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An extension theorem of semibricks

Sota Asai

Bricks and semibricks are generalizations of simple modules and semisimple modules, respectively, via
Schur’s Lemma.

Namely, let Λ be a finite-dimensional algebra over an algebraically closed field K, and modΛ be
the category of finitely generated right Λ-modules. Then, a module B ∈ modΛ is called a brick if its
endomorphism algebra EndΛ(B) is isomorphic to K, and we write brickΛ for the set of isoclasses of
bricks. Moreover, a (finite or infinite) subset S ⊂ brickΛ is called a semibrick if HomΛ(B1, B2) = 0 for
any distinct B1, B2 ∈ S, and we write sbrickΛ for the set of semibricks.

Clearly, any subset of a semibrick is a semibrick again. Also, sbrickΛ is a partially ordered set with
respect to inclusions. Therefore, it is natural to consider maximal semibricks.

In general, many algebras admit an infinite semibrick S, that is, a semibrick consisting of infinitely
many isoclasses of bricks. In this case, any finite subset S ′ ⊊ S is never maximal. On the other hand,
the set of isoclasses of all simple Λ-modules is a maximal finite semibrick. I considered when a finite
semibrick is maximal, and obtained a nice necessary condition in terms of representation varieties.

Let Λ ' KQ/I with a finite quiver Q and an admissible ideal I ⊂ KQ. Then, Λ-modules are identified
with quiver representations of Q satisfying the relations associated with I. For each fixed dimensional
vector d = (di)i∈Q0

, we have the representation variety rep(Q, I, d), which can be considered as the
set of all Λ-modules M whose dimension vectors dimM are d. The direct product

∏
i∈Q0

GLK(di) acts

on rep(Q, I, d), so we can consider the orbit OM of each point M ∈ rep(Q, I, d), which is equal to
{N ∈ rep(Q, I, d) |M ' N as Λ-modules}. Each orbit OM is contained in a single irreducible component
of rep(Q, I, d).

Now. I can state the following main result of this talk, which is an extension theorem of semibricks.

Theorem 1. Assume that Λ ' KQ/I is a finite-dimensional algebra over an algebraically closed field
K. Let S ∈ sbrickΛ be a finite semibrick. Then, we have the following assertions.

(1) Let B be a brick in S, and Z be an irreducible component of rep(Q, I, dimB) such that B ∈ Z. If
the orbit OM is not dense in Z, then there exists an infinite semibrick S ′ such that S ⊊ S ′ and
S ′ \ S ⊂ Z.

(2) If S is maximal in sbrickΛ, then for any B ∈ S, the orbit OB is an open dense subset of some
irreducible component of rep(Q, I, dimB).

This is a much stronger version of results in [1]. The results in the case that Λ is hereditary is used to
prove the Jordan-Dedekind property of the bounded derived category Db(modΛ) in [4]. If time permits,
I would like to explain a sketch of my proof, which is based on [3, 2].

References

[1] S. Asai, Extensions of semibricks and maximal finite semibricks in quiver representations, arXiv:2501.13476v1.

[2] K. Bongartz, On degenerations and extensions of finite-dimensional modules, Adv. Math. 121, no. 2 (1996), 245–287.
[3] C. Geiß, D. Labardini-Fragoso, J. Schröer, Semicontinuous maps on module varieties, Journal für die reine und ange-

wandte Mathematik (Crelles Journal), 2024, no. 816 (2024), 1–17.

[4] Y. Hirano, M. Kalck, G. Ouchi, Length of triangulated categories, arXiv:2404.07583v4.

Graduate School of Mathematical Sciences
The University of Tokyo
3-8-1 Komaba, Meguro-ku, Tokyo-to, 153-8914, Japan

Email : sotaasai@g.ecc.u-tokyo.ac.jp

–1–



On the Auslander–Reiten theory for extended module categories
of proper connective DG-algebras

Nao Mochizuki and Marvin Plogmann

Auslander–Reiten theory in the module category has played a central role in the representation theory
of finite-dimensional algebras. In this talk, we introduce a generalization of Auslander–Reiten theory for
module categories to the framework of proper connective DG-algebras via the use of d-extended module
categories. This talk is based on [3].

The d-extended module category is a generalization of the module category over a finite-dimensional
algebra. It is defined as a full subcategory of the derived category of DG-algebras and naturally carries
the structure of an extriangulated category [4]. We demonstrate that this category admits Auslander–
Reiten–Serre duality and Auslander–Reiten sequences, formulated in [1].

These results are already known in the following cases:

(1) For finite-dimensional algebras [5],
(2) For d-self-injective DG-algebras [2],
(3) For homologically smooth DG-algebras [1].

Furthermore, we provide an explicit description of the Auslander–Reiten–Serre duality and discuss the
first Brauer–Thrall conjecture in this setting.
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Minimal projective resolution and magnitude homology of geodetic metric spaces

Shun Wakatsuki, Yasuhiko Asao, Aaron Chan

Magnitude homology is an invariant of metric spaces, introduced by Hepworth–Willerton [3] and
Leinster–Shulman. It reflects geometric information such as a certain kind of convexity in the metric
space and has been studied as an interesting invariant. It can be described as a Tor over a graded ring
σX, which is obtained as a quotient of a certain path algebra. In this talk, we introduce results obtained
by explicitly constructing a minimal projective resolution over σX. Koszulness of σX is also discussed.

We begin by giving the definition of the magnitude homology of a metric space (X, d). Let K be a
commutative ring. We denote the free module spanned by the Cartesian product of X (as a set) by
MCn(X) = KXn+1. For 0 < i < n, define the map ∂n,i : MCn(X)→ MCn−1(X) by

∂n,i(x0, . . . , xn) =

{
(x0, . . . , x̂i, . . . , xn) if d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1)

0 otherwise

The condition d(xi−1, xi) + d(xi, xi+1) = d(xi−1, xi+1) means that the triangle inequality holds with
equality, which roughly corresponds to the condition that the points xi−1, xi, xi+1 lie on a straight line in
X. Using this, define ∂n =

∑
0<i<n(−1)i∂n,i, which yields a chain complex (MC∗(X), ∂∗). Its homology

MHn(X) = Ker∂n/Im∂n+1 is called the magnitude homology. Additionally, by considering the sum of

distances ℓ =
∑
i d(xi, xi+1), we obtain a secondary grading MH∗(X) =

⊕
ℓMHℓ∗(X).

When a (connected, undirected, simple) graphG is given, its vertex set inherits a metric space structure
by assigning length 1 to each edge and measuring shortest-path distances. The first instance of magnitude
homology appeared in this setting in [3], and it has been actively studied as an important case.

In this context, Asao–Ivanov [1] described MH∗(X) in terms of Tor (assuming X is finite):

MH∗(X) ∼= TorσX∗ (K#X ,K#X).

Here, if X is a metric space arising from a graph G, then σX is isomorphic to the path algebra of a quiver
for G, modulo certain relations. By explicitly describing a minimal projective resolution, we have:

Theorem 1 (Asao–Wakatsuki [2]). Let (X, d) be a geodetic metric space (i.e., any two points are

connected by a unique shortest path). Then MHln(X) is a free module KΘln spanned by the cycles
Θln = {(x0, . . . , xn) ∈ Xn+1 | (1)· · ·(4)} ⊂ Xn+1 defined by the following conditions:

(1)
∑
i d(xi, xi+1) = l

(2) 1 ≤ ∀i ≤ n− 1, not xi−1 ≤ xi ≤ xi+1

(3) x0 ≤ a ≤ x1 ⇒ a = x0 or x1
(4) 1 ≤ ∀i ≤ n− 1, ((xi ≤ a ≤ xi+1 and a 6= xi+1) =⇒ xi−1 ≤ xi ≤ a)

Here x ≤ y ≤ z denotes the condition d(x, y) + d(y, z) = d(x, z) for x, y, z ∈ X.

Consider the case where the metric space (X, d) is derived from a graph G. We say that (X, d) is

diagonal if it satisfies MHln(X) = 0 whenever n 6= l. This class has been investigated as an important one
in [3], and (when K is a field) it is equivalent to the Koszulness of the algebra σX. As an application of
Theorem 1, we can prove that for a geodetic metric space (X, d), diagonality is equivalent to the absence
of 4-cuts. Since the absence of 4-cuts expresses a geometric property of the metric space, this result
provides a connection between algebraic and geometric properties.
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Tilting modules for algebraic groups

Noriyuki Abe

We consider the category of algebraic representations of a reductive algebraic group. This category
(essentially) has the structure of a highest weight category, and in particular, standard and costandard
modules are defined. A module admitting both a filtration by standard modules and a filtration by
costandard modules is called a tilting module in this context. It is known that indecomposable tilting
modules are parametrized by irreducible representations, but their structure is not easy to understand.
In particular, the multiplicities of standard modules appearing in an indecomposable tilting module are
important invariants, especially because they are related to the characters of irreducible representations
in this setting.

It has been known that the combinatorics of the affine Weyl group plays an important role in the
representation theory of reductive algebraic groups. Riche-Williamson [RW18] conjectured that this
relationship also holds at the categorical level. In this framework, the affine Weyl group is replaced by
its categorification. More precisely, one can categorify the Hecke algebra associated to the affine Weyl
group, leading to a category known as the Hecke category. Riche-Williamson conjectured that tilting
modules can be described using the Hecke category. This conjecture was proved in type A by Riche-
Williamson themselves, and in general by Bezrukavnikov-Riche [BR22]. In particular, the multiplicities
of standard modules in indecomposable tilting modules can be described via the Hecke category. There
are several (equivalent) realizations of the Hecke category. The one used by Bezrukavnikov-Riche is based
on Soergel bimodules [Abe21]. In this talk, I will begin with an introduction to basic terminology related
to representation theory of algebraic reductive groups, and then present these results.
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Affine Yangians and W -algebras of type A

Mamoru Ueda

The Yangian Yℏ(g) associated with a finite dimensional simple Lie algebra g was first introduced as a
quantum group by Drinfeld. We sometimes call the Yangian of this type the finite Yangian. If we set ℏ = 0,
the finite Yangian Yℏ(g) coincides with the universal enveloping algebra of the current algebra g⊗ C[z].
Using the current presentation of the finite Yangian, we can extend the definition of the Yangian to a
symmetrizable Kac-Moody Lie algebra. In the case that g is of affine type, Guay-Nakajima-Wendlandt
gave a coproduct for the Yangian. We call the Yangian of this type the affine Yangian.

Recently, the Yangian has been actively studied in connection withW -algebras. AW -algebraWk(g, f)
is a vertex algebra associated with a finite dimensional reductive Lie algebra g, a nilpotent element f ∈ g
and a complex number called “level”. A W -algebra Wk(g, f) coincides with the affine Lie algebra ĝ
in the case f = 0 and the Virasoro algebra in the case g = sl(2). For general g and f , the relations
of a W -algabera is so complicated that we can not easily write down the defining relations of a W -
algebra directly. In finite setting, this difficulty has been partially resolved. The finite analogue of a
W -algebra Wk(g, f) is a finite W -algebra Wfin(g, f), which is an associative algebra associated with a
finite dimensional reductive Lie algebra g and a nilpotent element f ∈ g. Brundan-Kleshchev wrote
down a finite W -algebra of type A as a quotient algebra of the shifted Yangian, which is a subalgebra of
the finite Yangian of type A. Using the parabolic presentation of the Yangian, we find that the shifted
contains a tensor product of finite Yangians of type A. De Sole, Kac, and Valeri gave a homomorphism
from the tensor product of the finite Yangians of type A to a finite W -algebra of type A by using the
Lax operator. This homomorphism becomes a restriction of Brundan-Kleshchev’s homomorphism.

In affine setting, relationships between affine Yangians and rectangular W -algebras have been actively
studied. A rectangular W -algebra Wk(gl(ln), (ln)) is a W -algebra associated with gl(ln) and a nilpotent
element of type (ln). In the case n = 1, a W -algebra is called the principal W -algebra. Schiffmann-

Vasserrot defined the affine Yangian associated with ĝl(1) geometrically and wrote down a principal
W -algebra of type A as a quotient algebra of this Yangian. Schiffmann-Vasserrot also geve a geometric
representation of a principal W -algebra of type A, which corresponds to the AGT conjecture in physics.

In order to consider the general case, we take a positive integerN and its partitionN =
∑

1≤i≤l qi, q1 ≥
q2 ≥ · · · ≥ ql > ql+1 = 0.We also take f ∈ gl(n) as a nilpotent element of type (1q1−q2 , 2q2−q3 , · · · , lql−ql+1).
In the case q1 = q2 = · · · = ql, the W -algebra Wk(gl(ln), f) is Wk(gl(ln), (ln)).
Theorem 1 (rectangular case: Kodera-U. [1], non-rectangular case U. [2]). Suppose that qi − qi+1 ≥
3. Then, we can give a homomorphism from the affine Yangian associated with ŝl(qi − qi+1) to the
universal enveloping algbera ofWk(gl(N), f) by using the Miura map forWk(gl(N), f) and the coproduct,
evaluation map and edge contractions for the affine Yangian. In rectangular setting, this homomorphism
becomes surjective.

Crutzig-Diaconescu-Ma conjectured that there exists a surjective homomorphism from the shifted
affine Yangian to the iterated W -algebra of type A and we can obtain a geometric representation of
the iterated W -algebra by using this homomorphism, which is a generalization of the AGT conjecture.
Since the expected homomorphism is an affine analogue of Brundan-Kleshchev’s one, we expect that
we can obtain the Crutzig-Diaconescu-Ma’s homomorphism by extending the homomorphism given in
Theorem 1.
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Thick representations of the symmetric group

Kazunori Nakamoto, Shingo Okuyama, and Yasuhiro Omoda

In this talk, we deal with thick representations and dense representations of the symmetric group Sn.
Let V be a finite-dimensional vector space over a field k.

Definition 1 (cf. [1] and [2]). Let ρ : G → GL(V ) be a representation of a group G. We say that ρ is
m-thick if for any subspaces V1, V2 of V with dimk V1 = m and dimk V2 = dimk V −m there exists g ∈ G
such that (ρ(g)V1)∩V2 = 0. If ρ is m-thick for any 0 < m < dimk V , then we say that ρ is thick. We also
say that ρ is m-dense if Λmρ : G → GL(ΛmV ) is irreducible. If ρ is m-dense for any 0 < m < dimk V ,
then we say that ρ is dense.

Proposition 2 ([1, Corollaries 2.8 and 2.9]). For a group representation ρ : G→ GL(V ),

dense =⇒ thick =⇒ irreducible.

If dimk V ≤ 3, then they are all equivalent.

The following is a more refined definition of m-thickness.

Definition 3 ([3]). For a group representation ρ : G→ GL(V ), we say that ρ is (i, j)-thick if there exists
g ∈ G such that (ρ(g)V1) ∩ V2 = 0 for any subspaces V1, V2 of V with dimk V1 = i and dimk V2 = j. If
i+ j ≤ dimV and ρ is not (i, j)-thick, then ρ is not thick.

Notation 4. Let Sn be the symmetric group of degree n. For a partition λ of n, we denote by Vλ the
irreducible representation of Sn over C corresponding to λ.

Theorem 5 ([4]). The dense representations of the symmetric group Sn over C are those on the following
list:

(1) the trivial representation V(n) of Sn for n ≥ 1,
(2) the sign representation V(1n) of Sn for n ≥ 2,
(3) the standard representation V(n−1,1) of Sn for n ≥ 3,
(4) the product of the standard and sign representation V(2,1n−2) of Sn for n ≥ 4,
(5) the 2-dimensional irreducible representation V(22) of S4,
(6) the 5-dimensional irreducible representations V(23) and V(32) of S6.

We also talk about several results on thick representations of Sn.

References

[1] K. Nakamoto and Y. Omoda, Thick representations and dense representations I, Kodai Math. J. 42 (2019), 274–307.

[2] , The classification of thick representations of simple Lie groups, Kodai Math. J. 45 (2022), 259–269.
[3] , Thick representations and dense representations II, in preparation.

[4] K. Nakamoto, S. Okuyama, and Y. Omoda, The classification of thick representations of the symmetric group, in

preparation.

Center for Medical Education and Sciences, Faculty of Medicine
University of Yamanashi
1110 Shimokato, Chuo, Yamanashi 409-3898, Japan

Email: nakamoto@yamanashi.ac.jp

National Institute of Technology, Kagawa College
551 Kouda, Mitoyo, Kagawa 769-1103, Japan

Email: okuyama@di.kagawa-nct.ac.jp

National Institute of Technology, Akashi College
679-3 Nishioka, Uozumi-cho, Akashi, Hyogo 674-8501, Japan

Email: omoda@akashi.ac.jp

–6–



semibricks in super category O

Shunsuke Hirota

When seriously considering the structure of a given module in terms of its Jordan-Hölder series, it can
be challenging. This leads to the question: can we gain insights by taking a coarser view, perhaps by
considering a filtration by larger modules? This question can also be rephrased as: are there interesting
semibricks in a concrete setting? Classical Verma modules in Lie theory and their natural habitat, Cate-
gory O, are crucial objects that have profoundly influenced representation theory, with many phenomena
being governed by sl2. We’ve observed that natural semibricks can be constructed within Category O,
but the description of the subabelian category they generate seemed difficult (though there might still be
interesting possibilities). In this talk, we will introduce how a natural semibrick, arising from phenom-
ena governed by gl(1|1) (which can be thought of as the sl2 in the super world) within Super Category
O (a natural generalization of Category O with multiple highest weight category structures), generates
a subabelian category where projective modules are precisely Verma supermodules and their variants,
describable by quivers. This provides insights into the existence of several new natural modules in Super
Category O and sheds light on the socle of Verma supermodules.
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Explicit constructions of simple comodule algebras over a pointed Hopf algebra

Daisuke Nakamura

An abelian category equipped with an action of a tensor category is called a module category, which is
a categorification of the notion of a module over a ring. In [2], P. Etingof and V. Ostrik introduced a class
of module categories called exact, as a generalization of the notion of semisimple module categories. An
exact module category can be decomposed into a direct sum of indecomposable exact module categories,
and many researchers have worked on their classification over a fixed tensor category.

In [1], N. Andruskiewitsch and M. Mombelli showed indecomposable exact module categories over the
category Rep(H) of representations of a finite-dimensional Hopf algebra H correspond to right H-simple
left H-comodule algebras. For certain Hopf algebras with tractable structure such as the small quantum
group H = uq(sl2), this result has already led to a complete classification [3].

In this talk, we focus on right simple comodule algebras over pointed Hopf algebras. Pointed Hopf
algebras are a major class that includes quantum groups and cocommutative Hopf algebras. The following
theorem is the main result and will play a key role in constructing such comodule algebras.

Theorem 1. Let H be a coradically graded finite-dimensional pointed Hopf algebra and A 6= 0 be a graded
finite-dimensional left H-comodule algebra. The following are equivalent:

• A is right H-simple.
• A is a homogeneous subcomodule algebra of the smash product Hcoinv#(ψkF ) for some subgroup
F of the group-like elements G(H) of H and ψ ∈ H2(F, k×).

In this talk, we will construct right H-simple H-comodule algebras as a starting point for classifying
indecomposable exact module categories over Rep(H) for a concrete Hopf algebra H.
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On R-matrices constructed from certain finite-dimensional Yetter-Drinfeld modules

Ryota Wakao

In 2024, Garoufalidis and Kashaev showed that knot invariants can be constructed via R-matrices
arising from braided Hopf algebras equipped with additional data [1]. In particular, they construct
explicit examples of such invariants using certain Nichols algebras, including the ADO polynomials and
the colored Jones polynomials.

In this talk, we will describe how to recover the knot invariants in their construction by specializing
the braided Hopf algebra to a Hopf superalgebra. The reason for focusing on Hopf superalgebras is that,
according to [2], low-dimensional Hopf superalgebras have been classified and provide a rich source of
concrete examples.
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On the ubiquity of dominant local rings

Ryo Takahashi

In what follows, all subcategories are assumed to be strictly full. We begin with recalling the notation
for generation in a triangulated category introduced by Bondal, Van den Bergh and Rouquier.

Definition 1. Let T be a triangulated category.

(1) For a subcategory X of T , we denote by 〈X 〉 the smallest subcategory of T containing X and
closed under finite direct sums, direct summands and shifts. When X is given by a single object
X, we simply write 〈X〉.

(2) For two subcategories X ,Y of T , we denote by X ∗ Y the subcategory of T consisting of objects
E ∈ T which fits into an exact triangle X → E → Y → ΣX in T such that X ∈ X and Y ∈ Y.

(3) For an object X ∈ T and a nonnegative integer n, we set

〈X〉n =


0 (n = 0),

〈X〉 (n = 1),

〈〈X〉n−1 ∗ 〈X〉〉 (n ⩾ 2).

Let R be a noetherian ring. Denote by Dsg(R) the singularity category of R in the sense of Buchweitz
and Orlov, which is defined to be the Verdier quotient

Dsg(R) = Db(modR)/Kb(projR),

where Db(modR) stands for the bounded derived category of finitely generatedR-modules, and Kb(projR)
for the bounded homotopy category of finitely generated projective R-modules. Note that Dsg(R) is a
triangulated category. Now we can state the definition of a dominant local ring.

Definition 2. Suppose that the ring R is commutative and local. We define the dominant index dx(R)
by the infimum of integers n ⩾ −1 such that for every nonzero object X ∈ Dsg(R) the unique simple
R-module k belongs to 〈X〉n+1. We say that R is (uniformly) dominant if dx(R) <∞.

In this talk, we will roughly review what is known about dominant local rings and why they are
important. Then we will consider in what situations a given local ring turns out to be dominant. All the
new things which will be presented in this talk come from the speaker’s ongoing joint work with Toshinori
Kobayashi [4].
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Silting correspondences and Calabi-Yau dg algebras

Osamu Iyama

This talk is based on a joint work with Norihiro Hanihara [5].
I will discuss the correspondences between two important classes of objects, that is, silting objects

[9, 1] and d-cluster tilting objects [3, 7] in derived categories and cluster categories.
First, for a smooth dg algebra A and its (d+1)-Calabi-Yau completion Π with d ≥ 0 [8], we study the

relationship between silting objects of A and Π respectively. More explicitly, we introduce the notion of
d-silting objects, and show that the functor

−⊗L
A Π : perA→ perΠ

gives an embedding
−⊗L

A Π : siltdA→ silt Π

of posets, where siltdA is the poset of d-silting objects in perA, and silt Π is the poset of silting objects
in perΠ. For example, if A is an e-Calabi-Yau dg algebra with e ≤ d, then we obtain a bijection
−⊗L

A Π : siltA = siltdA ' silt Π.
Secondly, for a smooth connective (d+1)-Calabi-Yau dg algebra Π with d ≥ 1 and its cluster category

C(Π), we study the map
π : silt Π→ d-ctilt C(Π)

given by the canonical functor π : perΠ → C(Π), where d-ctilt (Π) is the set of d-cluster tilting objects
in C(Π) [2, 4, 6]. For the fundamental domain F in perΠ, the restriction π : F → C(Π) of π is an
equivalence. We call Π F-liftable if the induced map

π : silt Π ∩ F → d-ctilt C(Π)

is bijective. If d = 1 or 2, then Π is always F-liftable by a result of Keller-Nicholas [6]. It was asked in [6]
if Π is always F-liftable also for d ≥ 3. We give a negative answer by giving a classification of F-liftable
Calabi-Yau dg algebras in some special cases. More explicitly, we prove that F-liftable Calabi-Yau dg
algebras Π such that H0(Π) is hereditary are precisely the Calabi-Yau completions of hereditary algebras.

We explain our results by polynomial dg algebras.

References

[1] T. Aihara and O. Iyama, Silting mutation in triangulated categories, J. London Math. Soc. 85 (2012) no.3, 633–668.

[2] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potentional, Ann. Inst. Fourier, Grenoble
59, no.6 (2009) 2525–2590.

[3] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math.

204 (2006) 572–618.
[4] L. Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra 215 (2011), no. 9, 2055–

2071.
[5] N. Hanihara, O. Iyama, Silting correspondences and Calabi-Yau dg algebras, in preparation.

[6] O. Iyama and D. Yang, Silting reduction and Calabi-Yau reduction of triangulated categories, Trans. Amer. Math. Soc.

370 (2018) no.11, 7861–7898.
[7] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. math. 172,

117–168 (2008).

[8] B. Keller, Deformed Calabi-Yau completions, with an appendix by M. Van den Bergh, J. Reine Angew. Math. 654
(2011) 125–180.

[9] B. Keller, D. Vossieck, Aisles in derived categories, Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes,
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Classifying KE-closed subcategories over a commutative noetherian ring

Shunya Saito and Toshinori Kobayashi

The classification of subcategories of module categories is one of the long-studied topics in the repre-
sentation theory of algebras. Especially, several classes of subcategories of the module category modR
over a commutative noetherian ring R have been classified so far. See [1, 2, 3, 4, 5, 6, 7] for example.

In this talk, I will talk about the classification result of KE-closed subcategories (additive subcategories
closed under kernels and extensions) of modR. For this, I will introduce a class of functions on SpecR
called n-Bass functions and prove the following:

Theorem 1. Suppose that R is (S2)-excellent (for example, finitely generated algebras over a field,
complete local rings, commutative noetherian rings admitting a dualizing complex). Then there is an
explicit bijection between the following two sets:

• The set of KE-closed subcategories of modR.
• The set of 2-Bass functions on SpecR.

This talk is based on joint work with Toshinori Kobayashi (Meiji University).
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On the extension-closed subcategories of the Cohen-Macaulay module category over a
hypersurface of finite or countable representation type

Kei-ichiro Iima

This talk is based on joint work with Ryo Takahashi. Throughout this talk, let k be an algebraically
closed uncountable field of characteristic zero, and let R be a complete local hypersurface over k with finite
or countable representation type. We denote by modR the category of finitely generated R-modules, by
CM(R) the full subcategory of modR consisting of all maximal Cohen-Macaulay R-modules, by CM(R)
the stable category of CM(R), by CM0(R) the full subcategory of CM(R) consisting of maximal Cohen-
Macaulay modules which are locally free on the punctured spectrum of R.

By Takahashi [2, 3], there are one-to-one correspondences between the following:

• the resolving subcategories of modR contained in CM(R),
• the thick subcategories of CM(R),
• the specialization-closed subsets of the singular locus of R.

The bijections are explicitly given, which leads complete classifications of the resolving subcategories and
thick subcategories mentioned above.

By definition, both resolving subcategory and thick subcategory are extension-closed. The main results
in this talk is the following theorem.

Theorem 1. [1] If R is a complete local hypersurface over k, then the following hold.

(1) If either R is artinian hypersurface or R has simple singularity and dimR = 2, then extension-
closed subcategories of CM(R) are only trivial.

(2) If R is 1-dimensional simple singularity and domain, then extension-closed subcategories of
CM(R) are only trivial.

(3) If R is not domain and 1-dimensional simple singularity, CM(R) has non-trivial extension-closed
subcategories.

(4) If R is either 1-dimensional (A∞) type or 2-dimensional (D∞) type, then extension-closed sub-
categories of CM0(R) are only trivial.

(5) If R is either 1-dimensional (D∞) type or 2-dimensional (A∞) type, then CM0(R) has non-trivial
extension-closed subcategories.
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On the Rouquier dimensions of singularity categories and their annihilators

Yuki Mifune

Let R be a commutative noetherian ring. Denote by modR the category of finitely generated R-
modules, by Db(R) the bounded derived category of modR. The singularity category of R, introduced
by Buchweitz [1], is defined as the Verdier quotient of Db(R) by the category of perfect complexes over
R; that is,

Dsg(R) = Db(R)/ thickR.

This category reflects the singularity of R is the sense that Dsg(R) is trivial if and only if R is regular.
For an essentially small triangulated category T , we can define the Rouquier dimension of T , denote

by dim T [6]. This invariant measures how many times one needs to take mapping cones starting from a
single object to generate the entire category T . Concerning upper bounds for the Rouquier dimension of
Dsg(R), Liu [4] obtained the following result.

Theorem 1 (Liu). Let (R,m, k) be a noetherian local ring with an isolated singularity and I an m-primary
ideal of R contained in the annihilator of Dsg(R). Then one has

Dsg(R) = 〈k〉ℓℓ(R/I)(µ(I)−depthR+1).

In particular, we have
dimDsg(R) ≤ ℓℓ(R/I)(µ(I)− depthR+ 1)− 1.

Here, the annihilator of Dsg(R), denoted by annRDsg(R), is defined as the set of elements r ∈ R such
that r annihilates the endomorphism rings of all objects in Dsg(R). We denote by µ(I) the minimal
number of generators of the ideal I, and by ℓℓ(R/I) the Loewy length of R/I. In the case where R is
Cohen–Macaulay, the theorem was proved by Dao and Takahashi [2].

Our main result generalizes a theorem of Liu to arbitrary commutative noetherian rings.

Theorem 2. Let R be a commutative noetherian ring and I an ideal of R contained in annRDsg(R).
Then one has

Dsg(R) = 〈modR/I〉µ(I)−grade I+1.

Combining the results of Iyengar–Takahashi [3] and Liu [4], we can take the Jacobian ideal as the
ideal I in the above theorem in the case where R is close to being Cohen–Macaulay and is a quotient
of a formal power series ring or a polynomial ring over a field. Using this result, we give an example of
computing an upper bound for the Rouquier dimension of the singularity category in the case where R
is a specific ring.

This talk is based on a preprint [5].
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Cohomology annihilators and strong generation of syzygy subcategories

Kaito Kimura

Cohomology annihilators were introduced by Iyengar and Takahashi [2], and they studied the relation-
ship between them and the strong generation of module categories (and of derived categories). One of
the main motivations for this talk is the following result of theirs:

Theorem (Iyengar–Takahashi) Let R be a commutative Noetherian ring of Krull dimension d. If for any
prime ideal p of R, cadimR/p+1(R/p) 6= 0, then the subcategory of d-th syzygies is strongly generated.

For each integer n ≥ 0, we denote by can(R) the ideal consisting of elements a that annihilate ExtnR(M,N)
for all finitely generated R-modules M,N . The union

⋃
n≥0 ca

n(R) is called cohomology annihilator of

R, which is denoted by ca(R). In this abstract, the subcategory of s-th syzygies is said to be strongly
generated if there exist a finitely generated module G and integer n such that the s-th syzygy of any
finitely generated module can be built from G using at most n extensions, up to direct summands and
finite direct sums. (Although this notation differs from that used in [2], we adopt it here in order to
emphasize the role of the index s.)

Iyengar and Takahashi [2] proved that if a d-dimensional ring is either a localization of a finitely
generated algebra over a field or an equicharacteristic complete local ring, then the subcategory of d-th
syzygies is strongly generated. They also showed in [3] that such rings satisfy the assumptions of the above
theorem by focusing on the Jacobian ideal. In those results, the fact that the cohomology annihilator is
a defining ideal of the singular locus plays an essential role. It was shown by Dey, Lank, and Takahashi
[1] that the cohomology annihilator defines the singular locus if the ring is quasi-excellent. This talk
provides results independent of the characteristic of the ring, which generalize their results in light of
recent developments on quasi-excellent rings. If time permits, we will also highlight some interesting
results on singular and non-Gorenstein loci obtained in the process. This talk is based on a preprint [4].
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On relative projective covers for the principal blocks of finite groups with metacyclic
Sylow subgroups

Naoko Kunugi, Hiroaki Taguchi

Let p be an odd prime, k an algebraically closed field of characteristic p, and G̃ a finite group with
non-abelian metacyclic Sylow p-subgroup

Cpa ⋊ Cp ∼= 〈x, y | xp = yp
a

= 1, xyx−1 = y1+p
a−1

〉.

The group G̃ has a semidirect product structure G̃ = G ⋊ Q, where G is a normal subgroup of G̃ and

Q is a p-subgroup of order p. Moreover, a Sylow p-subgroup of G̃ can be written as P ⋊ Q, where P is
a Sylow p-subgroup of G. In this setting, P is a cyclic Sylow p-subgroup of G. Therefore, the principal
block B0(kG) of G is derived equivalent to the principal block B0(kNG(P )) of the normalizer NG(P ) of
P in G; this is a known case where Broué’s conjecture [1, 2] holds.

Now, we have decompositions of G̃ and NG̃(P ):

G̃ = G⋊Q, NG̃(P ) = NG(P )⋊Q.

These decompositions lead one to expect that the principal block B0(kG̃) of G̃ is derived equivalent to
the principal block B0(kNG̃(P )) of NG̃(P ). Okuyama [3] constructed a stable equivalence of Morita type
between these blocks. To lift this stable equivalence to a derived equivalence, it is necessary to determine

the structure of the relative Q-projective covers of simple modules in the principal block B0(kG̃). In this
talk, we will report our results on these relative Q-projective covers, which hold under some assumptions.
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Higher representation infinite algebras arising from geometry

Ryu Tomonaga

For d ≥ 1, the class of d-representation infinite algebras, introduced by [1], is a natural general-
ization of non-Dynkin path algebras to the case where global dimension is d. They not only behave
beautifully but also arise in many areas of mathematics including geometry. For example, if a (non-
commutative) d-dimensional smooth projective variety has a d-tilting sheaf (that is, tilting sheaf whose
endomorphism algebra has global dimension d or less), then this endomorphism algebra automatically
becomes d-representation infinite. In this talk, we introduce two results on the connection between
d-representation infinite algebras and geometry.

First, we show that d-representation infinite algebras of type Ã, which is a generalization of path

algebras of type Ã introduced by [1], are derived equivalent to toric Deligne-Mumford stacks of Picard
rank one and vice versa. This gives a new combinatorial description to the d-preprojective/preinjective
components and d-APR tilting mutations of these algebras even when d = 1.

Second, we show that a smooth projective surface has a 2-tilting bundle if and only if it is a weak del
Pezzo surface. This gives many new examples of 2-representation infinite algebras and a partial answer
to the conjecture : a smooth projective surface has a tilting object if and only if it is rational. As an
application, we see that singular del Pezzo cones have non-commutative crepant resolutions, which is a
generalization of [2].
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Symmetric cohomology of triangular bialgebras

Shota Inoue and Ayako Itaba

Let k be a commutative ring. A (k-)bialgebra is a triple A := (A,∆, ε) where A is a (k-)algebra,
and ∆: A → A ⊗k A and ε : A → k are algebra homomorphisms subject to certain conditions. Given a
bialgebra A, it is called a Hopf algebra if it is equipped with a suitable endomorphism called the antipode,
and it is said to be cocommutative if the equality ∆ = τ ◦∆ holds, where τ denotes the flip morphism
A⊗k A→ A⊗k A, a⊗ a′ 7→ a′ ⊗ a. The structure of a (quasi-)bialgebra on an algebra A corresponds to
a nice monoidal structure on the category AMod of A-modules, and for a bialgebra A, the symmetry on
AMod corresponds to an R-matrix R ∈ A⊗k A of A, and such a pair (A,R) is referred to as a triangular
bialgebra. The category AMod for a cocommutative Hopf (or bi-)algebra A is endowed with a structure
of the symmetric monoidal category in a standard way, and its symmetry corresponds to the R-matrix
1⊗ 1 of A. Therefore, cocommutative Hopf algebras are special cases of triangular bialgebras.

Staic [4] defined the symmetric cohomology HS•(G,M) of a group G with coefficients in a (left) G-
module M based on the following observation; for any integer n ≥ 0, the symmetric group Sn+1 acts on
the abelian group Cn(G,M) of n-cochains, where C•(G,M) denotes the standard complex that is used to
compute the classical group cohomology H•(G,M) of G with coefficients in M . Shiba–Sanada–Itaba [3]
defined the symmetric cohomology HS•(A,M) of a cocommutative Hopf algebra A with coefficients in an
A-module M , generalizing the previous notion in the sense that the equality HS•(G,M) = HS•(Z[G],M)
holds for a group G and a G-module M , where we write Z[G] for the group ring of G.

Let (A,R) be a triangular bialgebra, and M an A-module. In this talk, we introduce the symmetric
cohomology HS•(A,R,M) of the triangular bialgebra (A,R), thereby generalizing the constructions in
the previous works [4] and [3]. Let (∆S)+ denote the category obtained from∆S by formally adjoining an
initial object. Here, ∆S is the symmetric category, an example of the crossed simplicial groups introduced
independently by Krasauskas [2] and Fiedorowicz–Loday [1].

We defined the symmetric cohomology HS•(A,R,M) of (A,R) via the following steps:

Definition 1. Let (A,R) be a triangular bialgebra, and M an A-module. We can associate to (A,R) a

functor T̃(A,R) : (∆S)op+ → AMod. The functor T̃(A,R) gives rise to an augmented chain complex C• of
A-modules, which is equipped with degreewise actions of the symmetric groups. We define HS•(A,R,M)
to be the cohomology of a subcomplex of HomA(C•,M) whose cochains are invariant under this action.

If time allows, we will also talk about the Morita invariance of the symmetric cohomology.
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Point modules of a family consisting of the enveloping algebras of color Lie algebras

Shu Minaki

Let k be an algebraically closed field with char k = 0. For a connected graded k-algebra A generated
in degree 1, a graded left A-module P =

⊕
i≥0 Pi is called a point module if P is generated by an element

of degree 0 and dimkPi = 1 for i ≥ 0. This is one of the important objects in Noncommutative algebraic
geometry. Artin–Tate–Van den Bergh [1] studied point modules of 3-dimensional AS-regular algebras.
Also, Belmans–De Laet–Le Bruyn [2] studied point modules of skew polynomial algebras.

Color Lie algebras were introduced by Ree [4]. Let Γ be an abelian group and ε : Γ × Γ → k× be a
map satisfying ε(α, β)ε(β, α) = 1, ε(α + β, γ) = ε(α, γ)ε(β, γ), and ε(α, β + γ) = ε(α, β)ε(α, γ) for any
α, β, γ ∈ Γ. Let L =

⊕
γ∈Γ Lγ be a Γ-graded k-vector space and Γ-graded bilinear form 〈 , 〉 : L×L→ L

satisfying 〈a, b〉 = −ε(α, β)〈b, a〉 and ε(γ, α)〈a, 〈b, c〉〉 + ε(α, β)〈b, 〈c, a〉〉 + ε(β, γ)〈c, 〈a, b〉〉 = 0 for any
a ∈ Lα, b ∈ Lβ , c ∈ Lγ , α, β, γ ∈ Γ. Then L = (L, 〈 , 〉) is called a (Γ, ε)-color Lie algebra. For a
color Lie algebra L, we set Γ− := {γ ∈ Γ | ε(γ, γ) = −1} and L− :=

⊕
γ∈Γ−

Lγ . Let T (L) denote the

tensor algebra of L and J(L) the two-sided ideal of T (L) generated by a⊗ b− ε(α, β)b⊗a−〈a, b〉 for any
a ∈ Lα, b ∈ Lβ , α, β ∈ Γ. The (universal) enveloping algebra of L is defined by U(L) := T (L)/J(L). Price
[3] proved that, if dimkL < ∞ and L− = 0, then U(L) is Auslander-regular and gl.dimU(L) = dimkL.
For any skew polynomial algebra S, there exists a color Lie algebra L such that U(L) ∼= S.

Belmans–De Laet–Le Bruyn [2] inspire us to study algebras which have explicit normal elements. We

define the following algebras E(n)u for studying the point modules. Let u be in k×. For Γ = Z × Z, the
map ε is defined by ε : Γ× Γ→ k×, ((α, β), (α′, β′)) 7→ u(αβ

′−α′β). For a positive integer n, we define a
(Γ, ε)-color Lie algebra Ln as follows:

Ln = 〈x, e1, e2, . . . en〉k with x ∈ (Ln)(1,0), ei ∈ (Ln)(i−1,1) for 1 ≤ i, j ≤ n.

For any 1 ≤ i, j ≤ n, 〈x, ei〉 =

{
ei+1 i < n

0 i = n
, 〈ei, ej〉 = 0. We define E(n)u := U(Ln).

Note that E(n)u is (n+1)-dimensional Neotherian AS-regular algebra and en is a degree n normal element

in E(n)u , that is, enE(n)u = E(n)u en. We prove the following theorem about En for n ≥ 2.

Theorem 1. For each n ≥ 2, E(n)u has no en-torsionfree point module.

Remark that, for a connected graded k-algebra A generated in degree 1 and a normal element g in A,
the point module P of A is g-torsionfree or gP = 0. We prove the following corollary of Theorem 1.

Corollary 2. Let u be in k×. For each n ≥ 2, there exists the one-to-one correspondance between the

isomorphism classes of point modules of E(n)u and those of E(1)u :

{P | P is a point module of E(n)u }/∼=
1:1←→ {P | P is a point module of E(1)u }/∼=

So, the point variety structure of E(n)u is same as that of E(1)u
∼= k〈x, y〉/〈xy − uyx〉.
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The Lie structure on the first Hochschild cohomology groups of
Beilinson algebras of graded down-up algebras with weights (n,m)

Ayako Itaba and Shu Minaki

Let k be an algebraically closed field with char k = 0. Noncommutative projective schemes associated
to AS-regular algebras were formulated by Artin–Zhang [1]. Let mod∇A denote the category of finitely
generated right ∇A-modules, tailsA denote the noncommutative projective scheme. The bounded derived
categories of tailsA and mod∇A are denoted by Db(tailsA) and Db(mod∇A), respectively. Regarding
the relationship between a noetherian AS-regular algebra A and its Beilinson algebra ∇A, an important
result was proved by Minamoto–Mori [6]; if A is a coherent AS-regular algebra of dimension d and ∇A is
its Beilinson algebra, then ∇A is extremely Fano of global dimension d−1, and there exists an equivalence
of triangulated categories Db(tailsA) ' Db(mod∇A).

The graded algebra A(α, β) := k〈x, y〉/(x2y − βyx2 − αxyx, xy2 − βy2x− αyxy) is called a (graded)
down-up algebra with weights (n,m), where α, β ∈ k and deg x = n,deg y = m ∈ N+. This down-up
algebra was introduced by Benkart–Roby [3] for their study of posets. Kirkman–Musson–Passman [5]
showed that a graded down-up algebra A = (α, β) is a 3-dimensional noetherian AS-regular algebra if
and only if β 6= 0.

The aim of our study is to investigate the Hochschild cohomology groups of ∇A of a down-up algebra
A = A(α, β) with β 6= 0 and weights (n,m). If n = 1 and m = 1, then the description of the Hochschild
cohomology group of ∇A is already known due to Belmans [2]. Also, if n = 1 and m ≥ 2, the dimension
formula for the Hochschild cohomology group of ∇A was given by the first author and Ueyama [4]. In
this study, we provide the dimension formula for the Hochschild cohomology group of ∇A in the case
that n ≥ 2 and m ≥ 2. Using this dimension formula, we show that if m > n > 1, then Db(tailsA) is
not equivalent to the derived category of any smooth projective surface. Furthermore, in the case n ≥ 2
and m ≥ 2, we construct a basis of the first Hochschild cohomology group of ∇A via the Bar resolution.
Moreover, we compute the Lie algebra structure on the first Hochschild cohomology group induced by
the Gerstenhaber bracket in the case m ≥ n ≥ 1, m 6= 1 and gcd(n,m) = 1.
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Noncommutative Hirzebruch surfaces

Izuru Mori

A noncommutative P1-bundle over a commutative scheme defined in [2] is one of the major objects
of study in noncommutative algebraic geometry. Last year in this symposium [1], we classified locally
free sheaf bimodules of rank 2 over P1 in order to classify noncommutative Hirzebruch surfaces, which
are defined to be noncommutative P1-bundles over P1, however, we did not give a definition of a non-
commutative Hirzebruch surface. In this talk, we give some ideas on how to define a noncommutative
P1-bundle over a commutative scheme from the view point of representation theory of algebras, extending
the construction of the preprojective algebra of the 2-Kronecker quiver. Then we will show that every
noncommutative P1-bundle over a commutative smooth projective scheme has a suitable semi-orthogonal
decomposition. Moreover, we will show that every noncommutative Hirzebruch surface even has a full
strong exceptional sequence so that its derived category is equivalent to the derived category of a finite
dimensional algebra. This talk is based on a joint work with Shinnosuke Okawa and Kazushi Ueda.
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Examples of tilting-discrete symmetric algebras

Takuma Aihara

The tilting-discreteness of a symmetric algebra is a finiteness condition on tilting complexes; that is, a
tilting-discrete symmetric algebra has only finitely many tilting complexes of each length. In the case, we
can ‘essentially’ obtain all tilting complexes via tilting mutation, and grasp the whole picture of tilting
complexes. Typical examples of tilting-discrete symmetric algebras are representation-finite symmetric
algebras [A], Brauer graph algebras whose Brauer graphs admit at most one cycle of odd length and
none of even length [AAC], symmetric algebras of dihedral, semidihedral and quaternion type [EJR]
and symmetric algebras of tubular type with nonsingular Cartan matrix [AHMW]. A big problem is to
classify all tilting-discrete symmetric algebras.

In this talk, we give several examples of tilting-discrete symmetric algebras; one also discusses the
tilting-disconnectedness of symmetric algebras. Moreover, we negatively solve a conjecture asking if a
τ -tilting finite symmetric algebra is tilting-discrete.
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