FROBENIUS FULL MATRIX ALGEBRAS AND GORENSTEIN TILED ORDERS

Hisaaki Fujita and Yosuke Sakai

Let D be a discrete valuation ring with a unique maximal ideal πD, and let Λ be a D order. It is standard to reduce homological properties of Λ to those of the factor algebras $\Lambda / \pi \Lambda$ and such factor algebras are deserving of further study. (See [2].)

Let n be an integer with $n \geq 2$. In [1], we introduced an $n \times n \mathbb{A}$-full matrix algebra over a field K, whose multiplication is determined by a structure system \mathbb{A}, that is, an n-tuple of $n \times n$ matrices with certain properties. \mathbb{A}-full matrix algebras are associative, basic, connected K-algebras. A prototype of \mathbb{A}-full matrix algebras is the class of factor algebras $\Lambda / \pi \Lambda$ of tiled D-orders Λ. Studying representation matrices of certain modules over \mathbb{A}-full matrix algebras, Frobenius \mathbb{A}-full matrix algebras are characterized by the shape of their structure systems \mathbb{A}. For a Gorenstein tiled D-order Λ, the factor algebra $\Lambda / \pi \Lambda$ is a Frobenius \mathbb{A}-full matrix algebra. In this paper we study the converse of this fact. Our main result is the following.

Theorem 1. (1) For $2 \leq n \leq 7$, all Frobenius $n \times n \mathbb{A}$-full matrix algebras are isomorphic to $\Lambda / \pi \Lambda$ for some Gorenstein tiled D-orders Λ. Moreover a list of them (up to isomorphism) is obtained.
(2) For each $n \geq 8$, there is a Frobenius $n \times n \mathbb{A}$-full matrix algebra having no corresponding Gorenstein tiled D-orders.

1. A-Full matrix algebras

We begin by recalling \mathbb{A}-full matrix algebras. Let K be a field and $n \geq 2$ an integer. Let $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ be an n-tuple of $n \times n$ matrices $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(\bar{K})(1 \leq k \leq n)$ satisfying the following three conditions.
(A1) $a_{i j}^{(k)} a_{i l}^{(j)}=a_{i l}^{(k)} a_{k l}^{(j)}$ for all $i, j, k, l \in\{1, \ldots, n\}$,
(A2) $a_{k j}^{(k)}=a_{i k}^{(k)}=1$ for all $i, j, k \in\{1, \ldots, n\}$, and
(A3) $a_{i i}^{(k)}=0$ for all $i, k \in\{1, \ldots, n\}$ such that $i \neq k$.
Let $A=\bigoplus_{1 \leq i, j \leq n} K u_{i j}$ be a K-vector space with basis $\left\{u_{i j} \mid 1 \leq i, j \leq n\right\}$. Then we define multiplication of A by using \mathbb{A}, that is,

$$
u_{i k} u_{l j}:= \begin{cases}a_{i j}^{(k)} u_{i j} & \text { if } k=l \\ 0 & \text { otherwise. }\end{cases}
$$

Then $u_{11}, \ldots, u_{n n}$ are orthogonal primitive idempotents such that $u_{11}+\cdots+u_{n n}=1_{A}$ an identity of A and $u_{i i} A u_{j j} \cong K$. Hence A is an associative, basic, connected K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.

We call A an $n \times n \mathbb{A}$-full matrix algebra with a structure system \mathbb{A}. We note that $\operatorname{gl} \cdot \operatorname{dim} A=\infty$, because every entry of the Cartan matrix of A is 1 .

In what follows, we assume that $a_{i j}^{(k)}=0$ or 1 for all $1 \leq i, k, j \leq n$.

2. Tiled orders

Let D be a discrete valuation ring with a unique maximal ideal πD and $n \geq 2$ an integer. Let $\left\{\lambda_{i j} \mid 1 \leq i, j \leq n\right\}$ be a set of integers satisfying

$$
\lambda_{i j} \geq 0, \quad \lambda_{i i}=0, \quad \lambda_{i k}+\lambda_{k j} \geq \lambda_{i j}, \quad \text { and } \quad \lambda_{i j}+\lambda_{j i}>0 \quad(\text { if } i \neq j)
$$

for all $1 \leq i, j, k \leq n$. Then $\Lambda=\left(\pi^{\lambda_{i j}} D\right)$ is a subring of $\mathbb{M}_{n}(D)$, which we call an $n \times n$ tiled D-order.

Example 2. Let $\Lambda=\left(\pi^{\lambda_{i j}} D\right)$ be an $n \times n$ tiled D-order. Put $A:=\Lambda / \pi \Lambda, K:=D / \pi D$ and $u_{i j}:=\pi^{\lambda_{i j}} e_{i j}+\pi \Lambda \in A$, where $e_{i j}$'s are the matrix units in $\mathbb{M}_{n}(D)$. Define $A_{k}=$ $\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)(1 \leq k \leq n)$ by

$$
a_{i j}^{(k)}:= \begin{cases}1 & \text { if } \lambda_{i k}+\lambda_{k j}=\lambda_{i j} \\ 0 & \text { otherwise }\end{cases}
$$

and set $\mathbb{A}:=\left(A_{1}, \ldots, A_{n}\right)$. Then note that

$$
u_{i k} u_{l j}= \begin{cases}a_{i j}^{(k)} u_{i j} & \text { if } k=l \\ 0 & \text { otherwise }\end{cases}
$$

Hence A is an \mathbb{A}-full matrix algebra.

3. Representation matrices

Let $A=\bigoplus_{1 \leq i, j \leq n} u_{i j} K$ be an $n \times n \mathbb{A}$-full matrix algebra, where $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)(1 \leq k \leq n)$. Let M be a right A-module with dimension type $\underline{\operatorname{dim}} M=(1, \ldots, 1)$. Then M has a K-basis $\left\{v_{i} \mid 1 \leq i \leq n\right\}$ such that $v_{i} u_{i i}=v_{i}$ for all $1 \leq i \leq n$. Hence there exists a matrix $S=\left(s_{i j}\right) \in \mathbb{M}_{n}(K)$ such that $v_{i} u_{i j}=s_{i j} v_{j}$ for all $1 \leq i, j \leq n$. We call S a representation matrix of M.

Proposition 3. For each indecomposable projective right A-module $u_{i i} A, \underline{\operatorname{dim}} u_{i i} A=$ $(1, \ldots, 1)$ and it has a representation matrix $\left(a_{i j}^{(k)}\right)_{k, j}$, that is, an $n \times n$ matrix whose (k, j)-entry is $a_{i j}^{(k)}$. Moreover $u_{i i} A$ is isomorphic to an injective $\operatorname{Hom}_{K}\left(A u_{l l}, K\right)$ if and only if $a_{i l}^{(k)}=1$ for all $1 \leq k \leq n$.

Example 4. Let A be an \mathbb{A}-full matrix algebra where

$$
\mathbb{A}=\left(\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & & 0 & 1 & 1 & 0 & & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 \\
1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & & 1 & 0 & 1 & 1 & & 0 & 0 \\
0 & 1 \\
1 & 1 & 0 & 1 & & 0 & 1 & 0 & 0 & & 1 & 1 & 1 & 1 & & 0 \\
0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & & 1 & 1 & 1 \\
1
\end{array}\right)
$$

Then representation matrices of $u_{11} A, \ldots, u_{44} A$ are given by

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right) .
$$

Hence $u_{11} A, u_{22} A$ and $u_{44} A$ are injective but not $u_{33} A$.

4. Frobenius \mathbb{A}-full matrix algebras

By means of structure systems, we can characterize Frobenius \mathbb{A}-full matrix algebras. Let $A=\bigoplus_{1 \leq i, j \leq n} u_{i j} K$ be an $n \times n \mathbb{A}$-full matrix algebra, where $\mathbb{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $A_{k}=\left(a_{i j}^{(k)}\right) \in \mathbb{M}_{n}(K)(1 \leq k \leq n)$.

Proposition 5. The following are equivalent for an \mathbb{A}-full matrix algebra A.
(1) A is a Frobenius algebra.
(2) There exists a permutation σ of the set $\{1, \ldots, n\}$ such that $\sigma(i) \neq i$ for all $1 \leq i \leq n$ and that $a_{i \sigma(i)}^{(k)}=1$ for all $1 \leq i, k \leq n$.

In this case σ is a Nakayama permutation of A, that is, $\operatorname{soc}\left(u_{i i} A\right) \cong \operatorname{top}\left(u_{\sigma(i) \sigma(i)} A\right)$ for all $1 \leq i \leq n$. Moreover, for all $1 \leq i, k, j \leq n, a_{i j}^{(k)}=a_{k \sigma(i)}^{(j)}$ holds.

Using Proposition 5, we can find structure systems \mathbb{A} which define Frobenius \mathbb{A}-full matrix algebras. Let σ be a permutation of the set $\{1, \ldots, n\}$ such that $\sigma(i) \neq i$ for all $1 \leq i \leq n$. Let T be the set of triples (i, k, j) of integers $1 \leq i, k, j \leq n$. Then we have a bijection

$$
\varphi: T \rightarrow T,(i, k, j) \mapsto(k, j, \sigma(i)) .
$$

Decompose T into φ-orbits $\left\{T_{\alpha}\right\}_{\alpha}$, and put $I:=\cup\left\{T_{\alpha} \mid(i, k, \sigma(i)) \in T_{\alpha}\right\}, Z:=\cup\left\{T_{\alpha} \mid\right.$ $\left.(i, k, i) \in T_{\alpha}, i \neq k\right\}$, and $X:=\cup\left\{T_{\alpha} \mid T_{\alpha} \not \subset I \cup Z\right\}$. Then we have $T=I \cup Z \cup X$ (disjoint).

Proposition 6. (1) Suppose that \mathbb{A} is a Frobenius structure system with Nakayama permutation σ. Then there exists a φ-invariant subset Y of X such that

$$
a_{i j}^{(k)}= \begin{cases}1 & \text { if }(i, k, j) \in I \cup Y \\ 0 & \text { otherwise } .\end{cases}
$$

(2) Let Y be a φ-invariant subset of X, and define $\mathbb{A}(Y)=\left(a_{i j}^{(k)}\right)$ by

$$
a_{i j}^{(k)}:= \begin{cases}1 & \text { if }(i, k, j) \in I \cup Y \\ 0 & \text { otherwise. }\end{cases}
$$

Then $\mathbb{A}(Y)$ is a Frobenius structure system whenever (A1) holds for $\mathbb{A}(Y)$.
(3) For the empty subset \emptyset of $X, \mathbb{A}(\emptyset)$ is a Frobenius structure system.

5. φ-ORBITS FOR A CYCLIC PERMUTATION

In this section, we clarify the φ-orbits of T for a cyclic permutation $\sigma=(12 \cdots n)$. First we count the number of φ-orbits of T.

Proposition 7. (1) For a φ-orbit T_{α} of T, the number $\left|T_{\alpha}\right|$ of elements in T_{α} is $3 n$ or n.
(2) T has a φ-orbit T_{α} with $\left|T_{\alpha}\right|=n$ if and only if n is not divisible by 3. In this case, T has a unique φ-orbit having n elements, which is contained in X.
(3) I has $n-1 \varphi$-orbits.
(4) Z has $n-2 \varphi$-orbits.
(5) If n is divisible by 3 , then X has $(n-1)^{2} / 3 \varphi$-orbits.
(6) If n is not divisible by 3 , then X has $(n-2)(n-4) / 3+1 \varphi$-orbits.

Next we clarify the members of each φ-orbit of T.
Proposition 8. Let T_{α} be a φ-orbit of T and put $T_{\alpha}^{(r)}:=\left\{(i, k, j) \in T_{\alpha} \mid k=r\right\}$ for all $1 \leq r \leq n$.
(1) Suppose that $\left|T_{\alpha}\right|=3 n$. Then $\left|T_{\alpha}^{(r)}\right|=3$ for each $r=1, \ldots, n$. If $(i, 1, j) \in T_{\alpha}$, then

$$
T_{\alpha}^{(1)}=\left\{(i, 1, j),\left(\sigma^{-j+1}(1), 1, \sigma^{-j+2}(i)\right),\left(\sigma^{-i}(j), 1, \sigma^{-i+1}(1)\right)\right\} .
$$

(2) Suppose that $\left|T_{\alpha}\right|=n$. Then $\left|T_{\alpha}^{(r)}\right|=1$ for each $r=1, \ldots, n$. If $n=3 t+1$ then $T_{\alpha}^{(1)}=\{(t+1,1,2 t+2)\}$. If $n=3 t+2$ then $T_{\alpha}^{(1)}=\{(2 t+2,1, t+2)\}$.

6. Minimal Frobenius structure systems

Let A be a Frobenius \mathbb{A}-full matrix algebra with Nakayama permutation σ. Then it follows from Proposition 6 (1) that \mathbb{A} is determined by a φ_{σ}-invariant subset Y of X. We call \mathbb{A} a minimal Forbenius structure system if Y is minimal among φ_{σ}-invariant subset of X which define Frobenius full matrix algebras. For a cyclic permutation, minimal Frobenius structure systems are determined by the following theorem.

Theorem 9. Let n be an integer with $n \geq 4$, and let $\sigma=(12 \cdots n)$ be a cyclic permutation. Then the following statements hold.
(1) Let n be even. Then the φ-invariant subsets defining minimal Frobenius structure systems are just φ-orbits contained in X.
(2) Let n be odd and $n=2 s+1$ for some s. Then the φ-invariant subsets defining minimal Frobenius structure systems are just φ-orbits X_{β} contained in X such that X_{β} does not contain any element of the form $(s+1,1, k)$ for any k with $k \not \equiv s^{2}+1(\bmod n)$.

The following example illustrates Theorem 9.
Example 10. Let $n=7$. Then X has 6φ-orbits $X_{i}(1 \leq i \leq 6)$ such that

$$
\begin{aligned}
& X_{1}^{(1)}=\{(4,1,3),(6,1,3),(6,1,5)\} \\
& X_{2}^{(1)}=\{(2,1,5),(3,1,7),(4,1,6)\} \\
& X_{3}^{(1)}=\{(2,1,6),(4,1,7),(3,1,5)\} \\
& X_{4}^{(1)}=\{(5,1,3),(5,1,4),(6,1,4)\} \\
& X_{5}^{(1)}=\{(2,1,4),(2,1,7),(5,1,7)\} \\
& X_{6}^{(1)}=\{(3,1,6)\}
\end{aligned}
$$

Since $7=2 \cdot 3+1$ and $3^{2}+1 \equiv 3(\bmod 7)$, there are minimal Frobenius structure systems corresponding to $X_{1}, X_{4}, X_{5}, X_{6}$, but not to X_{2}, X_{3}.

7. Gorenstein tiled orders

A D-order Λ is $G o r e n s t e i n ~ i f ~ \operatorname{Hom}_{D}(\Lambda, D)$ is projective as a right (or left) Λ-module. It is known that for an $n \times n$ tiled D-order $\Lambda=\left(\pi^{\lambda_{i j}} D\right), \Lambda$ is Gorenstein if and only if there exists a permutation σ such that $\lambda_{i k}+\lambda_{k \sigma(i)}=\lambda_{i \sigma(i)}$ for all $1 \leq i, k \leq n$. (See [4].) Since $\operatorname{id}_{\Lambda} \Lambda=\operatorname{id}_{\Lambda / \pi \Lambda} \Lambda / \pi \Lambda+1$ and $\operatorname{id}_{\Lambda} \Lambda=$ lattice-inj. $\operatorname{dim}_{\Lambda} \Lambda+1, \Lambda$ is Gorenstein if and only if $\Lambda / \pi \Lambda$ is Frobenius. (We note that this fact follows from Proposition 5 in our context.) Hence some Frobenius \mathbb{A}-full matrix algebras are isomorphic to the factor algebras $\Lambda / \pi \Lambda$ for some Gorenstein tiled D-orders Λ. However the converse is not true.

Theorem 11. For every integer $n \geq 8$, there exists a Frobenius $n \times n$ full matrix algebra which has no corresponding Gorenstein tiled orders.

Proof. Let σ be a cyclic permutation $(12 \cdots n)$. Let X_{β} be a φ-orbit containing $(2,1,5)$. Then, since $n \geq 8$, it follows from Theorem 9 that X_{β} defines a minimal Frobenius structure system \mathbb{A}. Suppose that there exists a Gorenstein tiled D-order $\Lambda=\left(\pi^{\lambda^{i j}} D\right)$ such that $\Lambda / \pi \Lambda$ is a Frobenius \mathbb{A}-full matrix algebra. We may assume that $\lambda_{1 j}=0$ for all $1 \leq j \leq n$ by [3, Lemma 1.1]. Then we have $\lambda_{53}=0$, which implies that $\lambda_{54}=0$, so that $(3,1,5) \in X_{\beta}$, a contradiction.

In the ending part of the proof, we need a technical argument not included in this report, but the following example may be helpful to see the proof.

Example 12. When $n=8$, the exponent matrix $\left(\lambda_{i j}\right)$ of Gorenstein tiled D-orders $\Lambda=\left(\pi^{\lambda_{i j}} D\right)$ is given by

$$
\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a & 0 & a & b & c & d & c & b \\
b & 0 & 0 & b & r & s & s & r \\
c & 0 & x & 0 & c & s & t & s \\
d & 0 & y & y & 0 & d & s & s \\
c & 0 & z & w & z & 0 & c & r \\
b & 0 & y & w & w & y & 0 & b \\
a & 0 & x & y & z & y & x & 0
\end{array}\right)
$$

where $x:=a-b, y:=a-c, z:=a-d, w:=a+b-c-d, r:=b+c-a, s:=c+d-a$, and $t:=2 c+d-b-a$.

8. The case of $2 \leq n \leq 7$

For each $n(2 \leq n \leq 7)$, we can verify that every Frobenius $n \times n \mathbb{A}$-full matrix algebra A has a Gorenstein tiled D-order Λ such that $\Lambda / \pi \Lambda \cong A$. The following table shows that how many isomorphism classes of Frobenius \mathbb{A}-full matrix algebras are for each $n=2, \ldots, 7$.

n	no. of iso. classes
2	1
3	1
4	3
5	4
6	21
7	17

References

[1] H. Fujita, Full matrix algebras with structure systems, Colloq. Math. 98(2) (2003), 249-258.
[2] K. R. Goodearl and B. Huisgen-Zimmermann, Repetitive resolutions over classical orders and finite dimensional algebras, Algebras and Modules II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, (1998), 205-225.
[3] V. A. Jategaonkar, Global dimensions of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313-330.
[4] K. W. Roggenkamp, V. V. Kirichenko, M. A. Khibina and V. N. Zhuravlev, Gorenstein tiled orders, Comm. in Algebra 29(9) (2001), 4231-4247.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571 JAPAN
E-mail: fujita@math.tsukuba.ac.jp, ysksakai@math.tsukuba.ac.jp

