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Statement of Main Theorem

Today we will discuss

semibrick complexes over silting discrete algebra

Let A be a finite dimensional C-algebra.

Definition

S ∈ Db(A) := Db(modA).

• S is brick if Exti(S, S) = 0 for i < 0 and End(S) = C.
• S is semibrick (complex) if

(a) Exti(S, S) = 0 for i < 0 and
(b) S ≃

⊕
i Si, where {Si} is a collection bricks with

Hom(Si, Sj) = C δij .

• S is a simple-minded collection (smc) if

(a) S is a semibrick (complex), and
(b) S generates Db(A).
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(Semi)bricks are generalisation of (sum of) simple modules.

semibricks (simples)↔ presiltings (projectives)

Definition

P ∈ Perf(A).

• P is presilting if Exti(P, P ) = 0 for i > 0.

• P is silting if

(a) P is presilting, and
(b) P generates Perf(A).

Example

{S1, · · · , Sn} is the full collection of simple modules over A.

• S =
⊕n

i=1 Si is an SMC and any nonzero summands are
semibricks.

• A is silting, and all projective A-modules are presilting.
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Theorem (Koenig-Yang)

There is a bijection among

• siltA := {siltings in Perf A}/≃ ⊂ {presiltings}
• smcA := {smcs in Db(A)}/≃ ⊂ {semibricks}
• {bdd t-strs. on Db(A) with length ♡} ⊂ {bdd t-strs.}

KY-bij is (partial-)order-preserving.

• P, P ′ ∈ siltA

P ≥ P ′ :⇔ Exti(P , P ′) = 0 for all i > 0

• S, S′ ∈ smcA

S ≥ S′ :⇔ Exti(S′, S) = 0 for all i < 0

E.g. P ≥ P [1] and S ≥ S[1].
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Question

What kind of control exits for

{presiltings}, {semibricks}, and {bdd t-strs.}?

A. They behaves very well when A is silting discrete.

Definition (Aihara-Mizuno)

A is silting discrete if for any P ∈ siltA,

♯{Q ∈ siltA | P ≥ Q ≥ P [1]} <∞.

P ≥ Q ≥ P [1]⇔ Q is 2-term w.r.t. (♡ corresponding to) P .

silting discrete “=” everywhere τ -tilting finite.
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Let A be a silting discrete algebra.

Main Theorem (H-Wemyss)

For x ∈ Db(A), the following hold.

(1) Ext<0(x, x) = 0 iff ∃H length ♡ on Db(A) s.t. x ∈ H.

(2) x is semibrick cpx. iff ∃x′ s.t. x⊕ x′ ∈ smcA.
(any semibrick can be completed to an smc)

Other Known Results

• (Aihara-Mizuno) P is presilting iff ∃Q s.t. P ⊕Q ∈ siltA.

• (Adachi-Mizuno-Yang, Pauksztello-Saorin-Zvonareva)

(1) All bdd t-str have length hearts.
(2) The space of Bridgeland stability conditions StabDb(A) is

connected.

These results classify (semi)bricks, presiltings, and t-structures.
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Examples and Contraction Algebras

Let us see examples of silting discrete algebras.

(1) Preprojective algebras of Dynkin type A1, A2, D2n, E7, E8

are silting discrete.

• A1 and A2 have the small rank (easy to study).
• D2n, E7, E8 have trivial Nakayama involution.

Question

Are all type An silting discrete? (especially A3 !!)

2-term semibricks and presiltings over type A preprojective
algebras are studied by

Barnard-Hanson, Mizuno, Iyama-Williams, etc.

(2) Brauer graph algebra whose Brauer graph has at most one
odd length cycle and no even length cycle.
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(3) (3-fold) contraction algebras (Main Example today).

Let f : X → SpecR be a 3-fold flopping contraction s.t.

• R is complete local (o ∈ SpecR the max ideal) and

• X has at worst Gorenstein terminal singularities.

Then it is known that

(a) f−1(o)red =
∪

Ci is a tree of projective lines Ci ≃ P1.

(b) R ≃ C[[x, y, z, w]]/(f + wg) (isolated cDV singularity),

where

{
f ∈ C[[x, y, z]] is simple ADE and

g ∈ C[[x, y, z, w]] is arbitrary.
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Michel Van den Bergh tells us:

• ∃ (canonical) NC R-algebra A such that

Db(cohX) ≃ Db(modA).

• A ≃ EndR(R⊕M) for M ∈ CMR.

Definition (Donovan-Wemyss)

The contraction algebra Acon = Acon,f associated to the
contraction f : X → SpecR is

Acon,f := EndR(M)

= HomR(M,M)/{M → P →M | P ∈ projA}.

(a) (August) Acon is silting-discrete.

(b) (DW) Acon represents NC-deformation of f−1(o)red.

(c) (Toda) dimAcon is related to Gopakumar-Vafa invariant.
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Example (c.f. Smith-Wemyss)

If Rk := C[[u, v, x, y]]/(uv − xy(xk + y)), all resols. look like

• One resol. f : X1 → SpecRk gives

Acon,f = • •
a

b

with relations (ab)ka = 0 = b(ab)k.

• Another resol. g : X2 → SpecRk gives

Acon,g = • •
a

b

y

with relations yk = ba and ay = 0 = yb.
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Another important aspect of contraction algebras is

(d) For f : X → SpecR, define the null category C by

C := {x ∈ Db(cohX) | Rf∗(x) = 0}.
• C is triangulated subcategory of Db(cohX).
• C is Hom-finite.
• If X is regular, then C is 3-CY.

Under VdB’s equivalence Db(cohX) ≃ Db(modA),

A := C ∩modA = C ∩ cohX = ⟨OCi(−1) | i⟩ex ⊂ C

is called the standard heart, and A ≃ modAcon.

• OCi(−1) plays important role in both RT and AG.

• The universal line bundles OCi(−1) for each Ci ≃ P1 gives
the full collection of simple objects in A.

• Each OCi(−1) is an example of (fat-)spherical object.
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Example

If f : X → SpecR is the Atiyah flop,

• R = C[[x, y, z, w]]/(xy − zw),

• f−1(o) = C ≃ P1,

• ExtiX(OC(−1),OC(−1)) =

{
C if i = 0, 3, and

0 else.
.

Thus OC(−1) is 3-spherical, and

TOC(−1)(y) := Cone
(
RHomX (OC(−1), y)⊗OC(−1) ev−→ y

)
defines the spherical twist TOC(−1) ∈ AuteqDb(cohX).

Remark

In general case, by Donovan-Wemyss, the NC-deformation of
OC(−1) gives the NC twist TOC(−1) ∈ AuteqDb(cohX)
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The category C contains MORE (fat-)spherical objects.

Slogan

Classification of (fat-)sphericals in C ↔ structure of Auteq C

(Fat-)spherical objects are also related to

• space of Bridgeland stability conditions, and

• Lagrangian submfd. of the A-side under the mirror symmetry.

Theorem (H-Wemyss)

The realisation functor Db(Acon)→ C of the standard heart

(1) is NEVER an equivalence, but

(2) gives a bijection between brick complexes in Db(Acon) and
bricks (= fat-spherical objects) in C, and

(3) gives a bijection between t-structures.

This gives more context to the main theorem!!
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Contraction algebras have more and more aspects.

(e) Donovan-Wemyss conjecture (proved by Muro-Jasso-Keller)

Theorem

Let

{
f1 : X1 → SpecR1

f2 : X2 → SpecR2

be two 3d flopping conts.

Assume that X1 and X2 are regular. Then

Db(Acon,f1) ≃ Db(Acon,f2) iff R1 ≃ R2.

D-equiv. class of contraction algebras classify smooth 3d flops.

(f) Brown-Wemyss conjecture (on f.d. Jacobi algebra, still open)
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Proof of Main Theorem

Recall that the main theorem is

Main Theorem (H-Wemyss)

For x ∈ Db(A), the following hold.

(1) Ext<0(x, x) = 0 iff ∃H length ♡ on Db(A) s.t. x ∈ H.

(2) x is semibrick cpx. iff ∃x′ s.t. x⊕ x′ ∈ smcA.

(2) follows from (1). The proof of this is routine.

• By (1), ∃H length ♡ on Db(A) s.t. x ∈ H.

• KY-bij gives P ∈ siltA s.t. H ≃ B := EndA(P ).

• Silting-discreteness of A shows B is τ -tilting finite.

• Using Asai’s result gives a 2-term smc x⊕ x′ ∈ smcB.

• real : Db(B)→ Db(A) sends the 2-smc x⊕ x′ ∈ smcB
to an smc x⊕ real(x′) ∈ smcA.
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Proof of (1).

• By KY-bij, S ∈ smcA associates AS ⊂ Db(A) (bdd ♡).

Notation

For x ∈ Db(A), S ∈ smcA, and a ≤ b ∈ Z,
x ∈ [a, b]S :⇔ Hi

AS
(x) = 0 for all i < a and b < i

• Let x ∈ Db(A) be a complex with Ext<0(x, x) = 0.
Assume for some S ∈ smcA, x ∈ [a, b]S .

• Put

∆S(x) := {T ∈ smcA | S ≥ T ≥ S[1], x ∈ [a, b]T}.
• Since A is silting discrete, ∆S(x) is FINITE POSET.

Key Lemma

If S′ ∈ ∆S(x) is maximal, then x ∈ [a + 1, b]S′ .

Repeating this shows
∃S′′ ∈ smcA s.t. x ∈ [b, b]S′′⇔ x ∈ AS′′[−b].
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(More) geometric counterpart

Important set: {T | S ≥ T ≥ S[1]} = 2-term smcs w.r.t. S.

(A part of) HomMMP by Wemyss

One can visualise the set

2-smcAcon ≃ {P ∈ siltAcon | Acon ≥ P ≥ Acon[1]}
using Dynkin hyperplane arrangement.

3-fold flops associate marked Dynkin data: general g ∈ R gives

X Y Z

SpecR SpecR/g,

f □

• R/g is Kleinian singularity (= surface ADE singularity).

• Y is a partial crepant resolution of R/g.

• Z is the minimal resolution of R/g.
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∆ = J ∩ Jc marked Dynkin data

• h =
⊕

i∈∆ Rαi ⊃ hJ :=
⊕

i∈J Rαi

• πJ : h→ hJ natural projection.
• Define the set of positive restricted roots by

{β = πJ(α) | α ∈ h positive root, πJ(α) ̸= 0}
• The associated hyperplane arrangement is

{Hβ = β⊥ ⊂ ΘJ := h∗
J}β.

• In the previous example, positive restricted roots are

{(1, 0), (0, 1), (1, 1), (2, 1), (2, 2)}
and the hyperplane arrangement is

For g-vector aspect of this, see Iyama-Wemyss tits cone paper.
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3-fold flopping contraction f : X → SpecR associates

• the contraction algebra Acon.

• the hyperplane arrangement (ΘJ , {Hβ}).

HomMMP by Wemyss

There exist natural bijections among

• 2-siltAcon = 2-smcAcon.

• Chambers of (ΘJ , {Hβ}).
• (Iterated) flops of X

Flop of X = another 3d flopping contr. g : X′ → SpecR

• obtained by modifying some P1s in f−1(0)red.

• By Bridgeland-Chen, ∃ derived equivalence

Db(cohX) ≃ Db(cohX′)

• Repeating flops give many other models (and all are D-equiv)
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Let f : X → SpecR be a 3d flopping contraction.

Theorem (August)

For any ♡ of a bdd t-str. A ⊂ Db(Acon,f), there exists another
model g : X′ → SpecR such that

• A ≃ modAcon,g.

• The realisation functor Db(Acon,g)→ Db(Acon,f) of A is
an equiv.

Thus for P ∈ siltAcon,f , there exist g : X′ → SpecR s.t.
End(P ) ≃ Acon,g and

{Q | P ≥ Q ≥ P [1]} bij←→ 2-siltAcon,g

bij←→ Iterated flops of X′

= Iterated flops of X

bij←→ Chambers of (ΘJ , {Hβ}).
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g : X′ → SpecR corresp. to D ⊂ ΘJ \
∪

Hβ.
The partial order on 2-siltAcon,g can be visualised as:
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• By August, for two models

g : X′ → SpecR and h : X′′ → SpecR,

there exists an equivalence

Φg,h : Db(Acon,g)→ Db(Acon,h)

defined by P ∈ 2-siltAcon,g with End(P ) ≃ Acon,h.

• There is a similar equivalence between null categories

Ψg,h : Cg → Ch
where Cf := {x ∈ Db(cohX) | Rf∗(x) = 0} s.t.

• The diagram

Db(Acon,g) Cg

Db(Acon,h) Ch

real

Φg,h Ψg,h

real

commutes

• Ψg,h is a composition of Bridgeland-Chen equivalences.
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Main Theorem (geometric version)

Let f : X → SpecR be a 3d flopping contraction

(1) For x ∈ Db(Acon,f) (resp. Cf ), TFAE
(a) Exti(x, x) = 0 for all i < 0.
(b) There exists another f ′ : X′ → SpecR and an equivalence

Φ: Db(Acon,f)→ Db(Acon,f ′) (resp. Ψ: Cf → Cf ′) s.t.

• Φ(x) (resp. Ψ(x)) ∈ modAcon,f′ [n] for some n ∈ Z.
• Φ (resp. Ψ) is a comp. of Φg,h (resp. Ψg,h).

(2) If x ∈ Db(Acon,f) (resp. Cf ) satisfies
Hom(x, x) = C and Exti(x, x) = 0 for all i < 0,

there exists another f ′ : X′ → SpecR and an equivalence

Φ: Db(Acon,f)→ Db(Acon,f ′) (resp. Ψ: Cf → Cf ′) s.t.

• Φ(x) (resp. Ψ(x)) is a (shifted) simple module.
• Φ (resp. Ψ) is a comp. of Φg,h (resp. Ψg,h).
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Further remarks

• (2) of the theorem also extends to semibricks.

• Compare the geometric theorem with non-geometric one.

Main Theorem (non-geometric version)

For x ∈ Db(A), the following hold.

(1) Ext<0(x, x) = 0 iff ∃H length ♡ on Db(A) s.t. x ∈ H.

(2) x is semibrick cpx. iff ∃x′ s.t. x⊕ x′ ∈ smcA.

• A similar technique also classifies all bdd. t-strs. on C.
• As corollaries, theorems yield

• Stab C is connected.
• AuteqFM C ≃ the associated pure braid group.

• Geometric theorem also holds for the null category C of
partial crepant resolutions of 2d ADE singularities.
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• 2d contraction algebras are more complicated than 3d.
• They are (contracted) preprojective algebras, and silting

discreteness is still open in many cases.
• There are less equivalences than 3d cases, and no

commutative diagram for Φg,h and Ψg,h.

• Once the homological mirror for the null category C is proved,
main theorem gives a lot of dynamical and topological
corollaries in symplectic geometry.
• HMS for Rk := C[[u, v, x, y]]/(uv − xy(xk + y)) is known

(Smith-Wemyss), for example.
• Bricks corresponds to Lagrangian submfds. via the realisation

functor and HMS.
• In Smith-Wemyss, techniques in silting-discrete world

(implicitly but actually) contribute to prove results in
symplectic geometry!!

Corollary (Smith-Wemyss)

Let L ⊂Wp be a closed Lagrangian submfd. with vanishing Maslov
class. Then ±[L] ∈ {(1, 0), (0, 1), (1,±1)} ∈ H3(Wp;Z) ≃ Z⊕Z.


