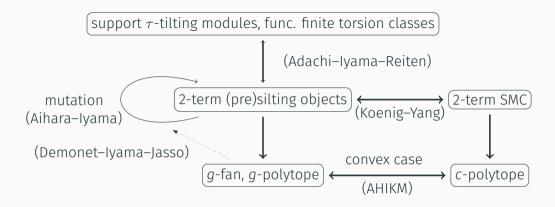
g-fans of rank 2

Toshitaka Aoki, Akihiro Higashitani, Osamu Iyama, Ryoichi Kase, and Yuya Mizuno



Aim

Give a classification of complete *g*-fans of rank 2.

In this talk, A is a finite dimensional algebra over a field k.

2-term (pre)silting objects

Definition (2-term (pre)silting objects)

T: 2-term object in K^b(proj *A*), i.e., $T \simeq [\cdots \to 0 \to \stackrel{-1st}{P'} \to \stackrel{0th}{P} \to 0 \to \cdots].$

- (1) T is 2-term presilting if $Hom_{K^{b}(projA)}(T, T[1]) = 0$.
- (2) T is 2-term silting if T is presilting and |T| = |A|.

```
2-psiltA := {basic 2-term presilting object of A}(/\simeq)
2-siltA := {basic 2-term silting object of A}(/\simeq)
```

Simplicial complex $\Delta(A)$

2-psiltA gives rise to a simplicial complex $\Delta(A)$.

Fix a complete set of indecomposable projective modules P_1, \ldots, P_n .

 $K_0(\operatorname{proj} A) := \operatorname{Grothendieck} \operatorname{group} \operatorname{of} K^{\mathrm{b}}(\operatorname{proj} A)$ $K_0(\operatorname{proj} A)_{\mathbb{R}} := K_0(\operatorname{proj} A) \otimes_{\mathbb{Z}} \mathbb{R} : \operatorname{Real} \operatorname{Grothendieck} \operatorname{group} \operatorname{of} K^{\mathrm{b}}(\operatorname{proj} A)$

 $([P_1], \ldots, [P_n])$: \mathbb{Z} -basis of $K_0(\operatorname{proj} A) \rightsquigarrow K_0(\operatorname{proj} A) = \mathbb{Z}^n$, $K_0(\operatorname{proj} A)_{\mathbb{R}} = \mathbb{R}^n$

g-vector

Definition (g-vectors)

We say that $[T] \in K_0(\operatorname{proj} A) = \mathbb{Z}^n$ is the *g*-vector of $T \in K^{\mathrm{b}}(\operatorname{proj} A)$.

If $T = \left[\bigoplus_{i} P_{i}^{\oplus b_{i}} \to \bigoplus_{i} P_{i}^{\oplus a_{i}}\right]$, then we have $[T] = [a_{1} - b_{1} a_{2} - b_{2} \cdots a_{n} - b_{n}]$

Theorem (Adachi-Iyama-Reiten)

If [T] = [T'] holds for 2-term presilting objects T and T', then $T \simeq T'$.

Theorem (Aihara-Iyama)

Let $T = T_1 \oplus \cdots \oplus T_n \in 2$ -siltA. Then $\{[T_1], \ldots, [T_n]\}$ forms a \mathbb{Z} -basis of \mathbb{Z}^n .

Let $A = k[1 \xrightarrow{a} 2]$ be a path algebra of type A₂. The complete set of indecomposable 2-term presilting objects of A is given by

$$P_1 = e_1 A, P_2 = e_2 A, P_a := [P_2 \xrightarrow{a \cdot -} P_1], P_1[1], P_2[1].$$

The corresponding *g*-vectors are

$$[1 0], [0 1], [1 - 1], [-1 0], [0 - 1]$$

Furthermore, we have

 $2\text{-silt} A = \{ P_1 \oplus P_2, \ P_1 \oplus P_a, \ P_a \oplus P_2[1], \ P_2 \oplus P_1[1], \ P_1[1] \oplus P_2[1] \}.$

Fans in \mathbb{R}^n

Definition (Cones in \mathbb{R}^n **)**

For $V \subseteq \mathbb{Q}^n$, we define cone $V := \sum_{\mathbf{x} \in V} \mathbb{R}_{\geq 0} \mathbf{x} \subseteq \mathbb{R}^n$. We say that $\sigma = \text{cone } V$ is a strongly convex rational polyhedral cone (cone for short) in \mathbb{R}^n if $\sigma \cap (-\sigma) = \{\mathbf{0}\}$ holds.

Definition (Fans in \mathbb{R}^n)

A fan Σ in \mathbb{R}^n is a collection of cones in \mathbb{R}^n satisfying the following conditions:

- Each face of a cone in Σ is also contained in $\Sigma.$
- $\cdot\,$ The intersection of two cones in Σ is a face of each of those two cones.
- Σ is complete if $|\Sigma| := \bigcup_{\sigma \in \Sigma} \sigma = \mathbb{R}^n$ holds.
- Σ is nonsingular if each maximal cone in Σ is generated by a \mathbb{Z} -basis of \mathbb{Z}^n .

g-fans

Associated with $U = X_1 \oplus \cdots \oplus X_d \in 2$ -psiltA, we define a cone C(U) in \mathbb{R}^n as follows:

 $C(U) := \operatorname{cone}\{[X_1], \ldots, [X_d]\}$

Then we set

$$\Sigma(A) := \{ C(U) \mid U \in 2\text{-psilt}A \}.$$

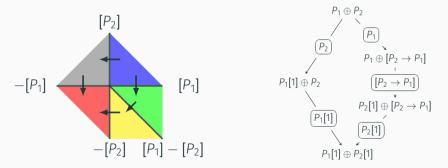
Definition (*g***-fans of rank** *n***, Demonet–Iyama–Jasso)** $\Sigma(A)$ is a nonsingular fan in \mathbb{R}^n , which we call a *g*-fan.

Σ(Α)	$\Delta(A)$
$\Sigma(A)_d := \{ \text{Cones of dimension } d \text{ in } \Sigma(A) \}$	$2-psilt^d A := \{ U \in 2-psilt A \mid U = d \}$
Faces of C(U)	Direct summands of U
The intersection of $C(U)$ and $C(U')$	The maximal common direct summands of U and U'

g-fans

Σ(Α)	$\Delta(A)$
$\Sigma(A)_d := \{ Cones of dimension d in \Sigma(A) \}$	$2\text{-psilt}^{d}A := \{U \in 2\text{-psilt}A \mid U = d\}$
Faces of $C(U)$	Direct summands of U
The intersection of $C(U)$ and $C(U')$	The maximal common direct summands of U and U'

Let $A = k[1 \xrightarrow{a} 2]$. Then we have the following pictures:



Problem

Characterize fans of rank *n* which can be realized as g-fans of some finite dimensional algebras.

Theorem (Aoki-Higashitani-Iyama-K-Mizuno)

Complete g-fans of rank 2 are precisely complete sign-coherent fans of rank 2.

In the rest of this talk, we explain the above theorem.

Definition (Sign-coherent fans of rank 2)

A nonsingular fan Σ in \mathbb{R}^2 is a sign-coherent fan of rank 2 if the following conditions holds:

·
$$\sigma_+ := \mathbb{R}_{\geq 0}$$
[1 0] + $\mathbb{R}_{\geq 0}$ [0 1] $\in \Sigma$, $\sigma_- := -\sigma_+ \in \Sigma$.

• Each cone of dimension 1 is a face of precisely two cones of dimension 2.

Proposition (Adachi-Iyama-Reiten, AHIKM)

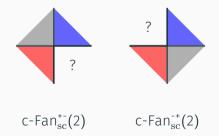
 Σ (A) is a sign-coherent fan equipped with $\sigma_+ = C$ (A) and $\sigma_- = C$ (A[1])

Inductive construction of sign-coherent fans of rank 2

Let c-Fan_{sc}(2) the set of complete sign-coherent fans of rank 2. All fans in c-Fan_{sc}(2) can be obtained by *subdivision method* and *gluing method*.

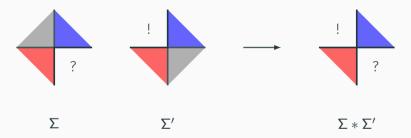
To explain these methods, we define $c-Fan_{sc}^{+-}(2)$, $c-Fan_{sc}^{-+}(2)$ as follows:

$$\begin{array}{lll} \text{c-Fan}_{\mathrm{sc}}^{\text{+-}}(2) & := & \{\Sigma \in \text{c-Fan}_{\mathrm{sc}}(2) \mid \text{cone}\{[-1,0],[0,1]\} \in \Sigma\} \\ \text{c-Fan}_{\mathrm{sc}}^{\text{-+}}(2) & := & \{\Sigma \in \text{c-Fan}_{\mathrm{sc}}(2) \mid \text{cone}\{[1,0],[0,-1]\} \in \Sigma\} \end{array}$$



Gluing method

Let $\Sigma \in c\text{-Fan}_{sc}^{\text{+-}}(2)$ and $\Sigma' \in c\text{-Fan}_{sc}^{\text{++}}(2)$. We define a new fan $\Sigma * \Sigma'$ as follows:

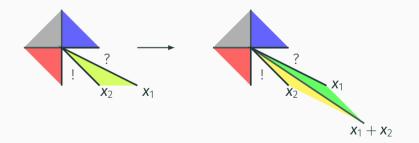


Construction of c-Fan_{sc}(2) via gluing method

$$c-Fan_{sc}(2) = c-Fan_{sc}^{+-}(2) * c-Fan_{sc}^{-+}(2)$$

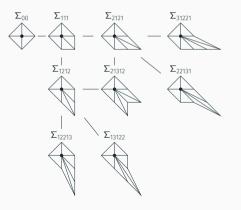
Subdivision method

From the \mathbb{Z} -basis $\{x_1, x_2\}$ of \mathbb{Z}^2 , two \mathbb{Z} -bases $\{x_1, x_1 + x_2\}$ and $\{x_1 + x_2, x_2\}$ can be formed. This construction allows a cone σ to be divided into two cones. In particular, a new fan $D_{\sigma}(\Sigma)$ can be constructed from the nonsingular fan Σ and a cone σ in Σ .



Subdivision method

Construction of c-Fan⁺⁻_{sc}(2)/c-Fan⁻⁺_{sc}(2) via subdivision method Any fan in c-Fan⁺⁻_{sc}(2)/c-Fan⁻⁺_{sc}(2) can be obtained by repeatedly subdividing the following fan \rightarrow in the fourth/second quadrant.



Theorem (AHIKM)

Complete g-fans of rank 2 are precisely complete sign-coherent fans of rank 2.

For the proof, we realized gluing and subdivision as algebraic operations. (For simplicity in the following description, we assume k is an algebraically closed field.)

Theorem (Gluing theorem and subdivision theorem, AHIKM)

- (1) Let A, B be k-algebras such that $\Sigma(A) \in c-\operatorname{Fan}_{\mathrm{sc}}^{+-}(2)$ and $\Sigma(B) \in c-\operatorname{Fan}_{\mathrm{sc}}^{++}(2)$. Then we can construct an algebra A * B satisfying $\Sigma(A * B) = \Sigma(A) * \Sigma(B)$.
- (2) Let A be an k-algebra such that $\Sigma(A) \in c-\operatorname{Fan}_{\mathrm{sc}}^{+-}(2)$ and σ be a maximal cone in $\mathbb{R}_{\geq 0} [1 \ 0] + \mathbb{R}_{\geq 0} [0 \ -1]$. Then we can construct an algebra $D_{\sigma}(A)$ satisfying $\Sigma(D_{\sigma}(A)) = D_{\sigma}(\Sigma(A))$.

Construction of *A* * *B*

$$A = \begin{bmatrix} A_1 & X \\ 0 & A_2 \end{bmatrix}, \ B = \begin{bmatrix} B_1 & 0 \\ Y & B_2 \end{bmatrix}$$

- A_i , B_i : local algebras $\rightsquigarrow A_i/J(A_i) = k$, $B_i/J(B_i) = k$.
- $\overline{(\bullet)}$: $A_i, B_i \rightarrow k$: canonical surjections.
- $C_i := A_i \times_k B_i = \{(a, b) \in A \times B \mid \overline{a} = \overline{b}\}$ (local algebra)
- X: A_1 - A_2 bimodule $\rightarrow C_1$ - C_2 bimodule
- Y: B_2 - B_1 bimodule $\rightsquigarrow C_2$ - C_1 bimodule

Then we define A * B as follows:

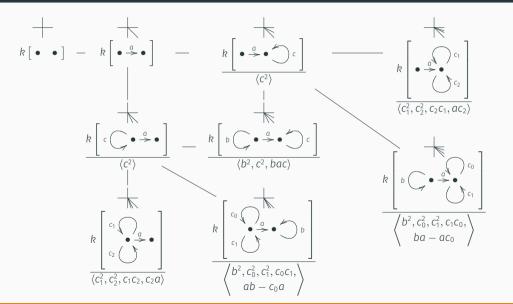
$$A * B = \begin{bmatrix} C_1 & X \\ Y & C_2 \end{bmatrix} \text{ (multiplicatios } X \times Y \to C_1 \text{ and } Y \times X \to C_2 \text{ are 0)}$$

Construction of *A* * *B*

Construction of *A* * *B*

Let $A = k[1 \xrightarrow{a} 2] \cong \begin{bmatrix} k & k \\ 0 & k \end{bmatrix}$ and $B = k[1 \xleftarrow{b} 2] \cong \begin{bmatrix} k & 0 \\ k & k \end{bmatrix}$. Then we have $A * B = k \begin{bmatrix} 1 \xrightarrow{a} 2 \end{bmatrix} / \langle ab, ba \rangle$ $\sum_{(A)} \sum_{(B)} \sum_{(B)} \sum_{(A * B) = \sum(A) * \sum(B)} \sum_{(A * B)$

Subdivision theorem (examples)



18/19

- Is there a way to directly construct an algebra from a given complete sign-coherent fan of rank 2?
- What happens if the rank is 3 or higher?