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Let D be a discrete valuation ring with a unique maximal ideal 7D, and let A be a D-
order. It is standard to reduce homological properties of A to those of the factor algebras
A/mA and such factor algebras are deserving of further study. (See [2].)

Let n be an integer with n > 2. In [1], we introduced an n x n A-full matriz algebra
over a field K, whose multiplication is determined by a structure system A, that is, an
n-tuple of n x n matrices with certain properties. A-full matrix algebras are associative,
basic, connected K-algebras. A prototype of A-full matrix algebras is the class of factor
algebras A/mA of tiled D-orders A. Studying representation matrices of certain modules
over A-full matrix algebras, Frobenius A-full matrix algebras are characterized by the
shape of their structure systems A. For a Gorenstein tiled D-order A, the factor algebra
A/mA is a Frobenius A-full matrix algebra. In this paper we study the converse of this
fact. Our main result is the following.

Theorem 1. (1) For 2 < n < 7, all Frobenius n X n A-full matriz algebras are iso-
morphic to A/mA for some Gorenstein tiled D-orders A. Moreover a list of them (up to
isomorphism) is obtained.

(2) For each n > 8, there is a Frobenius n x n A-full matriz algebra having no corre-
sponding Gorenstein tiled D-orders.

1. A-FULL MATRIX ALGEBRAS

We begin by recalling A-full matrix algebras. Let K be a field and n > 2 an integer.
Let A = (Ay,...,A,) be an n-tuple of n x n matrices A, = (ag?)) eM,(K) (1<k<n)
satisfying the following three conditions.

(A1) agf)ag‘lj) = agf)a,(jl‘) for all 4,7, k,l € {1,...,n},

(A2) af) =al) =1 foralli,j,ke{1,...,n}, and

(A3) ¥ =0 foralli,k e {1,...,n} such that i # k.
Let A = @D, j<, Kui; be a K-vector space with basis {u;; | 1 <4,j < n}. Then we
define multiplication of A by using A, that is,

kT 0 otherwise.

Then uqq, ..., Uy, are orthogonal primitive idempotents such that u;; + -+ t,, = 14 an
identity of A and wu; Auj; = K. Hence A is an associative, basic, connected K-algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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We call A an n x n A-full matriz algebra with a structure system A. We note that
gl.dimA = oo, because every entry of the Cartan matrix of A is 1.

In what follows, we assume that al(-f) =0orlforalll<ik,j<n.

2. TILED ORDERS

Let D be a discrete valuation ring with a unique maximal ideal 7D and n > 2 an
integer. Let {\;; | 1 <i,7 < n} be a set of integers satisfying

Aij >0, Ai=0, g+ Ay >Ny, and A+ X >0 (if i # j)

for all 1 <i,j,k <n. Then A = (7% D) is a subring of M, (D), which we call an n x n
tiled D-order.

Example 2. Let A = (7 D) be an n x n tiled D-order. Put A := A/7A, K :== D/ D
and w;; = 7T>\ij€ij + mA € A, where e;;’s are the matrix units in M, (D). Define A, =
(aif) € My (K) (1 <k <n) by

ij

a(k) L 1 lf )\ik + )\kj == )\ij
7" 1 0 otherwise,

and set A := (Ay,...,A,). Then note that

kg 0 otherwise.

Hence A is an A-full matrix algebra.

3. REPRESENTATION MATRICES

Let A=, <, ui; K be an n x n A-full matrix algebra, where A = (4;,..., A,) and

A = (ag?)) € M, (K) (1 <k <mn). Let M be a right A-module with dimension type
dimM = (1,...,1). Then M has a K-basis {v; | 1 < i < n} such that v;u; = v; for all
1 <i < n. Hence there exists a matrix S = (s;;) € M, (K) such that v;u;; = s;;0; for all
1 <i,7 <n. Wecall S a representation matriz of M.

Proposition 3. For each indecomposable projective right A-module uy;A, dimu; A =

(1,...,1) and it has a representation matrix (agf))k,j, that is, an n X n matriz whose
(k)
i
only if az(f) =1 foralll <k<n.

(k,j)-entry is a Moreover u; A is isomorphic to an injective Homg (Auy, K) if and

Example 4. Let A be an A-full matrix algebra where
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Then representation matrices of ui1 A, ..., uy A are given by

1 111 1 001 1101 1100
0110 1 111 0100 0100
0010 1 011 1111 1110
0011 0001 0001 1111

Hence u11 A, ug A and ugg A are injective but not ussA.

4. FROBENIUS A-FULL MATRIX ALGEBRAS

By means of structure systems, we can characterize Frobenius A-full matrix algebras.
Let A =€D,.; <, w;K be an n x n A-full matrix algebra, where A = (4,,...,4,) and

Ay = (@) e M, (K) (1 < k < n).

Proposition 5. The following are equivalent for an A-full matrixz algebra A.
(1) A is a Frobenius algebra.
(2) There ezists a permutation o of the set {1,...,n} such that o(i) # i foralll1 <i<mn

and that agf)(i) =1 forall<i,k<n.
In this case o is a Nakayama permutation of A, that is, soc(u; A) = top(Ue(ne)A) for

all 1 <1 < n. Moreover, for all 1 <i,k,j <n, ag-c) = a,(i)(i) holds.

Using Proposition 5, we can find structure systems A which define Frobenius A-full
matrix algebras. Let ¢ be a permutation of the set {1,...,n} such that o(i) # ¢ for all
1 < i <mn. Let T be the set of triples (i, k, j) of integers 1 < i, k,7 < n. Then we have a
bijection

o: T =T, (i,k,7) — (k,j,o(7)).
Decompose T into @-orbits {T,}a, and put I := U{T,| (i,k,0(i)) € Tn}, Z = U{T,|
(i,k,i) € To,i #k}, and X :=U{T,| T, ¢ IUZ}. Then we have T' = ITUZUX (disjoint).

Proposition 6. (1) Suppose that A is a Frobenius structure system with Nakayama
permutation o. Then there exists a p-invariant subset Y of X such that

a(k)_{ 1 if (i,k,j) e TUY

i 0 otherwise.
(2) Let Y be a p-invariant subset of X, and define A(Y') = (a@) by

ij
ok 1 if (i,k,j) € IUY
"1 0 otherwise.

Then A(Y') is a Frobenius structure system whenever (A1) holds for A(Y').
(3) For the empty subset ) of X, A(D) is a Frobenius structure system.

5. ©-ORBITS FOR A CYCLIC PERMUTATION

In this section, we clarify the ¢-orbits of T for a cyclic permutation ¢ = (1 2 -+ n),
First we count the number of p-orbits of T

Proposition 7. (1) For a p-orbit T,, of T, the number |T,| of elements in T, is 3n or n.
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(2) T has a p-orbit T,, with |T,| = n if and only if n is not divisible by 3. In this case,
T has a unique p-orbit having n elements, which is contained in X.

(3) I has n — 1 p-orbits.

(4) Z has n — 2 p-orbits.

(5) If n is divisible by 3, then X has (n — 1)?/3 p-orbits.

(6) If n is not divisible by 3, then X has (n —2)(n —4)/3 4+ 1 p-orbits.

Next we clarify the members of each ¢-orbit of T

Proposition 8. Let T, be a p-orbit of T and put TS := {(i,k,5) € To | k = r} for all
1<r<n.
(1) Suppose that |T,| = 3n. Then |Tc(f)| =3 foreachr=1,...,n. If (i,1,5) € T,, then
T ={(6,1,5), (0771 (1),1,077%2(0), (07'(4), 1,0~ (1))}

(2) Suppose that |Ty| = n. Then |TS| =1 for each r = 1,....n. If n = 3t + 1 then
TV ={(t+1,1,20+2)}. Ifn=3t+2 then TS” = {(2t +2,1,t +2)}.

6. MINIMAL FROBENIUS STRUCTURE SYSTEMS

Let A be a Frobenius A-full matrix algebra with Nakayama permutation o. Then it
follows from Proposition 6 (1) that A is determined by a ¢,-invariant subset ¥ of X. We
call A a minimal Forbenius structure system if Y is minimal among ¢,-invariant subset
of X which define Frobenius full matrix algebras. For a cyclic permutation, minimal
Frobenius structure systems are determined by the following theorem.

Theorem 9. Let n be an integer with n > 4, and let 0 = (1 2 --- n) be a cyclic
permutation. Then the following statements hold.

(1) Let n be even. Then the p-invariant subsets defining minimal Frobenius structure
systems are just p-orbits contained in X .

(2) Let n be odd and n = 2s + 1 for some s. Then the @-invariant subsets defining
minimal Frobenius structure systems are just @-orbits Xz contained in X such that Xz
does not contain any element of the form (s+1,1,k) for any k with k # s*+1 (mod n).

The following example illustrates Theorem 9.

Example 10. Let 7 = 7. Then X has 6 p-orbits X; (1 < i < 6) such that
xY = {(4,1,3),(6,1,3),(6,1,5)}
XM= {(2,1,5),(3,1,7),(4,1,6)}
XM = {(2,1,6),(4,1,7),(3,1,5)}
XMV = {(5,1,3),(5,1,4),(6,1,4)}
X = {(2,1,4),(2,1,7),(5,1,7)}
X0 = {(3,1,6)}

Since 7=2-3+1 and 3>+ 1 = 3 (mod 7), there are minimal Frobenius structure systems
corresponding to X1, X4, X5, X4, but not to X5, Xj.

Y
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7. GORENSTEIN TILED ORDERS

A D-order A is Gorenstein if Homp(A, D) is projective as a right (or left) A-module. It
is known that for an n x n tiled D-order A = (74 D), A is Gorenstein if and only if there
exists a permutation o such that \ix + Aio(s) = Aigp) for all 1 <4,k < n. (See [4].) Since
idaAA = ida/zaA/mA + 1 and idaA = lattice-inj.dimyA + 1, A is Gorenstein if and only if
A/mA is Frobenius. (We note that this fact follows from Proposition 5 in our context.)
Hence some Frobenius A-full matrix algebras are isomorphic to the factor algebras A/mA
for some Gorenstein tiled D-orders A. However the converse is not true.

Theorem 11. For every integer n > 8, there exists a Frobenius n X n full matriz algebra
which has no corresponding Gorenstein tiled orders.

Proof. Let o be a cyclic permutation (1 2--- n). Let X3 be a ¢-orbit containing (2,1, 5).
Then, since n > 8, it follows from Theorem 9 that X3 defines a minimal Frobenius
structure system A. Suppose that there exists a Gorenstein tiled D-order A = (7 D)
such that A/7A is a Frobenius A-full matrix algebra. We may assume that A\y; = 0 for
all 1 < j < n by [3, Lemma 1.1]. Then we have A\s3 = 0, which implies that A5y = 0, so
that (3,1,5) € Xp, a contradiction. O

In the ending part of the proof, we need a technical argument not included in this
report, but the following example may be helpful to see the proof.

Example 12. When n = 8, the exponent matrix (\;;) of Gorenstein tiled D-orders
A = (7 D) is given by

Q@ 0o Q0 o9 O
=N o NNl o)
S5 a e 8 oo ©
@ E R o O
N e NoOo 3Ioo
e oAU ®» n QO
K OO0 W +n»w o O
DTN L 3O

where x :=a—b, y:=a—c¢, z:=a—d, w:=a+b—c—d, r:=b+c—a, s:=c+d—a,
and t :=2c+d—b—a.

8 THE CASE OF 2<n<7

For each n (2 < n < 7), we can verify that every Frobenius n x n A-full matrix
algebra A has a Gorenstein tiled D-order A such that A/7A = A. The following table
shows that how many isomorphism classes of Frobenius A-full matrix algebras are for
eachn=2,...,7.
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no. of iso. classes
1
1
3
4
21
17

| O U x| W N B
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