The correspondence between silting objects and *t*-structures for non-positive dg algebras via Koszul duality

Riku Fushimi

Nagoya University fushimi.riku.h9@s.mail.nagoya-u.ac.jp

17 September, 2024

1/25

Main theorem

Let A be a dg $\Bbbk\mbox{-algebra}$ such that

- (locally finite) H^iA is finite dimensional for every $i \in \mathbb{Z}$,
- (non-positive) $H^i A = 0$ for every $i \in \mathbb{Z}_{>0}$.

Then

Conventions

- k is a field.
- All (dg) algebras and categories are defined over $\Bbbk.$
- All subcategoires are full, additive, and closed under taking direct summunds.
- ${\mathcal T}$ is a triangualted category.
- add X is the smallest subcategory containing X.
- Filt X is the smallest subcategory containing X and closed under taking extensions.
- **thick** *X* is the smallest thick subcategory containing *X*.

R. Fushimi, *The correspondence between silting objects and t-structures for non-positive dg algebras*, arXiv:2312.17597.

R. Fushimi, *Contravariant Koszul duality between non-positive and positive dg algebras*, arXiv:2409.08842.

3/25

- Differential graded algebras
- 2 Four concepts
- 3 Main results
- 4 Koszul duality

5 An application to functorially finiteness of hearts

Differential graded algebras

- 2 Four concepts
- 3 Main results
- 4 Koszul duality

5 An application to functorially finiteness of hearts

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< □ > < 同 >

Differential graded algebras

Definition

A pair (A, d) of a \mathbb{Z} -graded algebra A and a linear map $d: A \to A$ is differential graded (dg) algebra if

 $\bullet \ d(A^i) \subseteq A^{i+1} \text{,}$

•
$$d^2 = 0$$

•
$$d(a \cdot b) = d(a) \cdot b + (-1)^{\deg(a)} a \cdot d(b).$$

Example

Any algebra can be regarded as a dg algebra concentrated in degree 0.

Example

Let Λ be an algebra and $M \in \mathbf{D}(\Lambda)$. Then $\operatorname{\mathbf{REnd}}_{\Lambda}(M) := \operatorname{\mathbf{RHom}}_{\Lambda}(M, M)$ has a natural dg algebra structure.

Riku Fushimi (Nagoya)

ST correspondence

イロト 不得 トイヨト イヨト

(Non-)positive dg algebras

Definition

Let A be a dg algebra.

- A is called locally finite (l.f.) if H^iA is finite-dimensional for every $i \in \mathbb{Z}$.
- A is called non-positive if $H^{>0}A = 0$.
- A is called positive if $H^{<0}A = 0$ and H^0A is semisimple.

Example

- $\bullet~$ Let $\Lambda~$ be a finite-dimensional algebra. Then
 - (i) Λ is a l.f. non-positive dg algebra,
 - (ii) ${\rm I\!REnd}_\Lambda({\rm top}\,\Lambda)$ is a l.f. positive dg algebra.
- Let (Q, W) be a Jacobi-finite quiver with potential. Then the complete Ginzburg dg algebra $\widehat{\Gamma}(Q, W)$ is l.f. non-positive dg algebra.

イロト 不得 トイラト イラト 一日

For a dg algebra A, we can define the derived category $\mathbf{D}(A)$ of A as in the case of ordinary algebras.

Definition

Let A be a dg algebra.

- $\mathbf{per}(A) := \mathbf{thick}_{\mathbf{D}(A)}A$ is called the perfect derived category of A.
- $\mathbf{pvd}(A) := \{M \in \mathbf{D}(A) \mid H^*M \text{ is finite-dimensional}\}\$ is called the perfectly valued derived category of A.

Example

If $A = \Lambda$ be a finite-dimensional algebra, then we have $\mathbf{per}(\Lambda) = \mathbf{K}^b(\mathbf{proj}\Lambda)$ and $\mathbf{pvd}(\Lambda) = \mathbf{D}^b(\mathbf{mod}\Lambda)$.

イロト 不得 トイヨト イヨト 二日

Differential graded algebras

2 Four concepts

- 3 Main results
- 4 Koszul duality

5 An application to functorially finiteness of hearts

< □ > < 同 > < 回 > < 回 > < 回 >

Silting objects

Definition

A object $M \in \mathcal{T}$ is called a silting object if

- T(M, M[> 0]) = 0,
- thick $M = \mathcal{T}$.

A silting object $M \in \mathcal{T}$ is called a tilting object if

•
$$\mathcal{T}(M, M[< 0]) = 0.$$

Remark (Aihara-Iyama)

Tilting objects cannot always be mutated , but silting objects can always be mutated.

Example

A: non-positive dg algebra \Rightarrow A is a silting object of $\mathbf{per}(A)$.

Riku Fushimi (Nagoya)

イロト 不得 トイヨト イヨト 二日

Bounded co-*t*-structures

Definition

A pair of subcategories $(\mathcal{T}_{\geq 0}, \mathcal{T}_{\leq 0})$ is a (bounded) co-*t*-structure on \mathcal{T} if

- $\mathcal{T}_{\leq 0}[1] \subseteq \mathcal{T}_{\leq 0}$,
- $\mathcal{T}(X, Y[1]) = 0$ for every $X \in \mathcal{T}_{\geq 0}$ and $Y \in \mathcal{T}_{\leq 0}$,
- $\mathcal{T}_{\geq 0}*(\mathcal{T}_{\leq 0}[1])=\mathcal{T}$,
- (bounded) thick $\mathcal{T}_0 = \mathcal{T}$.

 $\mathcal{T}_0 := \mathcal{T}_{\geq 0} \cap \mathcal{T}_{\leq 0}$ is called the co-heart of $(\mathcal{T}_{\geq 0}, \mathcal{T}_{\leq 0})$.

Fact (Mendoza-Sáenz-Santiago-Souto Salonia.)

Let \boldsymbol{A} be a l.f. non-positive dg algebra. Then

isomorphism classes of basic silting objects of $\mathbf{per}(A)$ \leftarrow bounded co-*t*-structures on $\mathbf{per}(A)$

s.t. the coheart of the co-t-structure corresponding to M is $\operatorname{add} M$.

Simple-minded collections

Definition

A set of objects $\mathcal{L} \subseteq \mathcal{T}$ is called a simple-minded collection (SMC) if

•
$$\mathcal{T}(L_1, L_2) = \begin{cases} \text{division ring} & \text{if } L_1 = L_2 \\ 0 & \text{otherwise,} \end{cases}$$

• $\mathcal{T}(\mathcal{L}, \mathcal{L}[< 0]) = 0,$
• $\text{thick}\mathcal{L} = \mathcal{T}.$

Remark

SMCs were first studied by Rickard in the context of derived equivalences of symmetric algebras.

Example

Let A be a l.f. non-positive dg algebra. Then the set of simple $H^0A\text{-modules}$ is a SMC of $\mathbf{pvd}(A).$

Riku Fushimi (Nagoya)

ST correspondence

12/25

Algebraic *t*-structures

Definition

A pair of subcategories $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is called an (algebraic) *t*-structure if

•
$$\mathcal{T}^{\leq 0}[1] \subseteq \mathcal{T}^{\leq 0}$$
,

• $\mathcal{T}(X[1], Y) = 0$ for every $X \in \mathcal{T}^{\leq 0}$ and $Y \in \mathcal{T}^{\geq 0}$,

•
$$(\mathcal{T}^{\leq 0}[1]) * \mathcal{T}^{\geq 0} = \mathcal{T},$$

• (algebraic) \mathcal{T}^0 is length and $\operatorname{thick} \mathcal{T}^0 = \mathcal{T}$.

$$\mathcal{T}^0:=\mathcal{T}^{\leq 0}\cap\mathcal{T}^{\geq 0}$$
 is called the heart of $(\mathcal{T}^{\leq 0},\mathcal{T}^{\geq 0}).$

Fact (Deligne-Beilinson-Bernstein)

Let \boldsymbol{A} be a l.f. non-positive dg algebra. Then

isomorphism classes of
$$l:l$$
 algebraic t -structures on $\mathbf{pvd}(A)$

s.t. the heart of the *t*-structure corresponding to \mathcal{L} is $\mathbf{Filt}\mathcal{L}$.

Differential graded algebras

2 Four concepts

4 Koszul duality

5 An application to functorially finiteness of hearts

э

ST-correspondence

Theorem (Keller-Vossieck, Koenig-Yang, Keller-Nicolas, Su-Yang, F) (ST-correspondence)

Let \boldsymbol{A} be a l.f. non-positive dg algebra. Then the map

isomorphism classes of 1:1 algebraic t-structures on $\mathbf{pvd}(A)$

that maps M to $(\mathbf{pvd}(A)^{\leq 0}_M,\mathbf{pvd}(A)^{\geq 0}_M)$ is bijective, where

$$\begin{aligned} \mathbf{pvd}(A)_{M}^{\leq 0} &:= \{ X \in \mathbf{pvd}(A) \mid \mathbf{D}(A)(M, X[>0]) = 0 \}, \\ \mathbf{pvd}(A)_{M}^{\geq 0} &:= \{ X \in \mathbf{pvd}(A) \mid \mathbf{D}(A)(M, X[<0]) = 0 \}. \end{aligned}$$

Example

If $A = \Lambda$ is a finite-dimensional algebra, then $(\mathbf{pvd}(\Lambda)^{\leq 0}_{\Lambda}, \mathbf{pvd}(\Lambda)^{\geq 0}_{\Lambda})$ is the stundard *t*-structure on $\mathbf{pvd}(\Lambda) = \mathbf{D}^{b}(\mathbf{mod}\Lambda)$.

Corollary

Let ${\cal A}$ be a l.f. non-positive dg algebra. The following sets correspond bijectively:

- {iso classes of basic silting objects of per(A)},
- {bounded co-t-structures on $\mathbf{per}(A)$ },
- {iso classes of SMCs of pvd(A)},
- {algebraic t-structures on $\mathbf{pvd}(A)$ }.

(B)

- Differential graded algebras
- 2 Four concepts
- 3 Main results
- 4 Koszul duality

5 An application to functorially finiteness of hearts

э

The main ingredient in proving ST-correspondence is the Koszul duality for dg algebras introduced by Keller.

Definition

- Let A be a l.f. non-positive dg algebra. Then we put $A^! := \mathbf{R} \operatorname{End}_A(\operatorname{top} H^0 A).$
- Let A be a l.f. positive dg algebra. Then we put $A^! := \mathbf{R} \operatorname{End}_A(H^0 A)$.

In the following, we say a l.f. positive dg algebra A is nice if $\mathbf{Filt}A$ has a projective generator.

A B A A B A

Theorem (Lu-Palmieri-Wu-Zhang, F) (Koszul duality)

• Let A be a l.f. non-positive dg algebra. Then $A^!$ is a l.f. nice positive dg algebra, and $\mathbf{R}\text{Hom}_A(-, \text{top }H^0A)$ induces

$$\begin{array}{cccc} \mathbf{per}(A) & & \overset{\simeq}{\longrightarrow} & \mathbf{pvd}((A^!)^{\mathrm{op}})^{\mathrm{op}} \\ & & & \cap \\ \mathbf{D}_{\mathrm{fd}}^-(A) & & \overset{\sim}{\longrightarrow} & \mathbf{D}_{\mathrm{fd}}^+((A^!)^{\mathrm{op}})^{\mathrm{op}} \\ & & & \cup \\ & & & & \cup \\ & & & & \mathbf{pvd}(A) & & \overset{\simeq}{\longrightarrow} & \mathbf{per}((A^!)^{\mathrm{op}})^{\mathrm{op}}. \end{array}$$

• Let A be a l.f. nice positive dg algebra. Then $A^!$ is a l.f. non-positive dg algebra, and $\mathbf{R}Hom_A(-, H^0A)$ induces

$$\begin{array}{ccc} \mathbf{per}(A) & & \xrightarrow{\simeq} & \mathbf{pvd}((A^!)^{\mathrm{op}})^{\mathrm{op}} \\ & & & \cap \\ \mathbf{D}_{\mathrm{fd}}^+(A) & & \xrightarrow{\simeq} & \mathbf{D}_{\mathrm{fd}}^-((A^!)^{\mathrm{op}})^{\mathrm{op}} \\ & & & \cup \\ & & & \cup \\ & & & \mathbf{pvd}(A) & & \xrightarrow{\simeq} & \mathbf{per}((A^!)^{\mathrm{op}})^{\mathrm{op}}. \end{array}$$

19/25

- Differential graded algebras
- 2 Four concepts
- 3 Main results
- 4 Koszul duality

5 An application to functorially finiteness of hearts

э

< □ > < 同 > < 回 > < 回 > < 回 >

Functorially finite subcategories

Definition

Let \mathcal{U} be a subcategory of \mathcal{T} . Let $U \in \mathcal{U}$ and $X \in \mathcal{T}$. A morphism $f: U \to X$ is called a right \mathcal{U} -approximation of X if

$$f \circ -: \mathcal{T}(U', U) \to \mathcal{T}(U', X)$$

is surjective for every $U' \in \mathcal{U}$. Dually, we define left \mathcal{U} -approximations.

Definition

- A subcategory U ⊆ T is called contravariantly finite if every X ∈ T has a right U-approximation. Dually, we define covariantly finite subcategories.
- A subcategory U ⊆ T is called functorially finite if U is contravariantly finite and covariantly finite.

Riku Fushimi (Nagoya)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Functorially finite hearts

A *t*-structure $(\mathcal{T}^{\leq 0}, \mathcal{T}^{\geq 0})$ is called bounded if $\mathbf{thick}\mathcal{T}^0 = \mathcal{T}$.

Theorem (Coelho Simões-Pauksztello-Ploog, F)

- $\mathcal{T}:$ Hom-finite algebraic triangulated category.
- $\mathcal{L}:$ SMC of \mathcal{T} s.t. $\mathbf{Filt}\mathcal{L}$ has a projective generator.
- (1) $\mathcal{T} \simeq \mathbf{pvd}(A)$ for some l.f. non-positive dg algebra A.
- (2) For a heart \mathcal{H} of a bounded *t*-structure on \mathcal{T} , the following conditions are equivalent:
 - (i) ${\mathcal H}$ is contravariantly finite in ${\mathcal T}$,
 - (i)' \mathcal{H} is covariantly finite in \mathcal{T} ,
 - (ii) \mathcal{H} is functorially finite in \mathcal{T} ,
 - (iii) \mathcal{H} is a length category,
 - (iv) \mathcal{H} has a projective generator,
 - (v) $\mathcal{H} \simeq \mathbf{mod}\Lambda$ for some finite-dimensional algebra Λ .

References I

- [AI] T. Aihara, O. Iyama, Silting mutation in triangulated categories, J. London. Math. Soc. (2) 85 (2012), no. 3, 633–668.
- [BBD] P. Deligne, A. Beilinson, J. Bernstein, *Faisceaux pervers*, Astérisque, Vol.100, (1983), 1-172.
- [F1] R. Fushimi, The correspondence between silting objects and t-structures for non-positive dg algebras, arXiv:2312.17597.
- [F2] R. Fushimi, Contravariant Koszul duality between non-positive and positive dg algebras, arXiv:2409.08842.
- [Ke] B. Keller, Deriving DG categories, Ann. Sci. Ecole Norm. Sup. (4) 27 (1994), no. 1, 63–102.
- [KeN1] B. Keller, P. Nicolás, Weight structures and simple dg modules for positive dg algebras, Int. Math. Res. Not. IMRN 2013, no. 5, 1028–1078.
- [KeN2] B. Keller, P. Nicolás, Cluster hearts and cluster tilting objects, work in preparation.
- [KeV] B. Keller, D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253.
- [KoY] S. Koenig, D. Yang, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-length algebras, Doc. Math. **19** (2014), 403–438.

- [LPWZ] D. M. Lu, J. H. Palmieri, Q. S. Wu, and J. J. Zhang. Koszul equivalences in $A_\infty\mbox{-algebras},$ New York J. Math, 14:325–378, 2008.
- [MSSS] O. Mendoza, E. C. S´aenz, V. Santiago, M. J. Souto Salonia. Auslander–Buchweitz Context and Co-tstructures, Applied Categorical Structures, vol.21, 417–440 (2013).
- [R] J. Rickard, Equivalences of derived categories for symmetric algebras, Journal of pure and applied Algebra 61.3 (1989): 303-317.
- [SPP] R. Coelho Simões, D. Pauksztello, and D. Ploog, Functorially finite hearts, simple-minded systems in negative cluster categories, and noncrossing partitions, Compositio Mathematica 158.1 (2022): 211-243.
- [SY] H. Su, D. Yang, From simple-minded collections to silting objects via Koszul duality. Algebras and Representation Theory, vol.22, 219–238 (2019).

イロト 不得 トイヨト イヨト

Thank you for your attention!

æ

イロト イポト イヨト イヨト