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This paper is a summary of some papers [4,5,6] such that using special commutative

group algebras, we could prove alternatively some reciprocity theorems, prime decom-

positions of Gauss sums and Lenstra’s primality test.

1. Group Algebra Map(F,K)

Let A = Map(F,K) be the set of all mappings from a finite field F = Fq of order q

to a field K where q is a power of a prime p. Then we define the convolution product

in A by the following

(f ∗ g)(c) =
∑

a,b∈F
a+b=c

f(a)g(b)

for f, g ∈ A and c ∈ F . This product together with the usual sum and the scalar

product gives the structure of a commutative algebra over K. If there is no chance of

confusion we shall denote the product f ∗ g by the usual notation fg.

Let ua be the characteristic function of a ∈ F , namely, ua is defined by the following

ua(b) :=

{
1 if b = a

0 if b 6= a.

Then we have the following equations.

uaub = ua+b and f =
∑

a∈F

f(a)ua for f ∈ A.

Thus {ua | a ∈ F} forms a basis of the group algebra A of the additive group

of F over K. We denote by F̂ the set of all characters of the multiplicative group

F ∗ = F \ {0}, by χ[k] k-th power of χ ∈ F̂ with respect to the convolution product

and by ε the trivial character. We set ε(0) = 1 and χ(0) = 0 for χ 6= ε ∈ F̂ . Thus we

have F̂ ⊂ A. We set J(f1, f2, . . . , fn) = (f1f2 · · · fn)(1) for f1, f2, . . . , fn ∈ A which is

1 This paper is a summary of some papers [4,5,6] that was already published. This paper was finan-
cially supported by Fund for the Promotion of International Scientific Research B-2, 2004, Aomori,
Japan.
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usually called the Jacobi sum.

2. Gauss sums and Jacobi sums

It is easy to see that ε ∗ ε = qε and λ ∗ ε = 0 for nontrivial λ ∈ F̂ . We have the

following another relations which are important to our object.

Lemma 1. Assume that λ1, λ2, . . . , λn are nontrivial elements in F̂ and q − 1 6= 0

in K. Then we have the next equations in each case.

(1) In case λ1λ2 . . . λn 6= ε, we have

λ1 ∗ λ2 ∗ · · · ∗ λn = J(λ1, λ2, . . . , λn)λ1λ2 · · ·λn.

(2) In case λ1λ2 · · ·λn = ε, we have

λ1 ∗ λ2 ∗ · · · ∗ λn = λn(−1)J(λ1, λ2, . . . , λn−1)(qu0 − ε)

where J(λ1, λ2, . . . , λn−1) = 1 if n = 2.

For χ ∈ F̂ , we can write χ = Σa∈Fpχ(a)ua. On the other hand Gauss sums is defined

by

g(χ) =
∑

a∈F

χ(a)ζtr(a)
p

where ζp := e
2πi
p , q = pr and tr(a) = a+ap+· · ·+apr−1

for a ∈ F. Hence, in case K = C

the complex number field, a map χ 7→ g(χ) (ua 7→ ζtr(a)
p ) is the natural homomorphism

from A to C. Therefore, it is natural to think of χ as Gauss sum g(χ). It is easy to

see F̂ forms a basis of A because ua = 1
q−1

Σ
χ∈F̂

χ(a−1)χ if q − 1 6= 0 in K.

3. Quadratic characters for odd primes

In this section, we shall have evaluation of the quadratic character η ∈ A for an odd

prime q. Using the character table and a permutation b 7→ b−1 on F ∗, we can see easily

the next proposition.

Proposition 2.

(1) det[uab−1 ]a,b = (ε − u0) ∗
∏

χ6=ε

∗ χ where
∏∗ means the product of all nontrivial

multiplicative characters with respect to the convolution product.

(2) det[uab]a,b = (−1)
q2−1

8 q
q−3
2 η where q is odd.

The next needs for evaluation of η. This follows from Proposition 2.

Lemma 3.
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(1)
q−1∏

k=1

(u0 − uk
1) = qu0 − ε.

(2) η = u
(q2−1)(q−1)

16
1

q−1
2∏

k=1

(u0 − uk
1).

(3) η = (−1)
q−1
2 v

q(q2−1)
8

q−1
2∏

k=1

(vk − v−k) where v = u q+1
2

.

We can see the evaluation of ordinary Gauss sum

g(η) = i
(q−1)2

4
√

q

from Lemma 3 and the equation
∏n−1

2
k=1 2 sin(kπ

n
) =

√
n for an odd n.

4. Prime decompositions of Gauss sums

In this section, using commutative group algebras, we shall give an alternative proof

of theorem about the prime decomposition of the Gauss sum which was essentially used

in the proof of Stickelberger relation (see [1]).

Let m be a natural number, let p be a prime which does not divide m, let f be

the order of p mod m, and q = pf . Moreover let O be the ring of algebraic integers in

Q(ζq−1) and let P be a prime ideal containing p, where ζq−1 is a primitive (q − 1)-th

root of 1. Then it is well known that q is the order of a finite field F = O/P.

We consider the Gauss sum ga = g(χa) =
∑

α∈F χa(α)ζtr(α)
p where χ is a generator of

F̂ and tr(α) is the trace of α. Let P be the ideal generated by P and {1−ζk
p | 0 < k < p}

in the ring of algebraic integers O of Q(ζ(q−1)p). It is easy to see P is the prime ideal

generated by P and 1 − ζp. We set a∗ = b0 + b1 + · · · + bf−1 for a positive integer

a = b0 + b1p + · · ·+ bf−1p
f−1 where 0 < a < q and 0 ≤ bk < p.

The next follows essentially from [3, Proposition 3.2] and this was used essentially

for the Stickelberger relation (see [1]).

Theorem 4. ordP(ga) = a∗ for 0 < a < q, namely, Pa∗ divides exactly ga.

Proof. Let ν be a natural homomorphism from Map(F,O) to Map(F,O/P ) and let

J be the ideal generated by P and {u0 − uα|α ∈ F}. Since ν(χc)[p] = 0 for χc 6= 1, we

obtain that ν(χc) is contained in ν(J ), the radical of the group algebra Map(F,O/P ),

and so χc ∈ J . [3, Proposition 3.2] together with this implies that γχa ∈ J a∗ for

the Jacobi sum γ ∈ O \ P . The character uβ 7→ ζtr(β)
p induces the epimorphism

φ :Map(F,O) → O with φ(J ) = P and φ(γχa) = γga. Thus we have ordP(ga) ≥ a∗.
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On the other hand, ordP(ga)+ordP(gq−1−a) = f(p−1) = a∗+(q−1−a)∗ follows from

gagq−1−a = χa(−1)q and ordP(p) = p− 1. This completes our proof.

Remark 5. [3, Proposition 3.3] shows that {χa|a∗ = k} forms a basis of

ν(J )k/ν(J )k+1 and so ordJ (χa) = a∗, namely, a∗ is the maximum integer s such that

χa ∈ J s.

Loewy series of Map(F,O/P ) are computed from this. ( a∗ is the maximum integer

s with χa ∈ J s)

5. Reciprocity theorems and Lenstra’s primality test

The next lemma is essential in proving quadratic, cubic and biquadratic reciprocity

theorems, and Lenstra’s primality test.

Lemma 6. Let ` be the order of χ ∈ F̂ , let n be a prime number with (n, q) = 1

and let e and s be natural numbers with ne ≡ s mod `. Then

χ−es(n) ≡ (jq)
ne−s

` χ[s](1) mod n where j = χ(−1)χ[`−1](1).

Theorem 7 (Lenstra). Let n be an odd integer and let r be a prime divisor of

n. Let T be a finite set consisting of 2 and odd primes p satisfying (n, p) = 1 and

np−1 6≡ 1 mod p2. We set t =
∏

p∈T p. Let S be the set of primes q satisfying (n, q) = 1

and (q − 1) | t. We set s =
∏

q∈S q.

We assume there exists an integer c such that c
n−1

2 ≡ −1 mod n, and (jq)
np−1−1

p ≡
χq(n) mod n for every p ∈ T, q ∈ S and χq ∈ F̂ with order p. Then we have r ≡
ni mod s for some i < t.
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