SOME TOPICS ON DERIVED EQUIVALENT BLOCKS OF FINITE GROUPS

Naoko Kunugi

1. Introduction

Let G be a finite group. Let k be an algebraically closed field of characteristic $\ell > 0$. We denote the principal block of kG by $B_0(G)$.

We say that two finite groups G and H have the same ℓ-local structure if G and H have a common Sylow ℓ-subgroup P such that whenever Q_1 and Q_2 are subgroups of P and $f : Q_1 \to Q_2$ is an isomorphism, then there is an element $g \in G$ such that $f(x) = x^g$ for all $x \in Q_1$ if and only if there is an element $h \in H$ such that $f(x) = x^h$ for all $x \in Q_1$.

There is a well known conjecture due to Broué.

Conjecture 1.1(Broué [1, 2]). Let G and H be finite groups having the same ℓ-local structure with common Sylow ℓ-subgroup P. If P is abelian then the principal blocks of G and H would be derived equivalent. If P is not abelian, then there is a counterexample to this conjecture. However, there are some examples that P is not abelian and there is a derived equivalence between the principal blocks of G and H. We will give such examples in §3.

2. General theory

In this section, let G and H be finite groups having the same ℓ-local structure with common Sylow ℓ-subgroup P. We say that a complex of $(B_0(G), B_0(H))$-bimodules is splendid if each indecomposable summand of each term of the complex is a direct summand of a module of the form $kG \otimes_{kQ} kH$ for a subgroup Q of P.

Definition 2.1. Let X^\bullet be a splendid complex of $(B_0(G), B_0(H))$-bimodules. We say that X^\bullet induces a splendid stable equivalence if we have isomorphisms

$$X^\bullet \otimes_{B_0(H)} X^{**} \cong B_0(G) \oplus Z_1, \quad X^{**} \otimes_{B_0(G)} X^\bullet \cong B_0(H) \oplus Z_2$$

where Z_1 and Z_2 are homotopy equivalent to complexes of projective bimodules.

Definition 2.2. Let X^\bullet be a splendid complex of $(B_0(G), B_0(H))$-bimodules. We say that X^\bullet induces a splendid equivalence if we have isomorphisms

$$X^\bullet \otimes_{B_0(H)} X^{**} \cong B_0(G) \oplus Z_1, \quad X^{**} \otimes_{B_0(G)} X^\bullet \cong B_0(H) \oplus Z_2$$

where Z_1 and Z_2 are homotopy equivalent to 0. The complex X^\bullet is called a splendid tilting complex.

The detailed version of this paper will be submitted for publication elsewhere.
By the definition, splendid equivalences induce derived equivalences and homotopy equivalences.

Theorem 2.1 (Rouquier [12]). Let X^\bullet be a splendid complex of $(B_0(G), B_0(H))$-bimodules. Then the following are equivalent.

1. The complex X^\bullet induces a splendid stable equivalence between $B_0(G)$ and $B_0(H)$.
2. For every non-trivial subgroup Q of P, the complex $X^\bullet(\Delta(Q))$ induces a splendid equivalence between $B_0(C_G(Q))$ and $B_0(C_H(Q))$, where $\Delta(Q)$ is a diagonal subgroup and

$$X(Q) = X^{\Delta(Q)} / \sum_{R<Q} \text{Tr}_R^Q X^{\Delta(R)}.$$

In our example in §3 we will use the following method when we prove splendid equivalences.

(Step 1) Construct a splendid tilting complex between $B_0(C_G(Q))$ and $B_0(C_H(Q))$ for every non-trivial subgroup Q of P.

(Step 2) Construct a splendid stable equivalence F from $B_0(G)$ to $B_0(H)$ by gluing the splendid tilting complexes obtained in Step 1 (by using the above theorem).

(Step 3) Calculate $F(S)$ for the simple $B_0(G)$-modules.

(Step 4) Lift the stable equivalence in Step 2 to a splendid equivalence by looking at the modules calculated in Step 3.

3. General linear groups and unitary groups

Let q be a power of a prime. Assume that ℓ is odd and ℓ^e divides $q + 1$ but ℓ^{e+1} does not divide $q + 1$ for some $e > 0$. Under this condition, we consider representations of the general linear group $GL(n, q^2)$ and the unitary group $GU(n, q^2)$ for small n. Note that if $\ell > n$ then the principal ℓ-block of $GL(n, q^2)$ is Morita equivalent to its Brauer correspondent by Puig’s result (see [8]).

3.1. $GL(2, q^2)$ and $GU(2, q^2)$

We have isomorphisms

$$B_0(GL(2, q^2)) \cong kZ_{\ell^e} \otimes B_0(SL(2, q^2)), \quad B_0(GU(2, q^2)) \cong kZ_{\ell^e} \otimes B_0(SU(2, q^2)).$$

The blocks $B_0(SL(2, q^2))$ and $B_0(SU(2, q^2))$ have cyclic defect groups, and they are splendid equivalent by Rouquier’s result in [11]. Therefor the principal blocks $B_0(GL(2, q^2))$ and $B_0(GU(2, q^2))$ are splendid equivalent.

3.2. $GL(3, q^2)$ and $GU(3, q^2)$ in characteristic $\ell > 3$.

In this case, Sylow ℓ-subgroups of $GL(3, q^2)$ and $GU(3, q^2)$ are abelian. As in case $n = 2$, we have isomorphisms

$$B_0(GL(3, q^2)) \cong kZ_{\ell^e} \otimes B_0(SL(3, q^2)), \quad B_0(GU(3, q^2)) \cong kZ_{\ell^e} \otimes B_0(SU(3, q^2)).$$

In [5], Waki and the author showed that $B_0(SU(3, q^2))$ and its Brauer correspondent, which is isomorphic to the Brauer correspondent of $B_0(SL(3, q^2))$, are splendid equivalent. Therefore $B_0(GL(3, q^2))$ and $B_0(GU(3, q^2))$ are splendid equivalent since as we mentioned above $B_0(SL(3, q^2))$ and its Brauer correspondent are Morita (Puig) equivalent by Puig’s result. Hence we also have $B_0(GL(3, q^2))$ and $B_0(GU(3, q^2))$ are splendid equivalent.

3.3. $GL(3, q^2)$ and $GU(3, q^2)$ in characteristic 3.

In this case Sylow 3-subgroups of $GL(3, q^2)$ and $GU(3, q^2)$ are not abelian. Our main result in this paper is the following theorem.
Theorem 3.1 (with T. Okuyama). Assume that 3^e divides $q + 1$ but 3^{e+1} does not divide $q + 1$ for $e > 0$. Then

1. The principal 3-blocks $B_0(PSL(3,q^2))$ and $B_0(PSU(3,q^2))$ are splendid equivalent.
2. The principal 3-blocks $B_0(GL(3,q^2))$ and $B_0(GU(3,q^2))$ are splendid equivalent.
3. The principal 3-blocks $B_0(PGL(3,q^2))$ and $B_0(PGU(3,q^2))$ are splendid equivalent.
4. The principal 3-blocks $B_0(SL(3,q^2))$ are splendid equivalent.

Remark 3.1. If $e = 1$, then the result for (1) has been obtained by [6, 4, 3] and the result for (3) has been obtained by Usami and the author.

4. Outline of proof of theorem

In this section, we give an outline of a proof of Theorem 3.1 (1) and (2). Let $G = SL(3,q^2), H = SU(3,q^2), \overline{G} = PSL(3,q^2)$ and $\overline{H} = PSU(3,q^2)$. Let P be a common Sylow 3-subgroup of G and H. We denote the image of a subgroup L of G (or H) in \overline{G} (or \overline{H}) by \overline{L}. For each subgroup \overline{R} of P, let $\overline{G}_R := C_{\overline{G}}(\overline{R}), \overline{H}_R := C_{\overline{H}}(\overline{R})$, and let \overline{M}_R be the Scott module of $\overline{G}_R \times \overline{H}_R$ with vertex $\Delta(\overline{R})$, where \overline{R} is a Sylow 3-subgroup of \overline{G}_R and \overline{H}_R.

(Step 1). There is essentially one subgroup of P(up to conjugate), which we denote by Q, containing $Z(P)$ such that $B_0(C_{\overline{G}}(Q))$ and $B_0(C_{\overline{H}}(Q))$ are not Morita equivalent. Then $C_{\overline{G}}(Q) \cong GL(2,q^2)$ and $C_{\overline{H}}(Q) \cong GU(2,q^2)$. Let $\overline{M}_Q \rightarrow k\overline{G}_Q \times \overline{H}_Q$ be a $\Delta(\overline{Q})$-projective cover of $k\overline{G}_Q \times \overline{H}_Q$ and $\overline{N}_Q \rightarrow \Omega_{\Delta(\overline{Q})}(k\overline{G}_Q \times \overline{H}_Q)$ be a $\Delta(\overline{Q})$-projective cover of $\Omega_{\Delta(\overline{Q})}(k\overline{G}_Q \times \overline{H}_Q)$. Then we have a splendid tilting complex for $B_0(\overline{G}_Q)$ and $B_0(\overline{H}_Q)$ of the form

$$0 \rightarrow \overline{N}_Q \rightarrow \overline{M}_Q \rightarrow 0.$$

For a subgroup \overline{R} of P not contained in \overline{Q}, the blocks $B_0(\overline{G}_R)$ and $B_0(\overline{H}_R)$ are Morita equivalent and the Scott module \overline{M}_R gives a splendid tilting complex for these two blocks.

(Step 2). Let M be the Scott module of $G \times H$ with vertex $\Delta(P)$. Let $M \rightarrow k_{G \times H}$ be a $\Delta(P)$-projective cover of $k_{G \times H}$ and $N \rightarrow \Omega_{\Delta(P)}(k_{G \times H})$ be a $\Delta(Q)$-projective cover of $\Omega_{\Delta(P)}(k_{G \times H})$. Consider the following complex

$$M^* : 0 \rightarrow N \rightarrow M \rightarrow 0.$$

and set $\overline{M}^* = \text{Inv}_{Z(P) \times 1}(M^*)$. Then the complex \overline{M}^* is a splendid complex, and for each non-trivial subgroup \overline{R} of P, the complex $\overline{M}^*(\Delta(\overline{R}))$ coincides with the complex in (Step 1). Therefore by Rouquier’s theorem (Theorem 2.1) we can see that the complex \overline{M}^* induces a splendid stable equivalence between $B_0(\overline{G})$ and $B_0(\overline{H})$.

(Step 3). Let $F = - \otimes_{B_0(G)} \overline{M}^*$. The principal block of $B_0(\overline{G})$ has 5 simple modules k, S, T_1, T_2 and T_3 and the principal block of $B_0(\overline{H})$ has 5 simple modules $k, \varphi, \theta_1, \theta_2$ and θ_3. Then we have the following lemma.

Lemma 4.1. There exist exact sequences

$$0 \rightarrow \Omega^{-1}(U(k, \varphi)) \rightarrow \Omega(F(S)) \rightarrow k \oplus k \rightarrow 0$$

and

$$0 \rightarrow \Omega^{-1}(U(k, \varphi, \theta_i)) \rightarrow \Omega^2(F(T_i)) \rightarrow k \rightarrow 0.$$
for \(i = 1, 2 \) and 3, where \(U(k, \varphi) \) is a uniserial module of length 2 with top \(k \), and \(U(k, \varphi, \theta_i) \) is a uniserial module of length 3 with top \(k \) and socle \(\theta_i \).

(Step 4). It follows from Lemma 4.1 that the tilting complex defined by a sequence \(\{\theta_1, \theta_2, \theta_3\}, \{\varphi, \theta_1, \theta_2, \theta_3\} \) of subsets of the set of simple modules (see [6]) gives a derived equivalence between \(B_0(G) \) and \(B_0(H) \). The equivalence is a lift of the stable equivalence given by \(F \) (see [7]), and therefore \(B_0(G) \) and \(B_0(H) \) are splendid equivalent.

Now we have the splendid tilting complex for \(B_0(G) \) and \(B_0(H) \) of the form

\[
X^\bullet: 0 \longrightarrow \overline{Q}_3 \longrightarrow \overline{Q}_2 \longrightarrow \overline{Q}_1 \oplus \overline{N} \longrightarrow \overline{M} \longrightarrow 0
\]

where \(\overline{M} = \text{Inv}_{Z(P) \times 1}(M) \) and \(\overline{N} = \text{Inv}_{Z(P) \times 1}(N) \) and \(\overline{Q}_1, \overline{Q}_2, \) and \(\overline{Q}_3 \) are projective bimodules. Since \(\text{Inv}_{Z(P) \times 1}(\cdot) \) induces a one to one correspondence between the set of trivial source \(k[G \times H] \)-modules with vertex \(\Delta(Z(P)) \) and the set of projective \(k[G \times H] \)-modules, we have a tilting complex of the form

\[
X^\bullet: 0 \longrightarrow Q_3 \longrightarrow Q_2 \longrightarrow Q_1 \oplus N \longrightarrow M \longrightarrow 0
\]

for \(B_0(G) \) and \(B_0(H) \), where \(Q_1, Q_2 \) and \(Q_3 \) are direct sums of trivial source \(k[G \times H] \)-modules with vertex \(\Delta(Z(P)) \) and \(\text{Inv}_{Z(P) \times 1}(X^\bullet) = X^\bullet \) (see [12, A.4]).

REFERENCES