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Notation

• Λ : a finite dimensional algebra over a field K

• modΛ : the category of (finitely generated right) Λ-modules

• projΛ : the category of projective Λ-modules
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1. Motivation

Definition (Enochs-Jenda 1995)

MΛ : Gorenstein-projective (GP)
def⇐⇒ ∃ an acyclic complex of projective Λ-modules

P • : · · ·→ P−1 d−1

−−→ P 0 d0−→ P 1 d1−→ P 2 → · · ·

s.t. (i) HomΛ(P
•,Λ) is exact; and (ii) M ∼= Ker d0 as Λ-modules

• P • : a complete resolution of M

• GP modules are called modules of Gorenstein dimension zero (Auslander-Bridger 1969),
totally reflexive modules (Avramov-Martsinkovsky 2002), and maximal Cohen-Macaulay
modules (Buchweitz 1989)

• GprojΛ : the category of GP Λ-modules =⇒ projΛ ⊆ GprojΛ ⊆ modΛ

• GprojΛ = modΛ ⇐⇒ Λ : self-injective

Definition

Λ : CM-free
def⇐⇒ projΛ = GprojΛ

• gl.dimΛ <∞ =⇒ Λ : CM-free
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• From now on, assume Λ is monomial (i.e. Λ = KQ/I, where I is generated by paths)

=⇒ Λ is CM-finite (i.e. #indGprojΛ <∞) since any indecomposable non-projective
GP Λ-module is of the form pΛ for some non-zero non-trivial path p

Definition (Chen-Shen-Zhou 2018)

• A pair (p, q) of non-zero paths in Λ is perfect if the following are satisfied:

1 p and q are both non-trivial with t(p) = s(q) and satisfy pq = 0 in Λ

2 If pq′ = 0 for a non-zero path q′ with t(p) = s(q′), then q′ = qq′′ for some path q′′

3 If p′q = 0 for a non-zero path p′ with t(p′) = s(q), then p′ = p′′p for some path p′′

• (p1, . . . , pn, pn+1 = p1) : a perfect path sequence if (pi, pi+1) is perfect for 1 ≤ i ≤ n

• A path in a perfect path sequence is called a perfect path

• PΛ : the set of perfect paths

Theorem (CSZ 2018)

PΛ
1:1←−→ { indecomposable non-projective GP Λ-modules }/ ∼=

p +−→ pΛ

• PΛ is empty ⇐⇒ Λ is CM-free

Remark Perfect path sequences give rise to complete resolutions
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Definition (Chen-Shen-Zhou 2018)

• A pair (p, q) of non-zero paths in Λ is perfect if the following are satisfied:

1 p and q are both non-trivial with t(p) = s(q) and satisfy pq = 0 in Λ

2 If pq′ = 0 for a non-zero path q′ with t(p) = s(q′), then q′ = qq′′ for some path q′′

3 If p′q = 0 for a non-zero path p′ with t(p′) = s(q), then p′ = p′′p for some path p′′

• (p1, . . . , pn, pn+1 = p1) : a perfect path sequence if (pi, pi+1) is perfect for 1 ≤ i ≤ n

• A path in a perfect path sequence is called a perfect path

Example

Consider the monomial algebra Λ = K
(
1 x
!!

)/
(x5)

• (x, x4, x), (x2, x3, x2) : the minimal perfect path sequences

• PΛ = {x, x2, x3, x4}, hence indGprojΛ = {xΛ, x2Λ, x3Λ, x4Λ} ∪ ind projΛ

• For example, (x, x4, x) induces the exact sequence

0 xΛ Λ

x4Λ

Λ xΛ 0
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• The stable category GprojΛ = GprojΛ/ projΛ of GprojΛ carries a structure of a
triangulated category

Theorem (CSZ 2018)

TFAE
1 GprojΛ is a semisimple triangulated category

2 ∃ no overlap in Λ

3 GprojΛ ∼=
∏n

i=1 (mod kni ,σ∗), where the automorphism σ∗ : mod kni → mod kni

is induced by σ : kni → kni ∈ AutΛ given by σ(λ1,λ2, . . . ,λni) = (λ2, . . . ,λni ,λ1)

Remark ∃ no overlap in Λ ⇐⇒ there exists no non-trivial morphism in GprojΛ

• Ringel (2013) and Lu-Zhu (2021) determined GprojΛ for Nakayama algebras and
1-Iwanaga-Gorenstein monomial algebras, respectively

Recall Λ : (d-)Iwanaga-Gorenstein
def⇐⇒ idΛΛ, idΛΛ ≤ d <∞

• In any cases, GprojΛ ∼= modΓ for some self-injective Nakayama algebra Γ

Our aim is

to describe GprojΛ for more general monomial algebras Λ
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Remark Many authors such as Chen-Geng-Lu (2015), Lu (2016, 2019), Enomoto (2018)
and Minamoto-Yamaura (2020) describe GprojΛ for specific classes of non-monomial
(Iwanaga-Gorenstein) algebras Λ

Theorem (Buchweitz 1986)

If Λ is an Iwanaga-Gorenstein algebra, then GprojΛ is triangle equivalent to the

singularity category Dsg(modΛ) := Db(modΛ)/Kb(projΛ)
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2. Stable categories of graded Gorenstien-projective modules

Definition

The underlying cycle cp associated with p ∈ PΛ is the shortest cycle c s.t. p1 · · · pn = cl

for some l > 0, where (p = p1, . . . , pn, pn+1 = p1) is a perfect path sequence

• C(Λ) : the set of equivalence classes (w.r.t. cyclic permutation) of underlying cycles

Definition

For p and q ∈ PΛ, we write p ≼ q if q = pr for some path r

• (PΛ,≼) is a poset

• The Hasse quiver H(PΛ,≼) is a disjoint union of linear quivers

Definition

p ∈ PΛ : co-elementary
def⇐⇒ p is a sink in H(PΛ,≼)

• Eco
Λ : the set of co-elementary paths
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Example

Let Λ = KQ/I be the monomial algebra given by

1
a1 "" 2

b2 ""

a2
##

4 a4!!

3
a3

$$ a1231 = a23123 = a4
4 = 0

• The following are the minimal perfect path sequences

(a1, a231, a23, a123, a1), (a4, a3
4, a4), (a2

4, a2
4)

• PΛ = {a1, a231, a23, a123, a4, a
2
4, a

3
4}

• C(Λ) = {a123, a4}, where a123 = a231

• H(PΛ,≼) : a123 a1 a231 a23 a3
4 a2

4
a4

• Eco
Λ = {a1, a23, a4}

Proposition-Definition

For c ∈ C(Λ), ∃! r1, . . . , rn ∈ Eco
Λ s.t. c = r1 · · · rn. We denote |c| := n.
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• Consider Λ = KQ/I as a positively graded algebra by defining deg a = 1 for a ∈ Q1

• modZΛ : the category of graded Λ-modules

Recall For M,N ∈ modZΛ, HomZ
Λ(M,N) := {f ∈ HomΛ(M,N) | f(Mi) ⊆ Ni for i}

• projZΛ : the category of graded projective Λ-modules

• GprojZΛ : the category of graded GP Λ-modules

• GprojZΛ = GprojZΛ/projZΛ : the stable category of GprojZΛ

• Lu-Zhu (2021) observed that indGprojZΛ = {pΛ(i) | p ∈ PΛ, i ∈ Z}

Theorem (LZ 2021)

If Λ is Iwanaga-Gorenstein, then GprojZΛ ∼= Db(modH) for some hereditary algebra H
of finite representation type

Remark They use the triangle equivalence

GprojZΛ ∼= Dsg(modZΛ) := Db(modZΛ)/Kb(projZΛ)
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• For c = r1 · · · rn ∈ C(Λ) with ri ∈ Eco
Λ , we define

PΛ(c) := {p ∈ PΛ | r1 ≼ p} and Tc :=
⊕

p∈PΛ(c)

pΛ

• Define T :=
⊕

c∈C(Λ)

⊕
0≤i<l(c) Tc(i) ∈ GprojZΛ

Example

Let Λ = KQ/I be defined as earlier:

1
a1 "" 2

b2 ""

a2
##

4 a4!!

3
a3

$$ a1231 = a23123 = a4
4 = 0

• H(PΛ,≼) : a123 a1 a231 a23 a3
4 a2

4
a4

• C(Λ) = {a123, a4}

=⇒ T = a1Λ⊕ a123Λ⊕ a1Λ(1)⊕ a123Λ(1)⊕ a1Λ(2)⊕ a123Λ(2)⊕ a4Λ⊕ a2
4Λ⊕ a3

4Λ

• C(Λ) = {a231, a4}

=⇒ T = a23Λ⊕ a231Λ⊕ a23Λ(1)⊕ a231Λ(1)⊕ a23Λ(2)⊕ a231Λ(2)⊕ a4Λ⊕ a2
4Λ⊕ a3

4Λ
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Example (continued)

• The Auslander-Reiten quiver of GprojZΛ is given as follows:

a123Λ(−3)

a1Λ(−3)

a231Λ(−1)

a23Λ(−1)

a123Λ

a1Λ

a231Λ(2)

a23Λ(2)

a123Λ(−2)

a1Λ(−2)

a231Λ

a23Λ

a123Λ(1)

a1Λ(1)

a231Λ(3)

a23Λ(3)

a123Λ(−1)

a1Λ(−1)

a231Λ(1)

a23Λ(1)

a123Λ(2)

a1Λ(2)

a231Λ(4)

a23Λ(4)

a4Λ(−2)

a3
4Λ(−1)

a2
4Λ(−1)

a4Λ(−1)

a3
4Λ

a2
4Λ

a4Λ

a3
4Λ(1)

a2
4Λ(1)

a4Λ(1)

a3
4Λ(2)
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Example (continued)

• The Auslander-Reiten quiver of GprojZΛ is given as follows:

a123Λ(−3)

a1Λ(−3)

a231Λ(−1)

a23Λ(−1)

a123Λ

a1Λ

a231Λ(2)

a23Λ(2)

a123Λ(−2)

a1Λ(−2)

a231Λ

a23Λ

a123Λ(1)

a1Λ(1)

a231Λ(3)

a23Λ(3)

a123Λ(−1)

a1Λ(−1)

a231Λ(1)

a23Λ(1)

a123Λ(2)

a1Λ(2)

a231Λ(4)

a23Λ(4)

a4Λ(−2)

a3
4Λ(−1)

a2
4Λ(−1)

a4Λ(−1)

a3
4Λ

a2
4Λ

a4Λ

a3
4Λ(1)

a2
4Λ(1)

a4Λ(1)

a3
4Λ(2)
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Theorem (Honma-U 2024)

1 T =
⊕

c∈C(Λ)

⊕
0≤i<l(c) Tc(i) is a tilting object of GprojZΛ, namely,

(i) HomZ
Λ(T,Σ

iT ) = 0 for i ̸= 0; (ii) thickT = GprojZΛ

2 EndZ
ΛT ∼=

∏
c∈C(Λ)(KAc)

(l(c)), where Ac : 1→ 2→ · · ·→ |PΛ(c)|

3 GprojZΛ ∼=
∏

c∈C(Λ) D
b(modKAc)

(l(c)) as triangulated categories

Remark The theorem explicitly describes the graded singularity category Dsg(modZΛ) of
Λ when Λ is Iwanaga-Gorenstein and in particular improves a result of Lu-Zhu (2021) for
Iwanaga-Gorenstein monomial algebras

Example

Let Λ = KQ/I be defined as earlier. Fix C(Λ) = {a123, a4}

• GprojZΛ ∼= Db(modKAa123)
(3)×Db(modKAa4), where

Aa123 : 1→ 2, Aa4 : 1→ 2→ 3

S. Usui and T. Honma The stable category of GP modules September 17, 2024 13 / 16



3. Stable categories of Gorenstien-projective modules

Proposition (LZ 2021)

The forgetful functor F : modZΛ→ modΛ induces a G-covering

F̃G : GprojZΛ→ GprojΛ

in the sense of Asashiba (2011), where G is the cyclic group generated by the
automorphism (1) : GprojZΛ→ GprojZΛ

• Thanks to Asashiba (2011), we obtain an equivalence H : GprojZΛ/(1)
∼−→ GprojΛ

that makes the following diagram commute

GprojZΛ
F̃G !!

P
""

GprojΛ

GprojZΛ/(1)
H

∼ ##

• It follows from Section 2 that

GprojZΛ =
∏

c∈C(Λ)

∏
0≤i<l(c) thickTc(i) with thickTc(i) ∼= Db(modKAc)

• P (thickTc(i)) = P ((thickTc)(i)) = P (thickTc) for c ∈ C(Λ) and i ∈ Z

• GprojΛ ∼= GprojZΛ/(1) =
∏

c∈C(Λ) P (thickTc), where P (thickTc) = thickP (Tc)
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Lemma

1 thickTc(i) = thickTc(j) in GprojZΛ ⇐⇒ i ≡ j (mod l(c)) for c ∈ C(Λ) and
i, j ∈ Z

2 For c ∈ C(Λ), the restriction of P : GprojZΛ→ GprojZΛ/(1) to thickTc induces a
Gc-covering

Pc : thickTc → P (thickTc)

where Gc is the cyclic group generated by the induced automorphism
(l(c)) : thickTc → thickTc

3 For c ∈ C(Λ), P (thickTc) ∼= thickTc/(l(c)) ∼= Db(modKAc)/τ
|c|, where τ is the

Auslander-Reiten translation for Db(modKAc)

Threoem (Honma-U 2024)

GprojΛ ∼=
∏

c∈C(Λ)

P (thickTc)

∼=
∏

c∈C(Λ)

Db(modKAc)/τ
|c|

∼=
∏

c∈C(Λ)

modK

(
1 !! 2 !! · · · !! |c|$$

)/
R|PΛ(c)|+1
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Remark The theorem explicitly describes the singularity categories Dsg(modΛ) of
Iwanaga-Gorenstein monomial algebras Λ. Moreover, it recovers results of Ringel (2013),
Chen-Shen-Zhou (2018), and Lu-Zhu (2021).

Example

Let Λ = KQ/I be defined as earlier:

1
a1 !! 2

b2 !!

a2
%%

4 a4&&

3
a3

'' a1231 = a23123 = a4
4 = 0

• Fix C(Λ) = {a123, a4}. We know |a123| = 2, |a4| = 1, |PΛ(a123)| = 2, |PΛ(a4)| = 3

• GprojΛ ∼= modK
(
1

!!
2((

)/
R3 ×modK[x]/(x4)

• The Auslander-Reiten quiver of GprojΛ is given as follows:

a123Λ

a1Λ

a231Λ

a23Λ

a123Λ

a1Λ

a3
4Λ

a2
4Λ

a4Λ

a3
4Λ

a2
4Λ

a4Λ
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