FROBENIUS FULL MATRIX ALGEBRAS AND GORENSTEIN TILED ORDERS

HISAAKI FUJITA AND YOSUKE SAKAI

Let D be a discrete valuation ring with a unique maximal ideal πD , and let Λ be a D-order. It is standard to reduce homological properties of Λ to those of the factor algebras $\Lambda/\pi\Lambda$ and such factor algebras are deserving of further study. (See [2].)

Let n be an integer with $n \geq 2$. In [1], we introduced an $n \times n$ A-full matrix algebra over a field K, whose multiplication is determined by a structure system A, that is, an n-tuple of $n \times n$ matrices with certain properties. A-full matrix algebras are associative, basic, connected K-algebras. A prototype of A-full matrix algebras is the class of factor algebras $\Lambda/\pi\Lambda$ of tiled D-orders Λ . Studying representation matrices of certain modules over A-full matrix algebras, Frobenius A-full matrix algebras are characterized by the shape of their structure systems A. For a Gorenstein tiled D-order Λ , the factor algebra $\Lambda/\pi\Lambda$ is a Frobenius A-full matrix algebra. In this paper we study the converse of this fact. Our main result is the following.

Theorem 1. (1) For $2 \le n \le 7$, all Frobenius $n \times n$ A-full matrix algebras are isomorphic to $\Lambda/\pi\Lambda$ for some Gorenstein tiled D-orders Λ . Moreover a list of them (up to isomorphism) is obtained.

(2) For each $n \ge 8$, there is a Frobenius $n \times n$ A-full matrix algebra having no corresponding Gorenstein tiled D-orders.

1. A-Full matrix algebras

We begin by recalling A-full matrix algebras. Let K be a field and $n \ge 2$ an integer. Let $\mathbb{A} = (A_1, \ldots, A_n)$ be an n-tuple of $n \times n$ matrices $A_k = (a_{ij}^{(k)}) \in \mathbb{M}_n(K)$ $(1 \le k \le n)$ satisfying the following three conditions.

(A1) $a_{ij}^{(k)}a_{il}^{(j)} = a_{il}^{(k)}a_{kl}^{(j)}$ for all $i, j, k, l \in \{1, ..., n\}$, (A2) $a_{kj}^{(k)} = a_{ik}^{(k)} = 1$ for all $i, j, k \in \{1, ..., n\}$, and (A3) $a_{ii}^{(k)} = 0$ for all $i, k \in \{1, ..., n\}$ such that $i \neq k$.

Let $A = \bigoplus_{1 \le i,j \le n} K u_{ij}$ be a K-vector space with basis $\{u_{ij} \mid 1 \le i,j \le n\}$. Then we define multiplication of A by using A, that is,

$$u_{ik}u_{lj} := \begin{cases} a_{ij}^{(k)}u_{ij} & \text{if } k = l\\ 0 & \text{otherwise} \end{cases}$$

Then u_{11}, \ldots, u_{nn} are orthogonal primitive idempotents such that $u_{11} + \cdots + u_{nn} = 1_A$ an identity of A and $u_{ii}Au_{ij} \cong K$. Hence A is an associative, basic, connected K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.

We call A an $n \times n$ A-full matrix algebra with a structure system A. We note that gl.dim $A = \infty$, because every entry of the Cartan matrix of A is 1.

In what follows, we assume that $a_{ij}^{(k)} = 0$ or 1 for all $1 \le i, k, j \le n$.

2. TILED ORDERS

Let D be a discrete valuation ring with a unique maximal ideal πD and $n \geq 2$ an integer. Let $\{\lambda_{ij} \mid 1 \leq i, j \leq n\}$ be a set of integers satisfying

$$\lambda_{ij} \ge 0, \quad \lambda_{ii} = 0, \quad \lambda_{ik} + \lambda_{kj} \ge \lambda_{ij}, \text{ and } \lambda_{ij} + \lambda_{ji} > 0 \text{ (if } i \ne j)$$

for all $1 \leq i, j, k \leq n$. Then $\Lambda = (\pi^{\lambda_{ij}}D)$ is a subring of $\mathbb{M}_n(D)$, which we call an $n \times n$ tiled *D*-order.

Example 2. Let $\Lambda = (\pi^{\lambda_{ij}}D)$ be an $n \times n$ tiled *D*-order. Put $A := \Lambda/\pi\Lambda$, $K := D/\pi D$ and $u_{ij} := \pi^{\lambda_{ij}}e_{ij} + \pi\Lambda \in A$, where e_{ij} 's are the matrix units in $\mathbb{M}_n(D)$. Define $A_k = (a_{ij}^{(k)}) \in \mathbb{M}_n(K)$ $(1 \le k \le n)$ by

$$a_{ij}^{(k)} := \begin{cases} 1 & \text{if } \lambda_{ik} + \lambda_{kj} = \lambda_{ij} \\ 0 & \text{otherwise,} \end{cases}$$

and set $\mathbb{A} := (A_1, \ldots, A_n)$. Then note that

$$u_{ik}u_{lj} = \begin{cases} a_{ij}^{(k)}u_{ij} & \text{if } k = l\\ 0 & \text{otherwise.} \end{cases}$$

Hence A is an A-full matrix algebra.

3. Representation matrices

Let $A = \bigoplus_{1 \le i,j \le n} u_{ij}K$ be an $n \times n$ A-full matrix algebra, where $\mathbb{A} = (A_1, \ldots, A_n)$ and $A_k = (a_{ij}^{(k)}) \in \mathbb{M}_n(K)$ $(1 \le k \le n)$. Let M be a right A-module with dimension type $\underline{\dim}M = (1, \ldots, 1)$. Then M has a K-basis $\{v_i \mid 1 \le i \le n\}$ such that $v_i u_{ii} = v_i$ for all $1 \le i \le n$. Hence there exists a matrix $S = (s_{ij}) \in \mathbb{M}_n(K)$ such that $v_i u_{ij} = s_{ij} v_j$ for all $1 \le i, j \le n$. We call S a representation matrix of M.

Proposition 3. For each indecomposable projective right A-module $u_{ii}A$, $\underline{\dim}u_{ii}A = (1, \ldots, 1)$ and it has a representation matrix $(a_{ij}^{(k)})_{k,j}$, that is, an $n \times n$ matrix whose (k, j)-entry is $a_{ij}^{(k)}$. Moreover $u_{ii}A$ is isomorphic to an injective $\operatorname{Hom}_K(Au_{ll}, K)$ if and only if $a_{il}^{(k)} = 1$ for all $1 \leq k \leq n$.

Example 4. Let A be an A-full matrix algebra where

Then representation matrices of $u_{11}A, \ldots, u_{44}A$ are given by

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Hence $u_{11}A$, $u_{22}A$ and $u_{44}A$ are injective but not $u_{33}A$.

4. FROBENIUS A-FULL MATRIX ALGEBRAS

By means of structure systems, we can characterize Frobenius A-full matrix algebras. Let $A = \bigoplus_{1 \le i,j \le n} u_{ij}K$ be an $n \times n$ A-full matrix algebra, where $\mathbb{A} = (A_1, \ldots, A_n)$ and $A_k = (a_{ij}^{(k)}) \in \mathbb{M}_n(K)$ $(1 \le k \le n)$.

Proposition 5. The following are equivalent for an \mathbb{A} -full matrix algebra A.

(1) A is a Frobenius algebra.

(2) There exists a permutation σ of the set $\{1, \ldots, n\}$ such that $\sigma(i) \neq i$ for all $1 \leq i \leq n$ and that $a_{i\sigma(i)}^{(k)} = 1$ for all $1 \leq i, k \leq n$.

In this case σ is a Nakayama permutation of A, that is, $\operatorname{soc}(u_{ii}A) \cong \operatorname{top}(u_{\sigma(i)\sigma(i)}A)$ for all $1 \leq i \leq n$. Moreover, for all $1 \leq i, k, j \leq n$, $a_{ij}^{(k)} = a_{k\sigma(i)}^{(j)}$ holds.

Using Proposition 5, we can find structure systems A which define Frobenius A-full matrix algebras. Let σ be a permutation of the set $\{1, \ldots, n\}$ such that $\sigma(i) \neq i$ for all $1 \leq i \leq n$. Let T be the set of triples (i, k, j) of integers $1 \leq i, k, j \leq n$. Then we have a bijection

$$\varphi: T \to T, \ (i,k,j) \mapsto (k,j,\sigma(i)).$$

Decompose T into φ -orbits $\{T_{\alpha}\}_{\alpha}$, and put $I := \bigcup \{T_{\alpha} | (i, k, \sigma(i)) \in T_{\alpha}\}, Z := \bigcup \{T_{\alpha} | (i, k, i) \in T_{\alpha}, i \neq k\}$, and $X := \bigcup \{T_{\alpha} | T_{\alpha} \not\subset I \cup Z\}$. Then we have $T = I \cup Z \cup X$ (disjoint).

Proposition 6. (1) Suppose that \mathbb{A} is a Frobenius structure system with Nakayama permutation σ . Then there exists a φ -invariant subset Y of X such that

$$a_{ij}^{(k)} = \begin{cases} 1 & if (i,k,j) \in I \cup Y \\ 0 & otherwise. \end{cases}$$

(2) Let Y be a φ -invariant subset of X, and define $\mathbb{A}(Y) = (a_{ij}^{(k)})$ by

$$a_{ij}^{(k)} := \begin{cases} 1 & if (i, k, j) \in I \cup Y \\ 0 & otherwise. \end{cases}$$

Then $\mathbb{A}(Y)$ is a Frobenius structure system whenever (A1) holds for $\mathbb{A}(Y)$.

(3) For the empty subset \emptyset of X, $\mathbb{A}(\emptyset)$ is a Frobenius structure system.

5. φ -orbits for a cyclic permutation

In this section, we clarify the φ -orbits of T for a cyclic permutation $\sigma = (1 \ 2 \ \cdots \ n)$. First we count the number of φ -orbits of T.

Proposition 7. (1) For a φ -orbit T_{α} of T, the number $|T_{\alpha}|$ of elements in T_{α} is 3n or n.

(2) T has a φ -orbit T_{α} with $|T_{\alpha}| = n$ if and only if n is not divisible by 3. In this case, T has a unique φ -orbit having n elements, which is contained in X.

- (3) I has $n-1 \varphi$ -orbits.
- (4) Z has $n-2 \varphi$ -orbits.
- (5) If n is divisible by 3, then X has $(n-1)^2/3 \varphi$ -orbits.
- (6) If n is not divisible by 3, then X has $(n-2)(n-4)/3 + 1 \varphi$ -orbits.

Next we clarify the members of each φ -orbit of T.

Proposition 8. Let T_{α} be a φ -orbit of T and put $T_{\alpha}^{(r)} := \{(i, k, j) \in T_{\alpha} \mid k = r\}$ for all $1 \leq r \leq n$.

(1) Suppose that $|T_{\alpha}| = 3n$. Then $|T_{\alpha}^{(r)}| = 3$ for each r = 1, ..., n. If $(i, 1, j) \in T_{\alpha}$, then $T_{\alpha}^{(1)} = \{(i, 1, j), (\sigma^{-j+1}(1), 1, \sigma^{-j+2}(i)), (\sigma^{-i}(j), 1, \sigma^{-i+1}(1))\}.$

(2) Suppose that $|T_{\alpha}| = n$. Then $|T_{\alpha}^{(r)}| = 1$ for each r = 1, ..., n. If n = 3t + 1 then $T_{\alpha}^{(1)} = \{(t+1, 1, 2t+2)\}$. If n = 3t + 2 then $T_{\alpha}^{(1)} = \{(2t+2, 1, t+2)\}$.

6. MINIMAL FROBENIUS STRUCTURE SYSTEMS

Let A be a Frobenius A-full matrix algebra with Nakayama permutation σ . Then it follows from Proposition 6 (1) that A is determined by a φ_{σ} -invariant subset Y of X. We call A a *minimal Forbenius structure system* if Y is minimal among φ_{σ} -invariant subset of X which define Frobenius full matrix algebras. For a cyclic permutation, minimal Frobenius structure systems are determined by the following theorem.

Theorem 9. Let n be an integer with $n \ge 4$, and let $\sigma = (1 \ 2 \ \cdots \ n)$ be a cyclic permutation. Then the following statements hold.

(1) Let n be even. Then the φ -invariant subsets defining minimal Frobenius structure systems are just φ -orbits contained in X.

(2) Let n be odd and n = 2s + 1 for some s. Then the φ -invariant subsets defining minimal Frobenius structure systems are just φ -orbits X_{β} contained in X such that X_{β} does not contain any element of the form (s+1,1,k) for any k with $k \not\equiv s^2 + 1 \pmod{n}$.

The following example illustrates Theorem 9.

Example 10. Let n = 7. Then X has 6 φ -orbits X_i $(1 \le i \le 6)$ such that

$$\begin{split} X_1^{(1)} &= \{(4,1,3), (6,1,3), (6,1,5)\} \\ X_2^{(1)} &= \{(2,1,5), (3,1,7), (4,1,6)\} \\ X_3^{(1)} &= \{(2,1,6), (4,1,7), (3,1,5)\} \\ X_4^{(1)} &= \{(5,1,3), (5,1,4), (6,1,4)\} \\ X_5^{(1)} &= \{(2,1,4), (2,1,7), (5,1,7)\} \\ X_6^{(1)} &= \{(3,1,6)\} \end{split}$$

Since $7 = 2 \cdot 3 + 1$ and $3^2 + 1 \equiv 3 \pmod{7}$, there are minimal Frobenius structure systems corresponding to X_1, X_4, X_5, X_6 , but not to X_2, X_3 .

7. Gorenstein tiled orders

A *D*-order Λ is *Gorenstein* if $\text{Hom}_D(\Lambda, D)$ is projective as a right (or left) Λ -module. It is known that for an $n \times n$ tiled *D*-order $\Lambda = (\pi^{\lambda_{ij}}D)$, Λ is Gorenstein if and only if there exists a permutation σ such that $\lambda_{ik} + \lambda_{k\sigma(i)} = \lambda_{i\sigma(i)}$ for all $1 \leq i, k \leq n$. (See [4].) Since $id_{\Lambda}\Lambda = id_{\Lambda/\pi\Lambda}\Lambda/\pi\Lambda + 1$ and $id_{\Lambda}\Lambda = lattice-inj.dim_{\Lambda}\Lambda + 1$, Λ is Gorenstein if and only if $\Lambda/\pi\Lambda$ is Frobenius. (We note that this fact follows from Proposition 5 in our context.) Hence some Frobenius Λ -full matrix algebras are isomorphic to the factor algebras $\Lambda/\pi\Lambda$ for some Gorenstein tiled *D*-orders Λ . However the converse is not true.

Theorem 11. For every integer $n \ge 8$, there exists a Frobenius $n \times n$ full matrix algebra which has no corresponding Gorenstein tiled orders.

Proof. Let σ be a cyclic permutation $(1 \ 2 \cdots n)$. Let X_{β} be a φ -orbit containing (2, 1, 5). Then, since $n \ge 8$, it follows from Theorem 9 that X_{β} defines a minimal Frobenius structure system A. Suppose that there exists a Gorenstein tiled *D*-order $\Lambda = (\pi^{\lambda_{ij}}D)$ such that $\Lambda/\pi\Lambda$ is a Frobenius A-full matrix algebra. We may assume that $\lambda_{1j} = 0$ for all $1 \le j \le n$ by [3, Lemma 1.1]. Then we have $\lambda_{53} = 0$, which implies that $\lambda_{54} = 0$, so that $(3, 1, 5) \in X_{\beta}$, a contradiction. \Box

In the ending part of the proof, we need a technical argument not included in this report, but the following example may be helpful to see the proof.

Example 12. When n = 8, the exponent matrix (λ_{ij}) of Gorenstein tiled *D*-orders $\Lambda = (\pi^{\lambda_{ij}}D)$ is given by

1	0	0	0	0	0	0	0	0 \
1	a	0	a	b	c	d	c	b
	b	0	0	b	r	s	s	r
	c	0	x	0	c	s	t	s
	d	0	y	y	0			s
	С	0	z	w	z	0	c	r
	b	0	y	w	w	y	0	b
/	a	0	x	y	z	y	x	0 /

where x := a - b, y := a - c, z := a - d, w := a + b - c - d, r := b + c - a, s := c + d - a, and t := 2c + d - b - a.

8. The case of $2 \le n \le 7$

For each n $(2 \leq n \leq 7)$, we can verify that every Frobenius $n \times n$ A-full matrix algebra A has a Gorenstein tiled D-order Λ such that $\Lambda/\pi\Lambda \cong A$. The following table shows that how many isomorphism classes of Frobenius A-full matrix algebras are for each n = 2, ..., 7.

n	no. of iso. classes
2	1
3	1
4	3
5	4
6	21
7	17

References

- [1] H. Fujita, Full matrix algebras with structure systems, Colloq. Math. 98(2) (2003), 249–258.
- [2] K. R. Goodearl and B. Huisgen-Zimmermann, Repetitive resolutions over classical orders and finite dimensional algebras, Algebras and Modules II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, (1998), 205–225.
- [3] V. A. Jategaonkar, Global dimensions of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313–330.
- [4] K. W. Roggenkamp, V. V. Kirichenko, M. A. Khibina and V. N. Zhuravlev, Gorenstein tiled orders, Comm. in Algebra 29(9) (2001), 4231–4247.

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571 JAPAN E-mail: fujita@math.tsukuba.ac.jp, ysksakai@math.tsukuba.ac.jp