INTEGRAL GROUP ALGEBRAS AND CYCLOTOMIC POLYNOMIALS¹

KAORU MOTOSE

Recently, using cyclotomic polynomials, Z. Marciniak and S. K. Sehgal [3] obtained excellent results about units in integral group rings of cyclic groups. In this paper, we shall give some improvements and alternative proofs of their results.

Let $\mathbb{Z}G$ be the group algebra of a finite abelian group G over the ring \mathbb{Z} of rational integers. It is well known that the units of *finite* order in $\mathbb{Z}G$ have the form $\pm g$ for some $g \in G$ (see [1], p. 262). We study the form of units of *infinite* order in $\mathbb{Z}G$ where $G = \langle \sigma \rangle$. Let $\Phi_{-}(x)$ be cyclotomic polynomial of order m defined inductively by

Let $\Phi_m(x)$ be cyclotomic polynomial of order m defined inductively by

$$X^m - 1 = \prod_{d|m} \Phi_d(x).$$

Z. Marciniak and S.K. Sehgal [3] construct many units of infinite order using cyclotomic polynomials. These units cover the alternative units, the Hoechsmann units [3] and Yamauchi's results [4].

In this paper, we study the Euclidean algorithm for cyclotomic polynomials in $\mathbb{Z}[x]$, and we have easy applications to some their results in [3]. The following are well known units. Units in 1, 2 are covered by cyclotomic polynomials.

1. The alternating units:

$$\Phi_{2k}(\sigma) = 1 - \sigma + \sigma^2 - \dots + (-1)^k \sigma^k$$

where k is odd and (2k, |G|) = 1.

2. The Hoechsmann units (the constructible units) (see also K. Yamauchi [4]).

$$\frac{\sigma^{k\ell}-1}{\sigma^k-1}\cdot\frac{\sigma-1}{\sigma^\ell-1} = \frac{1+\sigma^k+\sigma^{2k}+\dots+\sigma^{(\ell-1)k}}{1+\sigma+\sigma^2+\dots+\sigma^{\ell-1}}$$

where $k, \ell \geq 2, (k\ell, |G|) = 1$ and $(k, \ell) = 1$.

3. Bass cyclic units,

$$(1 + \sigma + \dots + \sigma^{k-1})^m - \ell(1 + \sigma + \dots + \sigma^{|G|-1})$$

where k > 1 and $k^m = 1 + \ell |G|$.

Since the group algebra $\mathbb{Z}G$ are isomorphic to $\mathbb{Z}[x]/(x^n-1)\mathbb{Z}[x]$, our study on units in $\mathbb{Z}G$ is equivalent to find polynomials $f(x) \in \mathbb{Z}[x]$ satisfying

$$f(x)u(x) + (x^n - 1)v(x) = 1$$
, where $u(x), v(x) \in \mathbb{Z}[x]$.

For relatively prime polynomials f(x) and g(x) over a field K, it is easy to compute polynomials $u(x), v(x) \in K[x]$ by Euclidean algorithm such that

$$f(x)u(x) + g(x)v(x) = 1.$$

¹The detailed version of this paper will be submitted for publication elsewhere This paper was financially supported by Fund for the Promotion of International Scientific Research B-2, 2004, Aomori, Japan.

However, over $\mathbb{Z}[x]$, situation is different from this. Of course we can compute $u(x), v(x) \in \mathbb{Q}[x]$ by Euclidean algorithm for relatively prime polynomials $f(x), g(x) \in \mathbb{Z}[x]$. Thus we have

$$f(x)u_0(x) + g(x)v_0(x) = a$$

where $u_0(x), v_0(x) \in \mathbb{Z}[x]$ and $0 \neq a \in \mathbb{Z}$.

For example, we obtain for cyclotomic polynomials $\Phi_3(x) = x^2 + x + 1, \Phi_6(x) = x^2 - x + 1,$

$$\Phi_3(x)(1-x) + \Phi_6(x)(x+1) = 1 - x^3 + 1 + x^3 = 2$$

and we can easily show there is no polynomials $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$\Phi_3(x)u(x) + \Phi_6(x)v(x) = 1.$$

In fact $1 = \Phi_6(\omega)v(\omega) = -2\omega v(\omega) = -2\bar{\omega}v(\bar{\omega})$ for two roots $\omega, \bar{\omega}$ of $\Phi_3(x)$. We have a contradiction such that $1 = 4 \cdot v(\omega)v(\bar{\omega})$ and $v(\omega)v(\bar{\omega})$ is an integer.

Thus it is natural to consider the next problem.

For given polynomials f(x), $g(x) \in \mathbb{Z}[x]$, does there exist polynomials u(x), $v(x) \in \mathbb{Z}[x]$ such that

$$f(x)u(x) + g(x)v(x) = 1$$
?

It is easy for f(x) = x and $g(x) = x^n - 1$. But in general, it seems to be difficult for me because the ring $\mathbb{Z}[x]$ is not Euclidean though it is a unique factorization ring. In this paper, we shall answer to this problem in case f(x) and g(x) are cyclotomic polynomials for units in $\mathbb{Z}G$.

If $m \neq n$, then we have $\Phi_m(x)u(x) + \Phi_n(x)v(x) = 1$ in $\mathbb{Q}[x]$ since $\Phi_m(x), \Phi_n(x)$ are distinct irreducible polynomials in $\mathbb{Q}[x]$. Over $\mathbb{Z}[x]$, we can see the next theorem.

Theorem 1. Assume $n > m \ge 1$. Then we have

(1) If m is not a devisor of n, then there exist $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$\Phi_m(x)u(x) + \Phi_n(x)v(x) = 1.$$

(2) If m is a divisor of n, then we set n = mk and k_0 is the product of all distinct prime divisors k. There exist $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$\Phi_m(x)u(x) + \Phi_n(x)v(x) = \Phi_{k_0}(1).$$

Proof. (1) If we set n = mq + r, $0 \le r < m$, then we have easily

$$x^{n} - 1 = (x^{m} - 1) \cdot (\frac{x^{mq} - 1}{x^{m} - 1} \cdot x^{r}) + x^{r} - 1$$

Hence, we can use Euclidean algorithm in $\mathbb{Z}[x]$ and so

$$(x^{n} - 1)s(x) + (x^{m} - 1)t(x) = x^{d} - 1$$
, for some $s(x), t(x) \in \mathbb{Z}[x]$

where d = (n, m). Thus we have

$$\frac{x^n - 1}{x^d - 1}s(x) + \frac{x^m - 1}{x^d - 1}t(x) = 1.$$

Therefore, we obtain the next equation excluding cases m|n|

$$\Phi_n(x)u(x) + \Phi_m(x)v(x) = 1 \text{ for some } u(x), v(x) \in \mathbb{Z}[x].$$

-29-

(2) Since x - 1 divides $\Phi_{k_0}(x) - \Phi_{k_0}(1)$ in $\mathbb{Z}[x]$, we have $x^{hm} - 1$ and so $\Phi_m(x)$ divides $\Phi_{k_0}(x^{hm}) - \Phi_{k_0}(1)$ where $h = \frac{k}{k_0}$. Let n_0 be the product of all distinct prime divisors n. We set $n_0 = \ell k_0$ and

$$u(x) = \frac{\Phi_{k_0}(1) - \Phi_{k_0}(x^{hm})}{\Phi_m(x)} \text{ and } v(x) = \prod_{d|\ell, d < \ell} \Phi_{k_0 d}(x^{\frac{n}{n_0}}).$$

Then u(x) and $v(x) \in \mathbb{Z}[x]$. Noting $\frac{n}{n_0}\ell = \frac{k}{k_0}m = hm$ and $(\ell, k_0) = 1$, we have

$$\begin{split} \Phi_m(x)u(x) + \Phi_n(x)v(x) &= \Phi_m(x)u(x) + \Phi_{n_0}(x^{\frac{n}{n_0}}) \prod_{d|\ell, d < \ell} \Phi_{k_0 d}(x^{\frac{n}{n_0}}) \\ &= \Phi_{k_0}(1) - \Phi_{k_0}(x^{hm}) + \Phi_{k_0}((x^{\frac{n}{n_0}})^{\ell}) \\ &= \Phi_{k_0}(1). \end{split}$$

Let m be a natural number and let q be a power of a prime with (q, m) = 1. Then we can see from Theorem 1 (2) that there exist $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$\Phi_m(x)u(x) + \Phi_{mq}(x)v(x) = p.$$

However, the next proposition shows that p is the smallest positive integer satisfying the above equation.

Proposition 1. There exist no $s(x), t(x) \in \mathbb{Z}[x]$ such that $\Phi_m(x)s(x) + \Phi_{mg}(x)t(x) = 1$

for a natural number m and a power q of a prime p with (q,m) = 1.

Proof. Let Δ be the set of roots of $\Phi_m(x)$. Using $\prod_{d|m} \Phi_{dq}(x) = \Phi_q(x^m)$, we have the next

$$\prod_{d|m} \Phi_{dq}(\eta) = \Phi_q(\eta^m) = \Phi_q(1) = p$$

where $\eta \in \Delta$. Thus

$$p^{|\Delta|} = \prod_{\eta \in \Delta} \prod_{d|m} \Phi_{dq}(\eta) = \prod_{d|m} \prod_{\eta \in \Delta} \Phi_{dq}(\eta).$$

We set $a_d = \prod_{\eta \in \Delta} \Phi_{dq}(\eta)$. Then a_d is an integer because a_d is a symmetric polynomial in $\mathbb{Z}[\eta \in \Delta]$ and so $a_d \in \mathbb{Z}$ [coefficients of $\Phi_m(x)$]. Hence we have from the above equation.

$$p^{|\Delta|} = \prod_{d|m} |a_d|$$
 and $|a_d| = p^{\alpha(d)}$

where $\alpha(d)$ is a nonnegative integer. Therefore we have

$$\varphi(m) = |\Delta| = \sum_{d|m} \alpha(d).$$

Using Möbius inversion formula, we obtain

$$\alpha(m) = \sum_{\substack{d \mid m \\ -30-}} \varphi(d) \mu(\frac{m}{d}).$$

For a prime r,

$$\alpha(r^e) = \varphi(r^e) - \varphi(r^{e-1}) = \begin{cases} r^{e-2}(r-1)^2 & \text{for } e \ge 2, \\ r-2 & \text{for } e = 1. \end{cases}$$

Since $\varphi(i)$ is multiplicative, $\alpha(i)$ is also multiplicative. Thus if $\alpha(i) = 0$, then i = 2j and j is odd.

On the other hand, it follows from the assumption that $\Phi_{mq}(\eta)t(\eta) = 1$ for $\eta \in \Delta$ and so $a_m = \prod_{\eta \in \Delta} \Phi_{mq}(\eta) = \pm 1$. Thus $|a_m| = 1$, and so $\alpha(m) = 0$. This implies $m = 2\ell$, ℓ is odd, and q > 2. Hence we have a contradiction for $\ell \geq 3$ by above arguments

$$1 = \Phi_{2\ell}(-x)s(-x) + \Phi_{2\ell q}(-x)t(-x) = \Phi_{\ell}(x)s(-x) + \Phi_{\ell q}(x)t(-x).$$

We have also a contradiction for $\ell = 1$ by $\Phi_2(-1) = 0$

$$1 = \Phi_2(-1)s(-1) + \Phi_{2q}(-1)t(-1) = pt(-1).$$

Remark 1. It follows from $\Phi_m(x^{p^s}) = \Phi_{mp^s}(x)\Phi_m(x^{p^{s-1}})$ for (p,m) = 1 that

$$\Phi_{mp^s}(x) \equiv \Phi_m(x)^{p^{s-1}(p-1)} \text{ or } \Phi_m(x)^{p^s} \mod p.$$

We can see from Theorem 1 and the above that the ideal of $\mathbb{Z}[x]$ generated by $\Phi_m(x), \Phi_n(x) \ (m < n)$ can be calculated as follows:

$$(\Phi_m(x), \Phi_n(x)) = \begin{cases} (p, \Phi_m(x)) & \text{if } m | n \text{ and } \frac{n}{m} \text{ is a power of a prime } p, \\ \mathbb{Z}[x] & \text{otherwise.} \end{cases}$$

The first part is an alternative proof of Proposition 1.

In the remainder of this paper, we consider our problem about $x^n - 1$ and $\Phi_m(x)$.

Theorem 2. Let m_0 be the product of distinct prime divisors of m. If m_0 is not a divisor of n, then there exist $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$(x^{n} - 1)u(x) + \Phi_{m}(x)v(x) = \prod_{d \mid (m_{0}, n)} \Phi_{\frac{m_{0}}{d}}(1).$$

Proof. We may assume that $m = m_0$ from

$$\Phi_m(x) = \Phi_{m_0}(x^{\frac{m}{m_0}}) \text{ and } (x^{\frac{m}{m_0}})^n - 1 = (x^n - 1) \cdot \frac{(x^n)^{\frac{m}{m_0}} - 1}{x^n - 1}.$$

We assume d is a divisor of n. If d is not a divisor of m, there exist $u_d(x), v_d(x) \in \mathbb{Z}[x]$ from Theorem 1 (1) such that

$$\Phi_d(x)u_d(x) + \Phi_m(x)v_d(x) = 1.$$

If d is a divisor of m, there exist $u_d(x), v_d(x) \in \mathbb{Z}[x]$ from Theorem 1 (2) such that

$$\Phi_d(x)u_d(x) + \Phi_m(x)v_d(x) = \Phi_{\frac{m}{d}}(1).$$

Thus we have from $x^n - 1 = \prod_{d|n} \Phi_d(x)$,

$$(x^{n} - 1)u(x) + \Phi_{m}(x)v(x) = \prod_{d \mid (m,n)} \Phi_{\frac{m}{d}}(1).$$

-31-

Theorem 3 (Marciniak and Sehgal [3]). Let m_0 be the product of distinct prime divisors of m. If $t = \frac{m_0}{(n,m_0)} > 1$ is not a prime, there exist integral polynomials $u(x), v(x) \in \mathbb{Z}[x]$ such that

$$\Phi_m(x)u(x) + (x^n - 1)v(x) = 1.$$

Proof. We may assume $m = m_0$ from the same reason in Theorem 2. If t is not a prime, we have $\Phi_{\frac{m}{d}}(1) = 1$ for all d|(m, n) because $\frac{m}{d} = \frac{m}{(m,d)}$ is not a prime since $t = \frac{m}{(m,n)}$ is a divisor of $\frac{m}{(m,d)} = \frac{m}{d}$.

Remark 2. If t is a prime p, then we have

$$\Phi_m(x)u(x) + (x^n - 1)v(x) = \Phi_t(1) = p.$$

References

- C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, 1962, Interscience, New York.
- [2] R. Lidl and H. Niederreiter, Finite fields, 1983, Addison Wesley.
- [3] Z. Marciniak and S. K. Sehgal, Generic units in abelian group rings, J. Group Theory, to appear.
- [4] K. Yamauchi, The construction of units of infinite order in the character ring of a finite group, Yokohama Math. J. 51 (2005), 89-97.

K. MOTOSE DEPARTMENT OF MATHEMATICAL SYSTEM SCIENCE FACULTY OF SCIENCE AND TECHNOLOGY HIROSAKI UNIVERSITY HIROSAKI 036-8561, JAPAN *E-mail address*: skm@cc.hirosaki-u.ac.jp