R. This is same as
the intersection of all primitive right ideals of R.

Let M be a right R-module and S a subset of M. An (right) annihilator of S is defined by Anng(S) =
{r € R|Sr =0}.

Remark 2. A primitive right ideal T' with a faithful simple right R/T-module R/J is given by the form
T = Anng(R/J). Hence T is maximal between two sided ideals included in J.

Also T = () I = () I, here T is the set consisting of a maximal right ideal I with 7' C I and A is
Ier IeA
the set consisting of a maximal right ideal I with R/J = R/I.

STRUCTURE THEOREM

The following is a key theorem to solve R.Ware’s problem.

Proposition 3. Let R be a ring and P a projective right R-module with unique mazimal submodule L,
then P is indecomposable or there are direct summands Py and P such that P = Py & Py, P; has unique
mazximal submodule and Py does not have any maximal submodules.

EXAMPLES

We give the following examples.
(1) Non-projective indecomposable module with unique maximal submodule but not largest submodule.
i.e., Ware’s problem is not ture for non-projective modules in general.
(2) A non-projective module M with the properties MJ # M for only one maximal right ideal J and
MI = M for any maximal right ideal I # J.
(3) An infinitely generated projective module P with the properties PJ # P for only one maximal right
ideal J and PI = P for any maximal right ideal I # J.
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On (finite) X-Rickart modules:
On a module theoretic setting of the (semi-)hereditary property of rings

Gangyong Lee* and Mauricio Medina-Bércenas
(Chungnam National University*, Chungnam National University)

After Kaplansky introduced hereditary rings in the earliest 50’s, they have been extensively investigated
in the literature. Hereditary rings have been characterized in different ways, the most common of them
is that given in [1, Ch.I, Theorem 5.4]: a ring R is right hereditary if and only if every submodule of any
projective right R-module is projective if and only if every factor module of any injective right R-module
is injective. Semi-hereditary rings also ware characterized as a similar way as hereditary rings.

In this talk, we introduce the notion of (finite) X-Rickart modules by utilizing the endomorphism ring
of a module and by using the recent notion of Rickart modules [2] as a module theoretic analogue of a
right (semi-)hereditary ring. A module M is called (finite) ¥-Rickart if every (finite) direct sum of copies
of M is Rickart ([3, Definition 2.21]). It is shown that any direct summand and any (finite) direct sum of
copies of a (finite) X-Rickart module are ¥-Rickart modules. Also, we provide several characterizations of
(finite) X-Rickart modules which are including generalizations of the most common results (see the above
results for rings) of (semi-)hereditary rings in a module theoretic setting. Also, we have a characterization
of a finitely generated (finite) X-Rickart module in terms of its endomorphism ring.

This talk is based on a joint work with Mauricio-Barcenas.
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A strongly quasi-hereditary structure on Auslander—Dlab—Ringel algebras
Mayu Tsukamoto

Ringel introduced special classes of quasi-hereditary algebras called left-strongly quasi-hereditary al-
gebras and strongly quasi-hereditary algebras [5]. It is known that left-strongly quasi-hereditary algebras
have better upper bound for global dimension than that of arbitrary quasi-hereditary algebras.

Left-strongly (resp. strongly) quasi-hereditary algebras are strongly related to rejective chains defined
below. Let C be a Krull-Schmidt category. A chain C =Cy D C; D .-+ D C, = 0 of subcategories of C is
called a total left rejective chain if the following conditions hold for 1 < i < n:

(a) C; is a left rejective subcategory of C (i.e., for any X € C, there exists an epic left C;-approximation
fXec(X,Y) of X);
(b) the Jacobson radical of the factor category C;_1/[C;] is zero.
Dually, a total right rejective chain is defined. A rejective chain is defined as a total left rejective chain
and a total right rejective chain.

Proposition 1 ([6, Theorem 3.22]). Let A be an artin algebra. Then A is left-strongly (resp. strongly)
quasi-hereditary if and only if the category projA has a total left rejective (resp. rejective) chain.

Let A be an artin algebra with Loewy length m and J the Jacobson radical of A. Auslander proved
that the endomorphism algebra B := End 4(€D;~, A/J%) has finite global dimension [1]. Moreover, Dlab
and Ringel showed that B is quasi-hereditary [3]. Hence B is called an Auslander-Dlab-Ringel (ADR)
algebra. Recently, Conde gave a left-strongly quasi-hereditary algebra structure on ADR algebras [2].

In this talk, we study ADR algebras of semilocal modules introduced by Lin and Xi [4]. Recall that
a module M is said to be semilocal if M is a direct sum of modules which have a simple top. Since any
artin algebra is a semilocal module, the ADR algebras of semilocal modules are a generalization of the
original ADR algebras. In [4], they proved that ADR algebras of semilocal modules are quasi-hereditary.
We refine this result by using Proposition 1.

Theorem 2 ([7, Theorem 2.2]). Let A be an artin algebra, M a semilocal A-module with Loewy length
m and J the Jacobson radical of A. Then the category add(&D;~, M /M J") has a total left rejective chain.
In particular, the ADR algebra End 4 (.~ , M/MJ") is left-strongly quasi-hereditary.

As an application, we give a tightly upper bound for global dimension of an ADR, algebra.

It is known that the global dimension of any strongly quasi-hereditary algebra is at most two [5,
Proposition A.2]. We note that algebras with global dimension at most two are not always strongly
quasi-hereditary. We prove that the converse holds if B is an original ADR algebra.

Theorem 3 ([7, Theorem 3.1]). Let A be an artin algebra with Loewy length m > 2 and J the Jacobson
radical of A. Let B :=Enda(D;~, A/J%) be the ADR algebra of A. Then B is strongly quasi-hereditary
if and only if gl.dimB = 2 holds.
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Components of the stable Auslander-Reiten quiver for a symmetric order over a complete
discrete valuation ring

Kengo Miyamoto

In representation theory of algebras, we often use Auslander—Reiten theory to analysis various additive
categories arising in representation theory because we may prove many important combinatorial and
homological properties with the help of the theory. For important classes of finite dimensional algebras,
there exist strong restrictions on stable Auslander—Reiten quivers, for example see [2, 6, 7, 8]. However, if
the base ring is not a field but a complete regular local ring, then the shape of (stable) Auslander—Reiten
components for algebras are mostly unknown.

Let O be a complete discrete valuation ring, x is the residue field, K the quotient field and A an
O-order. We denote by latt-A the category consisting of A-lattices. Then, the category latt-A admits
almost split sequences if and only if A is an isolated singularity. In this case, one can find some results on
the shape of Auslander—Reiten components, for example [3]. Otherwise, we have to consider a suitable
full subcategory of latt-A which admits almost split sequences. In [1], we considered the full subcategory
of latt-A, say Iatt(u)—A7 consisting of A-lattices M such that M ®» K is projective as an A ®» K-module,
and we defined the concept of the stable Auslander—Reiten quiver for Iatt(h)—A, for a symmetric O-order
A. The following is the main results.

Theorem 1 ([1, 4]). Let A be a symmetric O-order and C be a stable AR component for latt”)-A with
infinitely many vertices. Then, the following statements hold.

(1) Suppose that C is periodic. Then, one of the following statements holds:
(i) If C has no loops, then the tree class is one of infinite Dynkin diagrams.
(ii) If C has loops, then C\ {loops} = ZA/{(T), and the loops appear on the boundary of C.
(2) Suppose that C is non-periodic. Then, C has no loops. Moreover, if either C does not contain
Heller lattices or A ®o k has finite representation type, then the tree class of C is one of infinite
Dynkin diagrams or Euclidean diagrams.

By applying this restriction to the symmetric Kronecker algebra A, we have the following.

Theorem 2 ([4, 5]). Let A be the symmetric Kronecker algebra over O, and let C be a stable AR

component for latt")_A that contains a Heller lattice. If C is non-periodic, then C ~ ZA,. Otherwise, C
is isomorphic to ZA /{T) if the Heller lattice is given from strings, else ZAs/(T?).
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X-Stability Conditions on Calabi-Yau-X Categories
Qiu, Yu

Abstract: We introduce the notion of X-stability condition, consisting of a Bridgeland stability condi-
tion and a complex number s, on a Calabi-Yau-X category Dy satisfying the equation
(1) X(o)=s"-0.
Here, the Grothendieck group of Dy is
K(Dx) = R®", R=Z[¢""]

and the R-structure on K (Dx) is provided by the auto-equivalence X. This gives the g-deformation
of Bridgeland’s stability condition, in the sense that when fixing s, the space XStab,; Dx of X-stability
conditions (o, s) is a complex manifold with dimension n.

We also introduce the R-generalization of global dimension for algebras, the global dimension function
on a stability condition o = (Z, P):

(2) gldimo = sup{¢s — ¢1 | Hom(P(¢1), P(¢2)) # 0},
where P is the slicing (a R-collection of t-structures). We give a criterion
gldimo + 1 < Re(s)
of constructing an X-stability condition on Dx from an usual stability condition & on the X-heart D, of
Dx.

We discuss motivation/application that relates to Saito-Frobenius structure, mirror symmetry and
cluster theory.
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On certain Morita invariants involving
commutator subspace and radical powers

Shigeo Koshitani and Taro Sakurai

In 1941, Brauer-Nesbitt [2] established a characterization of a block of a finite group with trivial defect
group as a block B with k(B) = 1 where k(B) is the number of irreducible ordinary characters of B. In
1982, Brandt [1] established a characterization of a block of a finite group with defect group of order two
as a block B with k(B) = 2. These correspond to the cases when the block is Morita equivalent to the
one-dimensional algebra and to the non-semisimple two-dimensional algebra, respectively [5].

In this talk, we redefine k(A) to be the codimension of the commutator subspace K(A) of a finite-
dimensional algebra A and prove analogous statements for arbitrary (not necessarily symmetric) finite-
dimensional algebras.

Theorem 1 (Chlebowitz [3], Koshitani-Sakurai [4]). Suppose F is a splitting field for A. Then the
following holds.

(i) k(A)=1 < mod A ~mod F.

(i) k(A) =2 and {(A) =1 <= mod A ~ mod F[X]/(X?).

This is achieved by extending the Okuyama refinement [6] of the Brandt result to this setting (part
(ii) of Theorem 2; see also Shimizu [8]).

To this end, we study the codimension of the sum of the commutator subspace K (A) and nth Jacobson
radical Rad"(A), which is denoted by K R™(A) = K(A) + Rad"(A).

Theorem 2 (Koshitani-Sakurai [4]). Let {S; | 1 < i < ¢(A)} be a complete set of pairwise non-
isomorphic simple right A-modules and let C'4 be the Cartan matriz of A. Suppose F' is a splitting field
for A. Then the following holds.

(i) codim KR'(A) = ((A).
(i) codim KR2(A) = £(A) + S22 dim Exty (S5, S5).
(iii) £(A) + X1 dim Exty (S5, 5;) < k(A) < tr C.

We prove that the codimension is Morita invariant and give an upper bound as well.
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The defining relations of geometric algebras of Type EC
Ayako Itaba and Masaki Matsuno

This talk is a report of our paper [2]. Let k be an algebraically closed field of characteristic 0.
An algebra A means a graded k-algebra finitely generated in degree 1. For a quadratic algebra A =
k(xy,--- ,2,)/I where I = (fi,---, fm) and f; are homogeneous elements of degree 2, V(A) := {(p, q) €
Pt x P! fi(p,q) = 0,5 =1,--- ,m} is called the point scheme of A.

Definition 1 ([3]). A quadratic algebra A = k{xy1,--- ,x,)/I is a geometric algebra if there exists a
geometric pair (E, o) where E is a projective variety in P*~! and o is an automorphism of E such that

V(A) - {(p,U(p)) |p € E} and 12 = {f € k<x17 e 73:77,)2 ‘ f(p70(p)) = O7Vp € E}

If A is a geometric algebra, then A determines and is determined by the geometric pair (E, o), so we
write A = A(E,0). A geometric algebra is related to an AS-regular algebra which is one of the main
interests in noncommutative algebraic geometry. Artin-Tate-Van den Bergh [1] showed that there is a
one-to-one correspondence between the set of 3-dimensional quadratic AS-regular algebras and the set of
regular geometric pairs ( ) where E is P2 or a cubic curve in P2,

(elliptic curve)

In this talk, we study geometric algebras of Type EC, i.e., the algebras whose point schemes are elliptic
curves in P2. We calculate defining relations of all geometric algebras of Type EC up to isomorphism
of graded algebras by using the defining relations of 3-dimensional Sklyanin algebras. For p € E, the
automorphism o, defined by o,(¢) := p + ¢ is called the translation by a point p. We will choose a
suitable 7 € Auty E such that Auty E = {0,7"[p € E,i € Zj;} where |7| is the order of 7. We denote
by E[3] the set of 3-torsion points of E. The following is our main result.

Theorem 2 ([2]). Let p,q € E\ E[3] and i,j € Z.

(1) Geometric algebras A(E,o,7") and A(E,c,77) of Type EC are isomorphic as graded algebras if
and only if there exist r € E[3] and | € Z\;| such that i = j and ¢ = 7'(p) +r — 7°(r).

(2) Geometric algebras A(E,op1") and A(E,0477) of Type EC are graded Morita equivalent if and
only if there exist r € E[3] and | € Z;| such that p— 77~ (p) € E[3] and ¢ = 7'(p) +r.
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Quotients G/H is super-symmetry
Akira Masuoka

This is a report of my joint work with Yuta Takahashi, a PhD student at Tsukuba. Throughout we
work over a field k of characteristic # 2.

Background. The trivial symmetry v@w — w® v, VW — W ® V on vector spaces is generalized
to the super-symmetry

—w®ov if v and w are odd,

v@w e (~D)y v = .
w®uv otherwise.

For the latter V and W are supposed to be super-vector spaces, or namely, vector spaces Vo @ Vi, Wy Wy
graded by Z/(2) = {0,1}, and v, w homogeneous elements of degree |v|,|w|. The super-vector spaces
form a k-linear abelian, symmetric tensor category with respect to the obvious tensor product and the
super-symmetry above. Ordinary objects, such as Lie algebra or Hopf algebra, are generalized to super-
objects, such as Lie super-algebra or Hopf super-algebra, in the category. My interest in the super-world,
especially in algebraic super-groups, arose from the following striking result by P. Deligne (2002): if k is
algebraically closed and chark = 0, a k-linear abelian, rigid symmetric tensor category satisfying some
mild assumption is realized as the category G-modules of finite-dimensional super-modules over a certain
affine algebraic super-group G. Of course, before the result, there were already produced a huge number
of fruitful results in super-geometry both by mathematicians and by physicists. But it was only around
2008 when the following basic question was explicitly posed by J. Brundan: Given an affine algebraic
super-group G and its algebraic super-subgroup H, is the quotient (fppf-)sheaf G/H a super-scheme?

The results. In fact, the question was solved positively by Alexandr Zubkov and myself [J. Algebra
348 (2011), 135-170]. But this time Takahashi and I found a more acceptable proof of the result in
the generalized situation that G may not be affine; the main point is to give an explicit description of
G/H, see (x) below. The description could be hopefully extended to Lie super-groups in an analytic
context. The super-Grassmannians are typical, important examples of such quotients both in algebraic
and analytic contexts.

Recall that schemes (over k) are defined, from two viewpoints, as a sort of (i) topological spaces given
structure sheaf of commutative algebras over k, as well as, of (ii) functors defined on the category of
commutative algebras over k. It is not difficult to define super-schemes, replacing commutative algebras
with super-commutative super-algebras. Algebraic super-groups are the group objects of algebraic super-
schemes.

To show our result more explicitly, we let H C G be as in Brundan’s question above, concentrating
on the affine case for simplicity. Then there are naturally associated (a) algebraic groups H C G and
(b) Lie super-algebras Lie(H) C Lie(G). (Here G is, from the viewpoint (ii), a group-valued functor,
and G is the restricted functor defined on the category of the trivially graded super-algebras.) Note that
(b) is an inclusion of left H-modules, where H acts by adjoint. Let Vg/m = Lie(G)/ Lie(H); be the
associated quotient restricted to the odd component. A classical result tells us that the quotient sheaf
G/H is a Noetherian scheme, and the quotient morphism 7 : G — G/H is affine, faithfully flat and
finitely presented.

Theorem. The quotient sheaf G/H is a Noetherian super-scheme, whose underlying topological space
|G/H]| is the same as |G/H| of G/H. The quotient morphism G — G/H has the same, desirable properties
as w. Given an affine open subset U C |G/H|, we have a non-canonical isomorphism of super-algebras

(%) Og/m(U) ~ /\OG/H(U)(HomH(V(;,/H, 71.0c(U))), the exterior algebra over Og, g (U).
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