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Let D be a discrete valuation ring with a unique maximal ideal πD, and let Λ be a D-
order. It is standard to reduce homological properties of Λ to those of the factor algebras
Λ/πΛ and such factor algebras are deserving of further study. (See [2].)

Let n be an integer with n ≥ 2. In [1], we introduced an n × n A-full matrix algebra
over a field K, whose multiplication is determined by a structure system A, that is, an
n-tuple of n× n matrices with certain properties. A-full matrix algebras are associative,
basic, connected K-algebras. A prototype of A-full matrix algebras is the class of factor
algebras Λ/πΛ of tiled D-orders Λ. Studying representation matrices of certain modules
over A-full matrix algebras, Frobenius A-full matrix algebras are characterized by the
shape of their structure systems A. For a Gorenstein tiled D-order Λ, the factor algebra
Λ/πΛ is a Frobenius A-full matrix algebra. In this paper we study the converse of this
fact. Our main result is the following.

Theorem 1. (1) For 2 ≤ n ≤ 7, all Frobenius n × n A-full matrix algebras are iso-
morphic to Λ/πΛ for some Gorenstein tiled D-orders Λ. Moreover a list of them (up to
isomorphism) is obtained.

(2) For each n ≥ 8, there is a Frobenius n × n A-full matrix algebra having no corre-
sponding Gorenstein tiled D-orders.

1. A-Full matrix algebras

We begin by recalling A-full matrix algebras. Let K be a field and n ≥ 2 an integer.

Let A = (A1, . . . , An) be an n-tuple of n× n matrices Ak = (a
(k)
ij ) ∈ Mn(K) (1 ≤ k ≤ n)

satisfying the following three conditions.

(A1) a
(k)
ij a

(j)
il = a

(k)
il a

(j)
kl for all i, j, k, l ∈ {1, . . . , n},

(A2) a
(k)
kj = a

(k)
ik = 1 for all i, j, k ∈ {1, . . . , n}, and

(A3) a
(k)
ii = 0 for all i, k ∈ {1, . . . , n} such that i 6= k.

Let A =
⊕

1≤i,j≤n Kuij be a K-vector space with basis {uij | 1 ≤ i, j ≤ n}. Then we
define multiplication of A by using A, that is,

uikulj :=

{
a

(k)
ij uij if k = l

0 otherwise.

Then u11, . . . , unn are orthogonal primitive idempotents such that u11 + · · ·+unn = 1A an
identity of A and uiiAujj

∼= K. Hence A is an associative, basic, connected K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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We call A an n × n A-full matrix algebra with a structure system A. We note that
gl.dimA = ∞, because every entry of the Cartan matrix of A is 1.

In what follows, we assume that a
(k)
ij = 0 or 1 for all 1 ≤ i, k, j ≤ n.

2. Tiled orders

Let D be a discrete valuation ring with a unique maximal ideal πD and n ≥ 2 an
integer. Let {λij | 1 ≤ i, j ≤ n} be a set of integers satisfying

λij ≥ 0, λii = 0, λik + λkj ≥ λij, and λij + λji > 0 (if i 6= j)

for all 1 ≤ i, j, k ≤ n. Then Λ = (πλijD) is a subring of Mn(D), which we call an n × n
tiled D-order.

Example 2. Let Λ = (πλijD) be an n× n tiled D-order. Put A := Λ/πΛ, K := D/πD
and uij := πλijeij + πΛ ∈ A, where eij’s are the matrix units in Mn(D). Define Ak =

(a
(k)
ij ) ∈Mn(K) (1 ≤ k ≤ n) by

a
(k)
ij :=

{
1 if λik + λkj = λij

0 otherwise,

and set A := (A1, . . . , An). Then note that

uikulj =

{
a

(k)
ij uij if k = l

0 otherwise.

Hence A is an A-full matrix algebra.

3. Representation matrices

Let A =
⊕

1≤i,j≤n uijK be an n×n A-full matrix algebra, where A = (A1, . . . , An) and

Ak = (a
(k)
ij ) ∈ Mn(K) (1 ≤ k ≤ n). Let M be a right A-module with dimension type

dimM = (1, . . . , 1). Then M has a K-basis {vi | 1 ≤ i ≤ n} such that viuii = vi for all
1 ≤ i ≤ n. Hence there exists a matrix S = (sij) ∈ Mn(K) such that viuij = sijvj for all
1 ≤ i, j ≤ n. We call S a representation matrix of M .

Proposition 3. For each indecomposable projective right A-module uiiA, dimuiiA =

(1, . . . , 1) and it has a representation matrix (a
(k)
ij )k,j, that is, an n × n matrix whose

(k, j)-entry is a
(k)
ij . Moreover uiiA is isomorphic to an injective HomK(Aull, K) if and

only if a
(k)
il = 1 for all 1 ≤ k ≤ n.

Example 4. Let A be an A-full matrix algebra where

A =




1 1 1 1
1 0 0 1
1 1 0 1
1 1 0 0

0 1 1 0
1 1 1 1
0 1 0 0
0 1 0 0

0 0 1 0
1 0 1 1
1 1 1 1
1 1 1 0

0 0 1 1
0 0 0 1
0 0 0 1
1 1 1 1


 .
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Then representation matrices of u11A, . . . , u44A are given by



1 1 1 1
0 1 1 0
0 0 1 0
0 0 1 1







1 0 0 1
1 1 1 1
1 0 1 1
0 0 0 1







1 1 0 1
0 1 0 0
1 1 1 1
0 0 0 1







1 1 0 0
0 1 0 0
1 1 1 0
1 1 1 1


 .

Hence u11A, u22A and u44A are injective but not u33A.

4. Frobenius A-full matrix algebras

By means of structure systems, we can characterize Frobenius A-full matrix algebras.
Let A =

⊕
1≤i,j≤n uijK be an n × n A-full matrix algebra, where A = (A1, . . . , An) and

Ak = (a
(k)
ij ) ∈Mn(K) (1 ≤ k ≤ n).

Proposition 5. The following are equivalent for an A-full matrix algebra A.
(1) A is a Frobenius algebra.
(2) There exists a permutation σ of the set {1, . . . , n} such that σ(i) 6= i for all 1 ≤ i ≤ n

and that a
(k)
iσ(i) = 1 for all 1 ≤ i, k ≤ n.

In this case σ is a Nakayama permutation of A, that is, soc(uiiA) ∼= top(uσ(i)σ(i)A) for

all 1 ≤ i ≤ n. Moreover, for all 1 ≤ i, k, j ≤ n, a
(k)
ij = a

(j)
kσ(i) holds.

Using Proposition 5, we can find structure systems A which define Frobenius A-full
matrix algebras. Let σ be a permutation of the set {1, . . . , n} such that σ(i) 6= i for all
1 ≤ i ≤ n. Let T be the set of triples (i, k, j) of integers 1 ≤ i, k, j ≤ n. Then we have a
bijection

ϕ : T → T, (i, k, j) 7→ (k, j, σ(i)).

Decompose T into ϕ-orbits {Tα}α, and put I := ∪{Tα| (i, k, σ(i)) ∈ Tα}, Z := ∪{Tα|
(i, k, i) ∈ Tα, i 6= k}, and X := ∪{Tα| Tα 6⊂ I∪Z}. Then we have T = I∪Z∪X (disjoint).

Proposition 6. (1) Suppose that A is a Frobenius structure system with Nakayama
permutation σ. Then there exists a ϕ-invariant subset Y of X such that

a
(k)
ij =

{
1 if (i, k, j) ∈ I ∪ Y
0 otherwise.

(2) Let Y be a ϕ-invariant subset of X, and define A(Y ) = (a
(k)
ij ) by

a
(k)
ij :=

{
1 if (i, k, j) ∈ I ∪ Y
0 otherwise.

Then A(Y ) is a Frobenius structure system whenever (A1) holds for A(Y ).
(3) For the empty subset ∅ of X, A(∅) is a Frobenius structure system.

5. ϕ-orbits for a cyclic permutation

In this section, we clarify the ϕ-orbits of T for a cyclic permutation σ = (1 2 · · · n).
First we count the number of ϕ-orbits of T .

Proposition 7. (1) For a ϕ-orbit Tα of T , the number |Tα| of elements in Tα is 3n or n.
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(2) T has a ϕ-orbit Tα with |Tα| = n if and only if n is not divisible by 3. In this case,
T has a unique ϕ-orbit having n elements, which is contained in X.

(3) I has n− 1 ϕ-orbits.
(4) Z has n− 2 ϕ-orbits.
(5) If n is divisible by 3, then X has (n− 1)2/3 ϕ-orbits.
(6) If n is not divisible by 3, then X has (n− 2)(n− 4)/3 + 1 ϕ-orbits.

Next we clarify the members of each ϕ-orbit of T .

Proposition 8. Let Tα be a ϕ-orbit of T and put T
(r)
α := {(i, k, j) ∈ Tα | k = r} for all

1 ≤ r ≤ n.
(1) Suppose that |Tα| = 3n. Then |T (r)

α | = 3 for each r = 1, . . . , n. If (i, 1, j) ∈ Tα, then

T (1)
α = {(i, 1, j), (σ−j+1(1), 1, σ−j+2(i)), (σ−i(j), 1, σ−i+1(1))}.

(2) Suppose that |Tα| = n. Then |T (r)
α | = 1 for each r = 1, . . . , n. If n = 3t + 1 then

T
(1)
α = {(t + 1, 1, 2t + 2)}. If n = 3t + 2 then T

(1)
α = {(2t + 2, 1, t + 2)}.

6. Minimal Frobenius structure systems

Let A be a Frobenius A-full matrix algebra with Nakayama permutation σ. Then it
follows from Proposition 6 (1) that A is determined by a ϕσ-invariant subset Y of X. We
call A a minimal Forbenius structure system if Y is minimal among ϕσ-invariant subset
of X which define Frobenius full matrix algebras. For a cyclic permutation, minimal
Frobenius structure systems are determined by the following theorem.

Theorem 9. Let n be an integer with n ≥ 4, and let σ = (1 2 · · · n) be a cyclic
permutation. Then the following statements hold.

(1) Let n be even. Then the ϕ-invariant subsets defining minimal Frobenius structure
systems are just ϕ-orbits contained in X.

(2) Let n be odd and n = 2s + 1 for some s. Then the ϕ-invariant subsets defining
minimal Frobenius structure systems are just ϕ-orbits Xβ contained in X such that Xβ

does not contain any element of the form (s+1, 1, k) for any k with k 6≡ s2 +1 (mod n).

The following example illustrates Theorem 9.

Example 10. Let n = 7. Then X has 6 ϕ-orbits Xi (1 ≤ i ≤ 6) such that

X
(1)
1 = {(4, 1, 3), (6, 1, 3), (6, 1, 5)}

X
(1)
2 = {(2, 1, 5), (3, 1, 7), (4, 1, 6)}

X
(1)
3 = {(2, 1, 6), (4, 1, 7), (3, 1, 5)}

X
(1)
4 = {(5, 1, 3), (5, 1, 4), (6, 1, 4)}

X
(1)
5 = {(2, 1, 4), (2, 1, 7), (5, 1, 7)}

X
(1)
6 = {(3, 1, 6)}

Since 7 = 2 · 3+1 and 32 +1 ≡ 3 (mod 7), there are minimal Frobenius structure systems
corresponding to X1, X4, X5, X6, but not to X2, X3.
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7. Gorenstein tiled orders

A D-order Λ is Gorenstein if HomD(Λ, D) is projective as a right (or left) Λ-module. It
is known that for an n×n tiled D-order Λ = (πλijD), Λ is Gorenstein if and only if there
exists a permutation σ such that λik + λkσ(i) = λiσ(i) for all 1 ≤ i, k ≤ n. (See [4].) Since
idΛΛ = idΛ/πΛΛ/πΛ + 1 and idΛΛ = lattice-inj.dimΛΛ + 1, Λ is Gorenstein if and only if
Λ/πΛ is Frobenius. (We note that this fact follows from Proposition 5 in our context.)
Hence some Frobenius A-full matrix algebras are isomorphic to the factor algebras Λ/πΛ
for some Gorenstein tiled D-orders Λ. However the converse is not true.

Theorem 11. For every integer n ≥ 8, there exists a Frobenius n× n full matrix algebra
which has no corresponding Gorenstein tiled orders.

Proof. Let σ be a cyclic permutation (1 2 · · · n). Let Xβ be a ϕ-orbit containing (2, 1, 5).
Then, since n ≥ 8, it follows from Theorem 9 that Xβ defines a minimal Frobenius
structure system A. Suppose that there exists a Gorenstein tiled D-order Λ = (πλijD)
such that Λ/πΛ is a Frobenius A-full matrix algebra. We may assume that λ1j = 0 for
all 1 ≤ j ≤ n by [3, Lemma 1.1]. Then we have λ53 = 0, which implies that λ54 = 0, so
that (3, 1, 5) ∈ Xβ, a contradiction. 2

In the ending part of the proof, we need a technical argument not included in this
report, but the following example may be helpful to see the proof.

Example 12. When n = 8, the exponent matrix (λij) of Gorenstein tiled D-orders
Λ = (πλijD) is given by




0 0 0 0 0 0 0 0
a 0 a b c d c b
b 0 0 b r s s r
c 0 x 0 c s t s
d 0 y y 0 d s s
c 0 z w z 0 c r
b 0 y w w y 0 b
a 0 x y z y x 0




where x := a− b, y := a− c, z := a− d, w := a+ b− c− d, r := b+ c− a, s := c+ d− a,
and t := 2c + d− b− a.

8. The case of 2 ≤ n ≤ 7

For each n (2 ≤ n ≤ 7), we can verify that every Frobenius n × n A-full matrix
algebra A has a Gorenstein tiled D-order Λ such that Λ/πΛ ∼= A. The following table
shows that how many isomorphism classes of Frobenius A-full matrix algebras are for
each n = 2, . . . , 7.
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n no. of iso. classes
2 1
3 1
4 3
5 4
6 21
7 17
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