
QF RINGS AND QF ASSOCIATED GRADED RINGS

HIROYUKI TACHIKAWA

Abstract. The associated graded ring of QF (quasi-Frobenius, generally not commu-
tative) ring R is not necessarily QF . We shall prove that the associated graded ring of
R is QF if and only if R is QF and for any primitive idempotent e the upper Loewy
series of Re and eR is coincident with the lower Loewy series of Re and eR respectively.
In connection with the above result we consider for any pair of positive integers t, n

a ring Λ = K[x0, x1, · · · , xn]/(xti −
1

xi

n∏

j=0

xj | i = 0, 1, · · · , n), because for t �= n, the

associated graded ring of Λ is different from Λ but they are both QF (=0-dimensional
Gorenstein). So we expect that for t = n, Λ is Gorenstein even if Krull dimension > 0.
We pointed out however that if t = n = 2, Λ is not Gorenstein, but Cohen-Macauley.
Further if n = t = 3, Λ is neither Cohen-Macauley nor toric, of course not Gorenstein.

1. A characterization of QF associated graded rings

For an Artinian ring R having the Jacobson radical J with Jn+1 = 0, the series :
R ⊃ J ⊃ J2 ⊃ · · · ⊃ Jn ⊃ Jn+1 = 0 is called the upper Loewy series of RR (resp. RR).
If we putAi = J

i/J i+1, we can naturally define the multiplication of elements a+J i+1 ∈ Ai
and b + J j+1 ∈ Aj to be ab + J i+j+1 ∈ Ai+j . Then by using this multiplication we make
the (formal) direct sum A0⊕A1⊕ · · ·⊕An into a ring RG. Clearly this ring RG is positive
Z−graded and A1 generates the radical of RG. RG is called the associated graded ring of
R. Cf.[3]. R and RG may be not isomorphic to each other. Cf. Example 2.1

By Morita equivalence [8] we can assume without loss of generality that rings are basic.
Let e be a primitive idempotent of ring R. Then e+ J ∈ A0 is a primitive idemotent of
RG which we shall denote by eG for short. If we denote the right (resp. left) annihilator of
a subset M of R by r(M) (resp. l(M)), then Soc (Re) = r(J)e (resp. Soc (eR) = e l(J)).
At first we have

Proposition 1.1. If RGSoc(RGeG) is simple for a primitive idempotent eG, then the

RSoc(Re) is simple. And if Soc(RGeG) � RGfG/Rad(RG)fG for a primitive idempotent
f , then Soc(Re) � Rf/Jf .

Proof. Let Jρe �= 0 and Jρ+1e = 0. Then AρeG �= 0. Let us denote the set {α ∈ RG|A1α =
0} by r(A1). Since A1 generates the radical of RG, by the assumption Soc(RGeG) =
r(Rad(RG))eG = r(A1)eG is a unique simple RG-submodule of RGeG. Hence r(A1)eG ⊆
AρeG. On the other hand r(A1)eG ⊇ AρeG by A1AρeG = 0. Hence r(A1)eG = AρeG.
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Now take u ∈ r(J)e. Then there is a unique positive integer j such that u ∈ J je\J j+1e.
As au = 0 for any a ∈ J we have that (a+J2)(u+J j+1) = au+J (j+1)+1 = 0+J (j+1)+1 ∈
Aj+1 for a + J

2 ∈ A1. Therefore u + J j+1 ∈ r(A1)eG = AρeG and it follows that j = ρ.
This implies that r(J)e ⊆ Jρe. On the other hand r(J)e ⊇ Jρe by J(Jρe) = 0. Hence
Jρe = r(J)e. Further Jρe can be identified with AρeG because J

ρ+1e = 0.
Now R/J can be identified with RG/Rad(RG). From Rad(RG)

ρeG = AρeG is simple
as a left RG-module it follows that r(J)e is a simple R-module.
The latter statement follows from that fGAρeG �= 0 if and only if fJρe �= 0. This

completes the proof.

Following Thrall [12] a ring R is said to be left QF -2 if the socle of Re is simple for
every primitive idempotent e. Then we have immediately

Corollary 1.2. R is left QF -2 if RG is left QF -2.

Now we shall prove

Theorem 1.3. If RG is QF , then R is QF .

Proof. By the assumption that R is basic there is a set of primitive idempotents ei such

that 1 =
n∑

i=1

ei and Rei �� Rej for i �= j.

SinceRG isQF , for all ei, Soc(RGeiG) = r(Rad(RG))eiG = r(A1)eiG (resp. Soc(eiGRG) =
eiGl(Rad(RG)) = eiGl(A1)) is a simple left (resp. right) RG -module.
Hence by Proposition 1.1 r(J)ei (resp. eil(J)) is a simple left (resp. right) R -module.
On the other hand it holds that Rl(J)ei � RHomR((eiR/eiJ)R, RRR) and as is quoted

above Rl(J)ei is simple. Similarly eir(J)R � HomR((Rei/Jei,RRR) is simple.
Therefore by [6, Theorem 2.1] it holds the duality HomR(−,RRR) between the cate-

gories of finitely generated left R-modules and right R-modules. and hence R is QF . Cf.
also [5].

In Example 2.1 we shall show that both the converses of Corollary 1.2 and Theorm 1.3
do not hold.

Now it needs to give a characterization of QF ring R for which the associated graded
ring RG is QF .

We say that the series : Re = r(Jρ+1)e ⊃ r(Jρ)e ⊃ r(Jρ−1)e ⊃ · · · ⊃ r(J)e ⊃ r(R)e = 0
is the lower Loewy series of Re.

In their book [2] Artin-Nesbitt-Thrall proved that subquotient modules Jke/Jk+1e and
r(Jρ+1−k)e/r(Jρ−k)e have non-zero isomorphic constituents for every 0 � k � ρ. Then
we have the following question:
Which kind of rings do satisfy the coincidence of every non-zero isomorphic constituent

of Jke/Jk+1 with Jke/Jk+1e itself ?

We can provide Proposition 1.4 as an answer to the question.
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A positive Z-graded ring R = A0⊕A1⊕ · · ·⊕An is called to be standard if A1 generates
the radical of R.
Then we have

Proposition 1.4. If R is a standard positive Z-graded QF ring , then the upper Loewy
series of Re coincides with the lower Loewy series of Re for any primitive idempotent e.

Proof. For a primitive idempotent e let Re = A0e⊕ A1e⊕ A2e⊕ · · ·⊕Aρe, ρ � n, be a
grading of Re. Then AiAje ⊆ Ai+je and the rad(Re)= A1e⊕ A2e⊕ · · ·⊕Aρe.
Then from the assumption that R is QF it holds that Rl(J)e = r(J)e = Soc(Re) =

Jρe = Aρe.

Assume that r(J s)e = Jρ+1−se for an integer s ≥ 1 (as pointed out above this assump-
tion is satisfied for s = 1), and suppose that r(Js+1)e �= Jρ−se for r(J s+1)e ⊇ Jρ−se.
Then there is 0 �= y =

∑

l�j<ρ−s
yj ∈ r(Js+1)e such that 0 �= yj ∈ Aje. From 0 = Js+1y =

Js(Jy) it follows Jy ∈ r(Js)e = Jρ+1−se = ⊕ρ+1−s�k Ake.
On the other hand Jy =

∑

j<ρ−s
Jyj ∈ ⊕l�j<ρ−sAj+1e = ⊕l+1�k<ρ+1−sAke.

Hence Jy = 0. Then A1yl = 0 since A1 generates J and yj ∈ Aje for l � j < ρ − s.
This implies yl ∈ Aρe and this is a contradiction because l �= ρ.
Therefore we conclude that r(Js+1)e = Jρ−se.
Now by induction on s we complete the proof.

Corollary 1.5. If RG is QF then for any primitive idempotent e the upper Loewy series
of Re and eR are coincident with the lower Loewy series of Re and eR respectively.

Proof. Let Jρe �= 0 but Jρ+1e = 0. Then by Proposition 1.4 it follows that
(Rad(RG))

ρ+1−keG = Soc
k(RGeG) = r((Rad(RG))

k)eG for k = 1, 2, · · · , ρ.
Now we want to prove that Jρ+1−ke = Sock(Re) = r(Jk)e for k = 1, 2, · · · , ρ.
Suppose x ∈ r(Jk)e \ Jρ+1−ke since Jρ+1−ke ⊆ r(Jk)e. Let j be the maximal integer

such that x ∈ J j \ J j+1e. Then j < ρ + 1 − k. For x + J j+1 ∈ AjeG it holds that
Ak(x+ J

j+1e) = (Jk/Jk+1)(x + J j+1e = 0 + J j+1+ke = 0. This implies that x+ J j+1e ∈
r(Ak)eG = r(A

k
1)eG = r((Rad(RG))

k)eG = Rad(RG)
ρ+1−keG = (Aρ+1−k⊕Aρ+2−k⊕· · · )eG.

Thus we have j ≥ ρ+ 1− k. But this contradicts to j < ρ+ 1− k.
We can prove similarly that eJσ+1−k = Sock(eR) = e l(Jk) for k = 1, 2, · · · , σ , where

eJσ �= 0 but eJσ+1 = 0. This completes the proof.

Proposition 1.6. If R is QF and for any primitive idempotent e the upper Loewy series
of Re and eR are coincident with the lower Loewy series of Re and eR respectively, then
the associated graded ring RG is QF .

Proof. Let Jρe �= 0 but Jρ+1e = 0. From the coincidence of series of the upper Loewy
series and the lower Loewy series of Re it follows that r(J i)e = Soci(RRe) = J

ρ+1−ie, i =
1, 2, · · · , ρ. And especially Soc(Re) = Jρe is a simple left R-module since R is QF .
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For x ∈ Jke \ Jk+1e and k � ρ − 1 suppose Jx ∈ Jk+2e = Soc{ρ+1−(k+2)}(Re). Then
J{ρ+2−(k+2)}x = 0 and x ∈ r(Jρ−k)e = Jk+1e. But this is a contradiction.
Therefore if k � ρ − 1 and if x + Jk+1e �= 0 ∈ AkeG = (Jk/Jk+1)eG it holds that 0 �=

A1 (x+ J
k+1e) ∈ Ak+1eG. Therefore Soc(RGeG) = r(Rad(RG))eG ⊆ Jρe = Rad(RG)ρeG.

As r(Rad(RG))eG ⊇ Rad(RG)ρeG we have Soc(RGeG) = r(Rad(RG))eG = Jρe, which
can be considered as a simple left RG-module because J

ρe is a simple left R-module.

Now it is clear that HomRG(eGRG/eGRad(RG), RGRGRG) � r(Rad(RG))eG.
This implies that the dual module HomRG(eGRG/eGRad(RG), RGRGRG) of a simple right
RG-module eGRG/eGRad(RG) is a simple left RG-module.
Similarly we have that the dual module HomRG(RGeG/Rad(RG)eG, RGRGRG) of a sim-

ple left RG-module RGeG/Rad(RG)eG is a simple right RG-module.
Therefore by [6, Theorem 2.1] it holds the duality HomRG(−, RGRGRG) between the

categories of finitely generated left RG-modules and finitely generated right RG-modules.
Hence RG is QF .

Now by Propositions 1.5 and 1.6 we have the following characterization ofQF associated
graded rings:

Theorem 1.7. The following conditions (i), (ii) and (iii) are equivalent to each other:
(i) The associated graded ring RG is QF ,
(ii) R is QF and for any primitive idempotent e the upper Loewy series of Re and eR

are coincident with the lower Loewy series of Re and eR respectively,
(iii) R is QF and for any primitive idempotent ei and integer 0 � k � ρi it holds that

RJ
kei/J

k+1ei � RHomR(eiJ
ρ−k/eiJ

ρ−k+1
R, RRR) (resp.eiJ

k/eiJ
k+1 �

HomR(RJ
σ−kei/J

σ−k+1ei,RRR), where J
ρiei �= 0 but Jρi+1ei = 0 (resp. eiJσi �= 0 but eiJσi+1 =

0).

Let π be a Nakayama permutation of QF ring R on the set of all non isomorphic
primitive idempotents ei, i = 1, 2, · · · , n.
Then it holds that RReπ(j)/Jeπ(j) � RHomR(ejR/ejJR, RRR).

Corollary 1.8. RG is QF if and only if R is QF and for any primitive idempotent
ei it holds that RJ

kei/J
k+1ei � ⊕nj ni,j × Reπ(j)/Jeπ(j) for a direct sum decomposition :

eiJ
ρ−k/eiJ

ρ−k+1
R � ⊕nj ni,j × ejR/ejJ, where ni,j × ejR/ejJ means the direct sum of ni,j

copies of ejR/ejJ.

As indecomposable commutative algebras are local, for them there are no difference
between QF -2, QF -3 and QF rings. Hence Theorem 1.7 and Corollary 1.8 are considered
to be results for non commutative rings, though Theorem 1.7 seems to be a generalization
of Iarrobino’s result [4; Proposition 1.7] for 0-dimensional Gorenstein algebras.
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2. examples

Example 2.1. (i) Let R be an algebra over a field K defined by the following quiver.

>
x

vu

x3 = vu,
0 = uv,
0 = xv,
0 = ux.

Then the K-bases : R = {e1, x, x2, x3, u; e2, v}, J = Rad(R) = {x, x2, x3, u; v}, J2 =
{x2, x3},J3 = {x3} and J4 = {0}. By 0 �= x3 = vu and 0 = uv, R is not commutative. As
r(J)e1 = Kx

3 � Re1/Je1 and r(J)e2 = Kv � Re1/Je1, R is left QF -2.
It happens however that (v+ J2)(u+ J2) = vu+ J3 = 0 ∈ G(R) for the contrary vu =

x3 �= 0 ∈ R. Then r(rad(G(R)))e1 = K(u+ J2) +K(x3 + J4) � G(R)e2/Rad(G(R))e2 ⊕
G(R)e1/Rad(G(R))e1 is not simple. Hence G(R) is not left QF -2.
This shows that the converse of Proposition 1.1 does not hold.

The next example (ii) shows that the converse of Theorem 1.3 does not hold.
(ii)

>

<

x

y

vu

x3 = vu,
y2 = uv,
0 = xv,
0 = ux,
0 = vy,
0 = yu.

Then the K-bases = {e1, x, x2, x3, u, e2, y, v}, where e2 and e2 are primitive idempotents.
By x3 = vu and y2 = uv, R is not commutative. J = Rad(R) = {x, x2, x3, u; y, y2, v},

J2 = {x2, x3, y2},J3 = {x3}, J4 = 0. r(J) = {x3, y2} = l(J), r(J)e1 = Kx3 � Re1/Je1
and r(J)e2 = Ky

2 � Re2/Je2. Hence R is QF .
As (v+J2)(u+J2) = 0+J3 and (y+J2)(u+J2) = 0+J3, Soc(RG(e1)G) = K(u+J

2)+
K(x3 + J3) � RG(e2)G/Rad(RG)(e2)G ⊕RG(e1)/Rad(RG)(e1)G). Hence Soc(RG(e1)G) is
not simple. Therefore RG is not QF .
We know that the upper Loewy series of Re1 and Re2 are (1, 1+2, 1, 1) and (2, 1+2, 2)

respectively. On the other hand lower Loewy series of Re1 and Re2 are (1, 1, 2+1, 1) and
(2, 1 + 2, 2) respetively. From Theorem 1.7 it follows also that RG is not QF .

Example 2.2. Let Λ be a quotient ring K[x0, x1, · · · , xn]/I such that the ideal I are

generated by n+ 1 polynomials xti −
1

xi

n∏

j=0

xj , i = 0, 1, · · · , n, for the pairs (t, n).
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In case of t �= n, for min{n, t} � |t − n|s < max{n, t} there is an idempotent e ≡
∏n
i=0 x

|t−n|s
i mod I of Λ and Γ = (1−e)Λ � K[x0, x1, · · · , xn]/(

n∏

i=0

x
|t−n|s
i , I) is an Artinian

local algebra. Cf.[12] and Kikumasa-Yoshimura [6].

Let us denote the associated graded algebra ΓG = A0 ⊕ A1 · · · ⊕ Am. Then if t > n,
m = (t+1)(n−1) and dimK(Ak) = +{(d0, d1, · · · , di, · · · dj , · · · , dn)|

∑n
l=0 dl = k, 0 � dl �

t + 1 and di = dj = 0 for i �= j}. Hence dimKAk = dimKAm−k. It follows by Corollary
1.8 that ΓG (and hence by Theorem 1.3 Γ) is QF .
If t < n, m = (n + 1)(t− 1) and dimK(Ak) = +{(d0, d1, · · · , dn)|

∑n
l=0 dl = k, 0 � dl �

t− 1}. Hence we have similarly dimKAk = dimKAm−k and ΓG (and hence Γ) is QF .

Now we can extend our consideration for Λ to the case of n = t. Then as
1

xi

n∏

j=0

xj ≡ xni

mod I for i = 1, 2, · · · , n, Λ is a positive Z-graded with respect to homogeneous elements
−
x0,

−
x1, · · · ,

−
xn of degree 1. If we put u =

n∏

i=1

−
xi, then K[u] is a subalgebra of Λ, which is a

polynomial ring over K of a variable u . Further all
−
xi’s satisfy the equation X

n+1− u =
0 ∈ K[u][X]. Hence by Noether’s normalization theorem the Krull dimension of Λ = 1.

Let t = n = 1, then the generators of I are formally {x0− 1
x0
x0x1 = x0−x1, x1− 1

x1
x0x1 =

x1−x0} = {x0−x1} and Λ is a polynomial ring of one variable and is obviously Gorenstein.
Let t = n = 2. Then {f2 = x0x1 − x22, f0 = x1x2 − x20, f1 = x2x0 − x21} defines an

intersection of quadratic cones. In [9] Stanley commented that the following Theorm 2.1
was proved first by Macauley.

Theorem 2.1. If a K-algebra Λ is standard positively Z-graded and Gorenstein of Krull
dimension d, then for Poincar

,
e series F (Λ,λ) it holds that F (Λ, 1

λ
) = (−1)dλρ F (Λ,λ)

(as rational functions of λ) for some integer ρ.

By the Buchberger’s algorithm we obtain the reduced Gröbner bases {f0, f1, f2, f3 =
S(f0, f1) = −x30−x31} of I with respect to the degree- lexicographical order x0 < x1 < x2.
As the leading terms are Lt(f0) = x

0
0x
1
1x
1
2, Lt(f1) = x

1
0x
0
1x
1
2, Lt(f2) = x

0
0x
0
1x
2
2, Lt(f3) =

x00x
3
1x
0
2 it holds α1 < 3,α2 < 2 for the standard bases

−
x
α0

0

−
x
α1

1

−
x
α2

2 ∈ Λ = K[x0, x1, x2]/I.
Therefore we know that

{
−
1,
−
x0,

−
x
2

0,
−
x
3

0, · · · ,
−
x1,

−
x0
−
x1,

−
x
2

0

−
x1,

−
x
3

0

−
x1, · · · ,

−
x
2

1,
−
x0
−
x
2

1,
−
x
2

0

−
x
2

1,
−
x
3

0

−
x
2

1, · · · ,
−
x2}

are the K-bases of Λ. Cf. [1:Theorem 1.7.4 and Proposition 2.1.6].

A0 = K
−
1, A1 = K

−
x0 +K

−
x1 +K

−
x2, A2 = K

−
x
2

0 +K
−
x1
−
x0 +K

−
x
2

1,

An = K
−
x
n

0 +K
−
x1
−
x
n−1
0 +K

−
x
2

1

−
x
n−2
0 for n ≥ 3,

are Z+ ∪ {0}-grading of Λ and the set of homogeneous generators is { −x0,
−
x1,

−
x2} with

degree 1.
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Thus the Poincar
,
e series F (Λ,λ) = 1 +

∞∑

n=1

3λn =
3

1− λ − 2 =
2λ+ 1

1− λ .

Now there is no ρ which satisfies (−1)1λρF (Λ,λ) = (−1)λρ 2λ+ 1
(1− λ) =

=
λ+ 2

(λ− 1) =
2 1
λ
+ 1

1− 1
λ

= F (Λ,
1

λ
). Therefore by Theorem 2.1 Λ is not Gorenstein.

By the way we notice that in this case Λ is Cohen-Macaulay because

Λ = K[
−
x0]⊕K[

−
x0]

−
x1 ⊕K[

−
x0]

−
x2 is K[

−
x0]-free module. Here we notice that

K[
−
x0]

−
x
2

1⊂ K[
−
x0]

−
x2 by x0x2 ≡ x21 mod I.

This arises a new question whether Λ is Cohen-Macaulay.

In order to answer the question let us consider Λ for n = t = 3. In this case the
binomials {f3 = x0x1x2 − x33, f0 = x1x2x3 − x30, f1 = x2x3x0 − x31, f2 = x3x0x1 − x32}
generates I and by using the Buchberger’s algorithm we obtain the following Gröbner
bases
Gr = {f0, f1, f2, f3, f4 = S(f0, f1) = x40 − x41, f5 = S(f1, f2) = x41 − x42,
f6 = S(f0, f3) = x0x

2
1x
2
2 − x30x23, f7 = S(f1, f3) = x20x1x22 − x31x23,

f8 = S(f2, f3) = x
2
0x
2
1x2 − x32x23, f9 = S(f2, S(f0, f1)) = x31x32 − x50x3} of I

and the leading terms {Lt(f0) = x1x2x3, Lt(f1) = x2x3x0, Lt(f2) = x3x0x1, Lt(f3) = x33,
Lt(f4) = x41, Lt(f5) = x42, Lt(f6) = x30x

2
3, Lt(f7) = x31x

2
3, Lt(f8) = x32x

2
3, Lt(f9) = x50x3}

with respect to the degree-lexicographical order x0 < x1 < x2 < x3.

Now there is no positive integer n such that xn0
Gr−→+ 0. Therefore K[

−
x0] is a polynomial

ring in the variable
−
x0. Further f6 = x0x

2
1x
2
2 − x30x23 = x0(x21x22 − x20x23) ∈ I and (x21x22 −

x20x
2
3) �∈ I because the terms x21x22 and x20x23 are not reduced by any Gröbner base. Hence

−
x0 (

−
x
2

1

−
x
2

2 −
−
x
2

0

−
x
2

3) =
−
0, but (

−
x
2

1

−
x
2

2 −
−
x
2

0

−
x
2

3) �=
−
0.

Hence Λ is not a K[
−
x0]-free module. This implies Λ is not Cohen-Macaulay.

As all generators of I are binomials, Λ may be a toric variety. Cf. [10].
Toric varieties are defined to be Noetherian integral domains. However as we prove just

now Λ has a zero divisor we cannot expect that Λ is toric.

Proposition 2.2. If n = t = 3, then Λ is neither Cohen-Macaulay nor toric. Of course
Λ is not Gorenstein.
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