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Recently, using cyclotomic polynomials, Z. Marciniak and S. K. Sehgal [3] obtained
excellent results about units in integral group rings of cyclic groups. In this paper, we
shall give some improvements and alternative proofs of their results.
Let ZG be the group algebra of a finite abelian group G over the ring Z of rational

integers. It is well known that the units of finite order in ZG have the form ±g for some
g ∈ G (see [1], p. 262). We study the form of units of infinite order in ZG where G = 〈σ〉.
Let Φm(x) be cyclotomic polynomial of order m defined inductively by

Xm − 1 =
∏

d|m

Φd(x).

Z. Marciniak and S.K. Sehgal [3] construct many units of infinite order using cyclotomic
polynomials. These units cover the alternative units, the Hoechsmann units [3] and
Yamauchi’s results [4].
In this paper, we study the Euclidean algorithm for cyclotomic polynomials in Z[x],

and we have easy applications to some their results in [3]. The following are well known
units. Units in 1, 2 are covered by cyclotomic polynomials.

1. The alternating units:

Φ2k(σ) = 1− σ + σ2 − · · ·+ (−1)kσk

where k is odd and (2k, |G|) = 1.

2. The Hoechsmann units (the constructible units) (see also K. Yamauchi [4]).

σk� − 1
σk − 1 ·

σ − 1
σ� − 1 =

1 + σk + σ2k + · · ·+ σ(�−1)k
1 + σ + σ2 + · · ·+ σ�−1

where k, 
 ≥ 2, (k
, |G|) = 1 and (k, 
) = 1.
3. Bass cyclic units,

(1 + σ + · · ·+ σk−1)m − 
(1 + σ + · · ·+ σ|G|−1)
where k > 1 and km = 1 + 
|G|.

Since the group algebra ZG are isomorphic to Z[x]/(xn− 1)Z[x], our study on units in
ZG is equivalent to find polynomials f(x) ∈ Z[x] satisfying

f(x)u(x) + (xn − 1)v(x) = 1, where u(x), v(x) ∈ Z[x].
For relatively prime polynomials f(x) and g(x) over a field K, it is easy to compute

polynomials u(x), v(x) ∈ K[x] by Euclidean algorithm such that

f(x)u(x) + g(x)v(x) = 1.

1The detailed version of this paper will be submitted for publication elsewhere This paper was fi-
nancially supported by Fund for the Promotion of International Scientific Research B-2, 2004, Aomori,
Japan.
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However, over Z[x], situation is different from this. Of course we can compute
u(x), v(x) ∈ Q[x] by Euclidean algorithm for relatively prime polynomials f(x), g(x) ∈
Z[x]. Thus we have

f(x)u0(x) + g(x)v0(x) = a

where u0(x), v0(x) ∈ Z[x] and 0 	= a ∈ Z.
For example, we obtain for cyclotomic polynomials

Φ3(x) = x
2 + x+ 1,Φ6(x) = x

2 − x+ 1,
Φ3(x)(1− x) + Φ6(x)(x+ 1) = 1− x3 + 1 + x3 = 2

and we can easily show there is no polynomials u(x), v(x) ∈ Z[x] such that
Φ3(x)u(x) + Φ6(x)v(x) = 1.

In fact 1 = Φ6(ω)v(ω) = −2ωv(ω) = −2ω̄v(ω̄) for two roots ω, ω̄ of Φ3(x). We have a
contradiction such that 1 = 4 · v(ω)v(ω̄) and v(ω)v(ω̄) is an integer.
Thus it is natural to consider the next problem.

For given polynomials f(x), g(x) ∈ Z[x], does there exist polynomials u(x), v(x) ∈ Z[x]
such that

f(x)u(x) + g(x)v(x) = 1 ?

It is easy for f(x) = x and g(x) = xn − 1. But in general, it seems to be difficult for me
because the ring Z[x] is not Euclidean though it is a unique factorization ring. In this
paper, we shall answer to this problem in case f(x) and g(x) are cyclotomic polynomials
for units in ZG.

If m 	= n, then we have Φm(x)u(x) + Φn(x)v(x) = 1 in Q[x] since Φm(x),Φn(x) are
distinct irreducible polynomials in Q[x]. Over Z[x], we can see the next theorem.

Theorem 1. Assume n > m ≥ 1. Then we have
(1) If m is not a devisor of n, then there exist u(x), v(x) ∈ Z[x] such that

Φm(x)u(x) + Φn(x)v(x) = 1.

(2) If m is a divisor of n, then we set n = mk and k0 is the product of all distinct prime
divisors k. There exist u(x), v(x) ∈ Z[x] such that

Φm(x)u(x) + Φn(x)v(x) = Φk0(1).

Proof. (1) If we set n = mq + r, 0 ≤ r < m, then we have easily

xn − 1 = (xm − 1) · (x
mq − 1
xm − 1 · x

r) + xr − 1.

Hence, we can use Euclidean algorithm in Z[x] and so
(xn − 1)s(x) + (xm − 1)t(x) = xd − 1, for some s(x), t(x) ∈ Z[x]

where d = (n,m). Thus we have

xn − 1
xd − 1s(x) +

xm − 1
xd − 1 t(x) = 1.

Therefore, we obtain the next equation excluding cases m|n
Φn(x)u(x) + Φm(x)v(x) = 1 for some u(x), v(x) ∈ Z[x].
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(2) Since x− 1 divides Φk0 (x)−Φk0 (1) in Z[x], we have xhm − 1 and so Φm(x) divides
Φk0 (x

hm) − Φk0 (1) where h = k
k0
. Let n0 be the product of all distinct prime divisors n.

We set n0 = 
k0 and

u(x) =
Φk0 (1)− Φk0 (xhm)

Φm(x)
and v(x) =

∏

d|�, d<�

Φk0d(x
n
n0 ).

Then u(x) and v(x) ∈ Z[x]. Noting n
n0

 = k

k0
m = hm and (
, k0) = 1, we have

Φm(x)u(x) + Φn(x)v(x) = Φm(x)u(x) + Φn0 (x
n
n0 )

∏

d|�, d<�

Φk0d(x
n
n0 )

= Φk0 (1)− Φk0 (xhm) + Φk0 ((x
n
n0 )�)

= Φk0 (1).

Let m be a natural number and let q be a power of a prime with (q,m) = 1. Then we

can see from Theorem 1 (2) that there exist u(x), v(x) ∈ Z[x] such that
Φm(x)u(x) + Φmq(x)v(x) = p.

However, the next proposition shows that p is the smallest positive integer satisfying the
above equation.

Proposition 1. There exist no s(x), t(x) ∈ Z[x] such that
Φm(x)s(x) + Φmq(x)t(x) = 1

for a natural number m and a power q of a prime p with (q,m) = 1.

Proof. Let ∆ be the set of roots of Φm(x). Using
∏
d|mΦdq(x) = Φq(x

m) , we have the
next ∏

d|m

Φdq(η) = Φq(η
m) = Φq(1) = p

where η ∈ ∆. Thus
p|∆| =

∏

η∈∆

∏

d|m

Φdq(η) =
∏

d|m

∏

η∈∆
Φdq(η).

We set ad =
∏
η∈∆ Φdq(η). Then ad is an integer because ad is a symmetric polynomial in

Z[η ∈ ∆] and so ad ∈ Z[coefficients of Φm(x)]. Hence we have from the above equation.

p|∆| =
∏

d|m

|ad| and |ad| = pα(d)

where α(d) is a nonnegative integer. Therefore we have

ϕ(m) = |∆| =
∑

d|m

α(d).

Using Möbius inversion formula, we obtain

α(m) =
∑

d|m

ϕ(d)µ(
m

d
).
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For a prime r,

α(re) = ϕ(re)− ϕ(re−1) =
{
re−2(r − 1)2 for e ≥ 2,
r − 2 for e = 1.

Since ϕ(i) is multiplicative, α(i) is also multiplicative. Thus if α(i) = 0, then i = 2j and
j is odd.
On the other hand, it follows from the assumption that Φmq(η)t(η) = 1 for η ∈ ∆ and

so am =
∏
η∈∆ Φmq(η) = ±1. Thus |am| = 1, and so α(m) = 0. This implies m = 2
, 
 is

odd, and q > 2. Hence we have a contradiction for 
 ≥ 3 by above arguments
1 = Φ2�(−x)s(−x) + Φ2�q(−x)t(−x) = Φ�(x)s(−x) + Φ�q(x)t(−x).

We have also a contradiction for 
 = 1 by Φ2(−1) = 0
1 = Φ2(−1)s(−1) + Φ2q(−1)t(−1) = pt(−1).

Remark 1. It follows from Φm(x
ps) = Φmps(x)Φm(x

ps−1 ) for (p,m) = 1 that

Φmps(x) ≡ Φm(x)p
s−1(p−1) or Φm(x)

ps mod p.

We can see from Theorem 1 and the above that the ideal of Z[x] generated by
Φm(x),Φn(x) (m < n) can be calculated as follows:

(Φm(x),Φn(x)) =

{
(p,Φm(x)) if m|n and n

m
is a power of a prime p,

Z[x] otherwise.

The first part is an alternative proof of Proposition 1.

In the remainder of this paper, we consider our problem about xn − 1 and Φm(x).

Theorem 2. Let m0 be the product of distinct prime divisors of m. If m0 is not a
divisor of n, then there exist u(x), v(x) ∈ Z[x] such that

(xn − 1)u(x) + Φm(x)v(x) =
∏

d|(m0 ,n)

Φm0
d
(1).

Proof. We may assume that m = m0 from

Φm(x) = Φm0 (x
m
m0 ) and (x

m
m0 )n − 1 = (xn − 1) · (x

n)
m
m0 − 1

xn − 1 .

We assume d is a divisor of n. If d is not a divisor of m, there exist ud(x), vd(x) ∈ Z[x]
from Theorem 1 (1) such that

Φd(x)ud(x) + Φm(x)vd(x) = 1.

If d is a divisor of m, there exist ud(x), vd(x) ∈ Z[x] from Theorem 1 (2) such that

Φd(x)ud(x) + Φm(x)vd(x) = Φm
d
(1).

Thus we have from xn − 1 =
∏
d|n Φd(x),

(xn − 1)u(x) + Φm(x)v(x) =
∏

d|(m,n)

Φm
d
(1).
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Theorem 3 (Marciniak and Sehgal [3]). Letm0 be the product of distinct prime divisors
of m. If t = m0

(n,m0)
> 1 is not a prime, there exist integral polynomials u(x), v(x) ∈ Z[x]

such that
Φm(x)u(x) + (x

n − 1)v(x) = 1.
Proof. We may assume m = m0 from the same reason in Theorem 2.

If t is not a prime, we have Φm
d
(1) = 1 for all d|(m,n) because m

d
= m

(m,d)
is not a prime

since t = m
(m,n)

is a divisor of m
(m,d)

= m
d
.

Remark 2. If t is a prime p, then we have

Φm(x)u(x) + (x
n − 1)v(x) = Φt(1) = p.
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