Semibricks and Spherical objects

Wahei Hara (Kavli IPMU) joint work with M. Wemyss

The 56th Symposium on Ring Theory and Representation Theory 16.Sep.2024

Statement of Main Theorem

Today we will discuss

semibrick complexes over silting discrete algebra

Let A be a finite dimensional \mathbb{C} -algebra.

Definition

 $S \in \mathrm{D^b}(A) := \mathrm{D^b}(\mathrm{mod}\, A).$

- S is brick if $\operatorname{Ext}^i(S,S) = 0$ for i < 0 and $\operatorname{End}(S) = \mathbb{C}$.
- S is semibrick (complex) if
 - (a) $\operatorname{Ext}^i(S,S) = 0$ for i < 0 and
 - (b) $S \simeq \bigoplus_i S_i$, where $\{S_i\}$ is a collection bricks with $\operatorname{Hom}(S_i, S_j) = \mathbb{C} \,\delta_{ij}$.
- S is a simple-minded collection (smc) if
 - (a) S is a semibrick (complex), and
 - (b) S generates $D^{b}(A)$.

(Semi)bricks are generalisation of (sum of) simple modules.

semibricks (simples) ↔ presiltings (projectives)

Definition

 $P \in \operatorname{Perf}(A)$.

- P is presilting if $\operatorname{Ext}^{i}(P, P) = 0$ for i > 0.
- P is silting if
 - (a) P is presilting, and
 - (b) P generates Perf(A).

Example

 $\{S_1, \cdots, S_n\}$ is the full collection of simple modules over A.

- $S = \bigoplus_{i=1}^{n} S_i$ is an SMC and any nonzero summands are semibricks.
- A is silting, and all projective A-modules are presilting.

Theorem (Koenig-Yang)

There is a bijection among

- silt $A := \{ \text{siltings in } \operatorname{Perf} A \} / \simeq \subset \{ \text{presiltings} \}$
- $\operatorname{smc} A := \{\operatorname{smcs} \text{ in } \mathrm{D^b}(A)\}/\simeq \subset \{\operatorname{semibricks}\}$
- {bdd t-strs. on $\mathrm{D^b}(A)$ with length \heartsuit } \subset {bdd t-strs.}

KY-bij is (partial-)order-preserving.

•
$$P, P' \in \operatorname{silt} A$$

 $P \geq P': \Leftrightarrow \operatorname{Ext}^i(P,P') = 0$ for all i > 0

• $S, S' \in \operatorname{smc} A$

 $S \geq S':\Leftrightarrow \operatorname{Ext}^i(S',S) = 0$ for all i < 0E.g. $P \geq P[1]$ and $S \geq S[1]$.

Question

What kind of control exits for {presiltings}, {semibricks}, and {bdd *t*-strs.}?

A. They behaves very well when A is silting discrete.

Definition (Aihara-Mizuno)

A is silting discrete if for any $P \in \operatorname{silt} A$, $\sharp\{Q \in \operatorname{silt} A \mid P \geq Q \geq P[1]\} < \infty.$

 $P \ge Q \ge P[1] \Leftrightarrow Q$ is 2-term w.r.t. (\heartsuit corresponding to) P. silting discrete "=" everywhere τ -tilting finite.

Let A be a silting discrete algebra.

Main Theorem (H-Wemyss)

For $x \in \mathrm{D}^\mathrm{b}(A)$, the following hold.

(1) $\operatorname{Ext}^{<0}(x,x) = 0$ iff $\exists \mathcal{H} \text{ length } \heartsuit \text{ on } D^{\mathrm{b}}(A) \text{ s.t. } x \in \mathcal{H}.$

(2)
$$x$$
 is semibrick cpx. iff $\exists x'$ s.t. $x \oplus x' \in \operatorname{smc} A$.

(any semibrick can be completed to an smc)

Other Known Results

- (Aihara-Mizuno) P is presilting iff $\exists Q$ s.t. $P \oplus Q \in \operatorname{silt} A$.
- (Adachi-Mizuno-Yang, Pauksztello-Saorin-Zvonareva)
 - (1) All bdd *t*-str have length hearts.
 - (2) The space of Bridgeland stability conditions Stab D^b(A) is connected.

These results classify (semi)bricks, presiltings, and t-structures.

Examples and Contraction Algebras

Let us see examples of silting discrete algebras.

(1) Preprojective algebras of Dynkin type $A_1, A_2, D_{2n}, E_7, E_8$ are silting discrete.

- A_1 and A_2 have the small rank (easy to study).
- D_{2n}, E_7, E_8 have trivial Nakayama involution.

Question

Are all type A_n silting discrete? (especially A_3 !!)

 $\ensuremath{\textbf{2-term}}$ semibricks and presiltings over type A preprojective algebras are studied by

Barnard-Hanson, Mizuno, Iyama-Williams, etc.

(2) Brauer graph algebra whose Brauer graph has at most one odd length cycle and no even length cycle.

(3) (3-fold) contraction algebras (Main Example today).

Let $f\colon X o \operatorname{Spec} R$ be a 3-fold flopping contraction s.t.

- R is complete local $(o \in \operatorname{Spec} R$ the max ideal) and
- X has at worst Gorenstein terminal singularities.

Then it is known that

(a) $f^{-1}(o)_{red} = \bigcup C_i$ is a tree of projective lines $C_i \simeq \mathbb{P}^1$. (b) $R \simeq \mathbb{C}[\![x, y, z, w]\!]/(f + wg)$ (isolated cDV singularity),

where $\begin{cases} f \in \mathbb{C}\llbracket x, y, z \rrbracket$ is simple ADE and $g \in \mathbb{C}\llbracket x, y, z, w \rrbracket$ is arbitrary.

Michel Van den Bergh tells us:

• \exists (canonical) NC R-algebra A such that

 $\mathrm{D}^{\mathrm{b}}(\mathrm{coh}\, X) \simeq \mathrm{D}^{\mathrm{b}}(\mathrm{mod}\, A).$

• $A \simeq \operatorname{End}_R(R \oplus M)$ for $M \in \operatorname{CM} R$.

Definition (Donovan-Wemyss)

The contraction algebra $A_{\mathrm{con}} = A_{\mathrm{con},f}$ associated to the contraction $f\colon X o \operatorname{Spec} R$ is

$$\begin{split} A_{\operatorname{con},f} &:= \underline{\operatorname{End}}_R(M) \\ &= \operatorname{Hom}_R(M,M) / \{ M \to P \to M \mid P \in \operatorname{proj} A \}. \end{split}$$

(a) (August) A_{con} is silting-discrete.
(b) (DW) A_{con} represents NC-deformation of f⁻¹(o)_{red}.
(c) (Toda) dim A_{con} is related to Gopakumar-Vafa invariant.

Example (c.f. Smith-Wemyss)

If $R_k := \mathbb{C}\llbracket u, v, x, y
rbracket / (uv - xy(x^k + y))$, all resols. look like

$$\longrightarrow$$
 \rightarrow \bigcirc Spec R_k

• One resol. $f\colon X_1 o \operatorname{Spec} R_k$ gives

$$A_{\operatorname{con},f} = \bullet \bigcap_{b}^{a} \bullet$$

with relations $(ab)^k a = 0 = b(ab)^k$.

• Another resol. $g\colon X_2 o \operatorname{Spec} R_k$ gives

$$A_{\mathrm{con},g}=ulletul$$

Another important aspect of contraction algebras is

(d) For $f\colon X o \operatorname{Spec} R$, define the null category $\mathcal C$ by

 $\mathcal{C} := \{x \in \operatorname{D^b}(\operatorname{coh} X) \mid Rf_*(x) = 0\}.$

- C is triangulated subcategory of $D^{b}(\operatorname{coh} X)$.
- C is Hom-finite.
- If X is regular, then $\mathcal C$ is 3-CY.

Under VdB's equivalence $\mathrm{D}^{\mathrm{b}}(\mathrm{coh}\,X)\simeq\mathrm{D}^{\mathrm{b}}(\mathrm{mod}\,A)$,

 $\mathcal{A} := \mathcal{C} \cap \operatorname{mod} A = \mathcal{C} \cap \operatorname{coh} X = \langle \mathcal{O}_{C_i}(-1) \mid i
angle_{\operatorname{ex}} \subset \mathcal{C}$

is called the standard heart, and $\mathcal{A} \simeq \operatorname{mod} A_{\operatorname{con}}$.

- $\mathcal{O}_{C_i}(-1)$ plays important role in both RT and AG.
 - The universal line bundles O_{Ci}(−1) for each Ci ≃ P¹ gives the full collection of simple objects in A.
 - Each $\mathcal{O}_{C_i}(-1)$ is an example of (fat-)spherical object.

Example

If $f\colon X o \operatorname{Spec} R$ is the Atiyah flop,

•
$$R = \mathbb{C}\llbracket x, y, z, w
rbracket / (xy - zw)$$
,

•
$$f^{-1}(o)=C\simeq \mathbb{P}^1$$
 ,

•
$$\operatorname{Ext}_X^i(\mathcal{O}_C(-1),\mathcal{O}_C(-1)) = \begin{cases} \mathbb{C} & \text{if } i = 0,3, \text{ an} \\ 0 & \text{else.} \end{cases}$$

Thus $\mathcal{O}_C(-1)$ is **3**-spherical, and

$$T_{\mathcal{O}_C(-1)}(y) := \operatorname{Cone}\left(\operatorname{RHom}_X\left(\mathcal{O}_C(-1),y
ight)\otimes\mathcal{O}_C(-1)\stackrel{\operatorname{ev}}{\longrightarrow}y
ight)$$

d

defines the spherical twist $T_{\mathcal{O}_C(-1)} \in \operatorname{Auteq} \operatorname{D^b}(\operatorname{coh} X)$.

Remark

In general case, by Donovan-Wemyss, the NC-deformation of $\mathcal{O}_C(-1)$ gives the NC twist $T_{\mathcal{O}_C(-1)} \in \operatorname{Auteq} \operatorname{D^b}(\operatorname{coh} X)$

The category $\boldsymbol{\mathcal{C}}$ contains MORE (fat-)spherical objects.

Slogan

Classification of (fat-)sphericals in $\mathcal{C} \leftrightarrow$ structure of $\operatorname{\mathbf{Auteq}} \mathcal{C}$

(Fat-)spherical objects are also related to

- space of Bridgeland stability conditions, and
- Lagrangian submfd. of the A-side under the mirror symmetry.

Theorem (H-Wemyss)

The realisation functor $\mathrm{D^b}(A_{\mathrm{con}}) o \mathcal{C}$ of the standard heart

(1) is NEVER an equivalence, but

(2) gives a bijection between brick complexes in $D^{b}(A_{con})$ and bricks (= fat-spherical objects) in C, and

(3) gives a bijection between *t*-structures.

This gives more context to the main theorem !!

Contraction algebras have more and more aspects.

(e) Donovan-Wemyss conjecture (proved by Muro-Jasso-Keller)

Theorem

$$\begin{array}{l} \mathsf{Let} \begin{cases} f_1 \colon X_1 \to \operatorname{Spec} R_1 \\ f_2 \colon X_2 \to \operatorname{Spec} R_2 \end{cases} & \text{be two 3d flopping conts.} \\ \text{Assume that } X_1 \text{ and } X_2 \text{ are regular. Then} \\ \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f_1}) \simeq \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f_2}) \text{ iff } R_1 \simeq R_2. \end{array}$$

D-equiv. class of contraction algebras classify smooth 3d flops. (f) Brown-Wemyss conjecture (on f.d. Jacobi algebra, still open)

Proof of Main Theorem

Recall that the main theorem is

Main Theorem (H-Wemyss)

For $x \in \mathrm{D}^{\mathrm{b}}(A)$, the following hold.

(1) $\operatorname{Ext}^{<0}(x,x) = 0$ iff $\exists \mathcal{H}$ length \heartsuit on $\operatorname{D^b}(A)$ s.t. $x \in \mathcal{H}$.

(2) x is semibrick cpx. iff $\exists x'$ s.t. $x \oplus x' \in \operatorname{smc} A$.

(2) follows from (1). The proof of this is routine.

- By (1), $\exists \mathcal{H} \text{ length } \heartsuit$ on $\mathrm{D^b}(A)$ s.t. $x \in \mathcal{H}$.
- KY-bij gives $P \in \operatorname{silt} A$ s.t. $\mathcal{H} \simeq B := \operatorname{End}_A(P)$.
- Silting-discreteness of A shows B is au-tilting finite.
- Using Asai's result gives a 2-term smc $x \oplus x' \in \operatorname{smc} B$.
- real: $D^{b}(B) \to D^{b}(A)$ sends the 2-smc $x \oplus x' \in \operatorname{smc} B$ to an smc $x \oplus \operatorname{real}(x') \in \operatorname{smc} A$.

Proof of (1).

• By KY-bij, $S\in \operatorname{smc} A$ associates $\mathcal{A}_S\subset \operatorname{D^b}(A)$ (bdd \heartsuit).

Notation

For $x\in \mathrm{D^b}(A)$, $S\in \mathrm{smc}\,A$, and $a\leq b\in\mathbb{Z}$,

 $x \in [a,b]_S :\Leftrightarrow H^i_{\mathcal{A}_S}(x) = 0$ for all i < a and b < i

- Let $x \in D^{\mathbf{b}}(A)$ be a complex with $\operatorname{Ext}^{\leq 0}(x, x) = 0$. Assume for some $S \in \operatorname{smc} A$, $x \in [a, b]_S$.
- Put

 $\Delta_S(x) := \{T \in \operatorname{smc} A \mid S \ge T \ge S[1], x \in [a, b]_T\}.$

• Since A is silting discrete, $\Delta_S(x)$ is FINITE POSET.

Key Lemma

If $S'\in \Delta_S(x)$ is maximal, then $x\in [a+1,b]_{S'}.$

Repeating this shows $\exists S'' \in \operatorname{smc} A$ s.t. $x \in [b, b]_{S''} \Leftrightarrow x \in \mathcal{A}_{S''}[-b]$.

(More) geometric counterpart

Important set: $\{T \mid S \geq T \geq S[1]\} = 2$ -term smcs w.r.t. S.

(A part of) HomMMP by Wemyss

One can visualise the set

$$2\operatorname{-smc} A_{\operatorname{con}} \simeq \{P \in \operatorname{silt} A_{\operatorname{con}} \mid A_{\operatorname{con}} \ge P \ge A_{\operatorname{con}}[1]\}$$

using Dynkin hyperplane arrangement.

3-fold flops associate marked Dynkin data: general $g \in R$ gives

 $\operatorname{Spec} R \longleftarrow \operatorname{Spec} R/g,$

- R/g is Kleinian singularity (= surface ADE singularity).
- Y is a partial crepant resolution of R/g.
- Z is the minimal resolution of R/g.

 $\Delta = J \cap {old J^c}$ marked Dynkin data

•
$$\mathfrak{h} = \bigoplus_{i \in \Delta} \mathbb{R} \alpha_i \supset \mathfrak{h}_J := \bigoplus_{i \in J} \mathbb{R} \alpha_i$$

- $\pi_J \colon \mathfrak{h} \to \mathfrak{h}_J$ natural projection.
- Define the set of positive restricted roots by

 $\{\beta = \pi_J(\alpha) \mid \alpha \in \mathfrak{h} \text{ positive root, } \pi_J(\alpha) \neq 0\}$

• The associated hyperplane arrangement is

$$\{H_eta=eta^\perp\subset \Theta_J:=\mathfrak{h}_J^*\}_{eta^arepsilon}$$

• In the previous example, positive restricted roots are

 $\{(1,0), (0,1), (1,1), (2,1), (2,2)\}$

and the hyperplane arrangement is

$$\overline{}$$

For g-vector aspect of this, see lyama-Wemyss tits cone paper.

3-fold flopping contraction $f\colon X\to\operatorname{Spec} R$ associates

- the contraction algebra $A_{
 m con}$.
- the hyperplane arrangement $(\Theta_J, \{H_eta\})$.

HomMMP by Wemyss

There exist natural bijections among

- 2-silt $A_{\rm con} = 2$ -smc $A_{\rm con}$.
- Chambers of $(\Theta_J, \{H_\beta\})$.
- (Iterated) flops of X

Flop of X= another 3d flopping contr. $g\colon X' o \operatorname{Spec} R$

- obtained by modifying some \mathbb{P}^1 s in $f^{-1}(0)_{\mathrm{red}}$.
- By Bridgeland-Chen, ∃ derived equivalence

 $\mathrm{D^b}(\mathrm{coh}\, X)\simeq\mathrm{D^b}(\mathrm{coh}\, X')$

Repeating flops give many other models (and all are D-equiv)

Let $f\colon X o \operatorname{Spec} R$ be a 3d flopping contraction.

Theorem (August)

For any \heartsuit of a bdd *t*-str. $\mathcal{A} \subset \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f})$, there exists another model $g \colon X' \to \operatorname{Spec} R$ such that

- $\mathcal{A} \simeq \operatorname{mod} A_{\operatorname{con},g}$.
- The realisation functor $\mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},g}) o \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f})$ of $\mathcal A$ is an equiv.

Thus for $P\in \operatorname{silt} A_{\operatorname{con},f}$, there exist $g\colon X' o\operatorname{Spec} R$ s.t. $\operatorname{End}(P)\simeq A_{\operatorname{con},g}$ and

$$\{Q \mid P \ge Q \ge P[1]\} \stackrel{\text{bij}}{\longleftrightarrow} 2\text{-silt } A_{\operatorname{con},g}$$

 $\stackrel{\text{bij}}{\longleftrightarrow} \text{Iterated flops of } X'$
 $= \text{Iterated flops of } X$
 $\stackrel{\text{bij}}{\longleftrightarrow} \text{Chambers of } (\Theta_J, \{H_\beta\})$

 $g \colon X' \to \operatorname{Spec} R$ corresp. to $D \subset \Theta_J \setminus \bigcup H_{\beta}$. The partial order on 2-silt $A_{\operatorname{con},q}$ can be visualised as:

 By August, for two models $q: X' \to \operatorname{Spec} R$ and $h: X'' \to \operatorname{Spec} R$, there exists an equivalence $\Phi_{a,h}: \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},a}) \to \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},h})$ defined by $P \in 2$ -silt $A_{\operatorname{con},q}$ with $\operatorname{End}(P) \simeq A_{\operatorname{con},h}$. • There is a similar equivalence between null categories $\Psi_{a,h} \colon \mathcal{C}_a \to \mathcal{C}_h$ where $\mathcal{C}_f := \{x \in \mathrm{D}^\mathrm{b}(\mathrm{coh}\, X) \mid Rf_*(x) = 0\}$ s.t. $\mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},a}) \xrightarrow{\mathrm{real}} \mathcal{C}_{a}$ • The diagram $\begin{tabular}{|c|c|c|c|} $ \Phi_{g,h} $ & $ \Psi_{g,h} $ commutes $ \end{tabular}$ $D^{b}(A_{\operatorname{con} h}) \xrightarrow{\operatorname{real}} \mathcal{C}_{h}$ • $\Psi_{a,h}$ is a composition of Bridgeland-Chen equivalences.

Main Theorem (geometric version)

Let $f: X \to \operatorname{Spec} R$ be a 3d flopping contraction (1) For $x \in D^{b}(A_{\text{con},f})$ (resp. \mathcal{C}_{f}), TFAE (a) $\text{Ext}^{i}(x, x) = 0$ for all i < 0. (b) There exists another $f' \colon X' \to \operatorname{Spec} R$ and an equivalence $\Phi: \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f}) \to \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f'}) \text{ (resp. } \Psi: \mathcal{C}_{f} \to \mathcal{C}_{f'} \text{) s.t.}$ • $\Phi(x)$ (resp. $\Psi(x)$) $\in \text{mod } A_{\text{con. } f'}[n]$ for some $n \in \mathbb{Z}$. • Φ (resp. Ψ) is a comp. of $\Phi_{a,h}$ (resp. $\Psi_{a,h}$). (2) If $x \in D^{b}(A_{\text{con},f})$ (resp. \mathcal{C}_{f}) satisfies $\operatorname{Hom}(x,x) = \mathbb{C}$ and $\operatorname{Ext}^{i}(x,x) = 0$ for all i < 0, there exists another $f' \colon X' \to \operatorname{Spec} R$ and an equivalence $\Phi: \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f}) \to \mathrm{D}^{\mathrm{b}}(A_{\mathrm{con},f'}) \text{ (resp. } \Psi: \mathcal{C}_{f} \to \mathcal{C}_{f'} \text{) s.t.}$

- $\Phi(x)$ (resp. $\Psi(x)$) is a (shifted) simple module.
- Φ (resp. Ψ) is a comp. of $\Phi_{g,h}$ (resp. $\Psi_{g,h}$).

Further remarks

- (2) of the theorem also extends to semibricks.
- Compare the geometric theorem with non-geometric one.

Main Theorem (non-geometric version)

For $x\in \mathrm{D^b}(A)$, the following hold.

(1)
$$\operatorname{Ext}^{<0}(x,x) = 0$$
 iff $\exists \mathcal{H}$ length \heartsuit on $\operatorname{D^b}(A)$ s.t. $x \in \mathcal{H}$.

(2) x is semibrick cpx. iff $\exists x'$ s.t. $x \oplus x' \in \operatorname{smc} A$.

- A similar technique also classifies all bdd. t-strs. on \mathcal{C} .
- As corollaries, theorems yield
 - $\operatorname{Stab} \mathcal{C}$ is connected.
 - $\operatorname{Auteq^{FM}} \mathcal{C} \simeq$ the associated pure braid group.
- Geometric theorem also holds for the null category C of partial crepant resolutions of 2d ADE singularities.

- 2d contraction algebras are more complicated than 3d.
 - They are (contracted) preprojective algebras, and silting discreteness is still open in many cases.
 - There are less equivalences than 3d cases, and no commutative diagram for $\Phi_{g,h}$ and $\Psi_{g,h}$.
- Once the homological mirror for the null category *C* is proved, main theorem gives a lot of dynamical and topological corollaries in symplectic geometry.
 - HMS for $R_k := \mathbb{C}[\![u, v, x, y]\!]/(uv xy(x^k + y))$ is known (Smith-Wemyss), for example.
 - Bricks corresponds to Lagrangian submfds. via the realisation functor and HMS.
 - In Smith-Wemyss, techniques in silting-discrete world (implicitly but actually) contribute to prove results in symplectic geometry!!

Corollary (Smith-Wemyss)

Let $L \subset W_p$ be a closed Lagrangian submfd. with vanishing Maslov class. Then $\pm[L] \in \{(1,0), (0,1), (1,\pm 1)\} \in H^3(W_p; \mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z}$.