BGP REFLECTION, TILTING MODULES AND TILTING COMPLEXES

JUN-ICHI MIYACHI

In this note, we review the transition from the notion of Bernstein-Gelfand-Ponomarev reflection functors to the notion of tilting complexes and triangulated equivalences.

1. Quivers and Path Algebras

Throughout this note, k is a field.

Definition 1.1. A quiver $\Delta = (\Delta_0, \Delta_1, h, t)$ is an oriented graph, where Δ_0 is a set of vertices and Δ_1 is a set of arrows between vertices. We use $h : \Delta_1 \to \Delta_0, t : \Delta_1 \to \Delta_0$ the maps defined by $h(\alpha) = j, t(\alpha) = i$ when $\alpha : i \to j$ is arrow from the vertex *i* to the vertex *j*. We denote by $\overline{\Delta}$ the underlying graph, that is obtained from Δ by forgetting the orientation of the arrows. Moreover, we often write $\Delta = (\overline{\Delta}, \Omega)$ when we give an orientation Ω to $\overline{\Delta}$. For $x \in \Delta_0$, let

$$x^{\geq} = \{ \alpha \in \Delta_1 | h(\alpha) = x \} \quad x^{\leq} = \{ \alpha \in \Delta_1 | t(\alpha) = x \}$$

A vertex x in Δ is called a sink (resp., a source) if $x^{\leq} = \phi$ (resp., $x^{\geq} = \phi$). A quiver $\Delta = (\Delta_0, \Delta_1, h, t)$ is called a locally finite quiver if $\#x^{\geq}, \#x^{\leq} < \infty$ for any $x \in \Delta_0$, and it is called a finite quiver if $\#\Delta_0, \#\Delta_1 < \infty$. A path $w = (b|\alpha_r, \ldots, \alpha_1|a) : a \rightsquigarrow b$ from the vertex a to the vertex b in the quiver Δ is a sequence of ordered arrows $\alpha_1, \ldots, \alpha_r$ such that $a = t(\alpha_1), h(\alpha_i) = t(\alpha_{i+1})$ $(1 \leq i \leq r-1), h(\alpha_r) = b$. In this case, a (resp., b) is called the tail t(w) (resp., the head h(w)) of w, and r is called the length of a path w. For every vertex i, the path $e_a = (a||a)$ of length 0 is called the empty path. A non-empty path w is called an oriented cycle if h(w) = t(w).

Definition 1.2. Let $\Delta = (\Delta_0, \Delta_1, h, t)$ be a finite quiver with $\Delta_0 = \{1, \dots, n\}$. For $\mathbf{x} = {}^t(x_1, \dots, x_n), \mathbf{y} = {}^t(y_1, \dots, y_n) \in \mathbb{Z}_{\geq 0}^n$, we define a bilinear form, a quadratic form and a symmetric bilinear form:

$$<\mathbf{x}, \mathbf{y}>_{\Delta} = \sum_{i \in \Delta_0} x_i y_i - \sum_{\alpha \in \Delta_1} x_{t(\alpha)} y_{h(\alpha)}$$
$$\chi_{\bar{\Delta}}(\mathbf{x}) = \sum_{i \in \Delta_0} x_i^2 - \sum_{\alpha \in \Delta_1} x_{t(\alpha)} x_{h(\alpha)}$$
$$(\mathbf{x}, \mathbf{y})_{\bar{\Delta}} = \frac{1}{2} (\chi_{\bar{\Delta}}(\mathbf{x} + \mathbf{y}) - \chi_{\bar{\Delta}}(\mathbf{x}) - \chi_{\bar{\Delta}}(\mathbf{y}))$$

Definition 1.3. Let $\Delta = (\Delta_0, \Delta_1, h, t)$ be a quiver. The k-linear path category $k\Delta$ of Δ is an additive category consisting of finite direct sums $\bigoplus_{a \in \Delta_0} a^{\oplus n_a}$ of vertices $a \in \Delta$ as objects, matrices of which entries are k-vectors spanned by all paths in Δ as morphisms,

and compositions of morphisms are defined by compositions of paths

$$(c|\alpha_s,\ldots,\alpha_{r+1}|b)\circ(b|\alpha_r,\ldots,\alpha_1|a)=(c|\alpha_s,\ldots,\alpha_1|a)$$

For example, the Hom-set $k\Delta(a, b)$ for vertices a, b is the k-vector space spanned by all paths $a \rightsquigarrow b$ from a to b:

$$k\Delta(a,b) = \langle w | w : a \rightsquigarrow b \rangle_k$$

Similarly, the path k-algebra $k\Delta$ is the k-vector space spanned by the set of all paths in Δ together with the multiplication induced by compositions of paths.

We often simply write $\alpha_r \ldots \alpha_1$ for $(b|\alpha_r, \ldots, \alpha_1|a)$.

Remark 1.4. If $\#\Delta_0 < \infty$, then $\sum_{x \in \Delta_0} e_x = 1$ in the k-algebra $k\Delta$.

Example 1.5. For a quiver

$$\Delta: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

we have

$$e_1k\Delta e_1 = \langle e_1 \rangle_k \quad e_2k\Delta e_1 = \langle \alpha \rangle_k \quad e_3k\Delta e_1 = \langle \beta \alpha \rangle_k$$

$$e_1k\Delta e_2 = O \qquad e_2k\Delta e_2 = \langle e_2 \rangle_k \quad e_3k\Delta e_2 = \langle \beta \rangle_k$$

$$e_1k\Delta e_3 = O \qquad e_2k\Delta e_3 = O \qquad e_3k\Delta e_3 = \langle e_3 \rangle_k$$

$$\chi_{\bar{\Delta}}(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 - x_1x_2 - x_2x_3$$

Then we have

$$k\Delta \cong \begin{bmatrix} k & 0 & 0 \\ k & k & 0 \\ k & k & k \end{bmatrix}$$

Example 1.6. For a quiver

$$\Delta: 1 \xrightarrow[\beta]{\alpha} 2$$

we have

$$e_1 k \Delta e_1 = \langle e_1 \rangle_k \quad e_2 k \Delta e_1 = \langle \alpha, \beta \rangle_k$$
$$e_1 k \Delta e_2 = 0 \qquad e_2 k \Delta e_2 = \langle e_2 \rangle_k$$
$$\chi_{\bar{\Delta}}(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1 x_2$$

Then we have

$$k\Delta \cong \begin{bmatrix} k & 0\\ k^2 & k \end{bmatrix}$$

Example 1.7. For a quiver

$$\Delta: 1 \xrightarrow{\alpha} 2 \bigcirc \beta$$

we have

$$e_1 k \Delta e_1 = \langle e_1 \rangle_k \quad e_2 k \Delta e_1 = \langle \alpha, \beta^n \alpha | n \in \mathbb{N} \rangle_k$$
$$e_1 k \Delta e_2 = 0 \qquad e_2 k \Delta e_2 = \langle e_2, \beta^n | n \in \mathbb{N} \rangle_k$$

$$\chi_{\bar{\Delta}}(\mathbf{x}) = x_1^2 - x_1 x_2$$

Then we have

$$k\Delta \cong \begin{bmatrix} k & 0\\ k[x] & k[x] \end{bmatrix}$$

2. Representations and BGP reflection

Definition 2.1. Given a quiver $\Delta = (\Delta_0, \Delta_1, h, t) (= (\overline{\Delta}, \Omega))$, a representation $M = (M(i); M(\alpha))$ of Δ over a field k is a family $(M(i))_{i \in \Delta_0}$ of k-vector spaces together with a family $(M(\alpha) : M(i) \to M(j))_{i \xrightarrow{\alpha} j \in \Delta_1}$ of k-linear maps. A representation $M = (M(i); M(\alpha))$ is called a (locally) finite dimensional representation if M(i) is a finite dimensional k-vector space for every $i \in \Delta_0$. For a finite dimensional representation M, the dimension vector of M is $\underline{\dim} M = (\dim_k M(i))_{i \in \Delta_0}$.

For $(M(i); M(\alpha)), (N(i); N(\alpha))$, a morphism $f : (M(i); M(\alpha)) \to (N(i); N(\alpha))$ is a family $(f_i : M(i) \to N(i))_{i \in \Delta_0}$ of k-linear maps satisfying that we have a commutative diagram

$$\begin{array}{ccc} M(i) & \xrightarrow{M(\alpha)} & M(j) \\ f_i & & & \downarrow f_j \\ N(i) & \xrightarrow{N(\alpha)} & N(j) \end{array}$$

for any $i \xrightarrow{\alpha} j \in \Delta_1$.

We denote by $\operatorname{\mathsf{Rep}}_k \Delta$ or $\operatorname{\mathsf{Rep}}_k(\overline{\Delta}, \Omega)$ (resp., $\operatorname{\mathsf{rep}}_k \Delta$ or $\operatorname{\mathsf{rep}}_k(\overline{\Delta}, \Omega)$) the category of representations (resp., finite dimensional representations) of Δ over k.

Remark 2.2. It is easy to see that $\operatorname{Rep}_k \Delta$ (resp., $\operatorname{rep}_k \Delta$) is equivalent to the category $\operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$ (resp., $\operatorname{Func}_k(k\Delta, \operatorname{mod} k)$) of k-linear additive functors from $k\Delta$ to the category of k-vector spaces (resp., finite dimensional k-vector spaces). Therefore, $\operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$ is an abelian category with direct sums and products. Let h^a : $k\Delta \to \operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$ (resp., $h_a: k\Delta \to \operatorname{Func}_k(k\Delta^{op}, \operatorname{Mod} k)$) be the functor defined by $h^a(x) = k\Delta(a, x)$ (resp., $h_a(x) = k\Delta(x, a)$) for any $x \in \Delta_0$. We often identify $\operatorname{Rep}_k \Delta$ with $\operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$. We often write $\operatorname{Mod} k\Delta = \operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$.

Definition 2.3. Let $\Delta = (\Delta_0, \Delta_1, h, t)$ (= (Δ, Ω)) be a quiver *a* a vertex. We define the representation $(S_a, S_a(\alpha))$ by

$$S_a(x) = \begin{cases} k \text{ if } x = a \\ 0 \text{ if } x \neq a \end{cases} \qquad S_a(\alpha) = 0$$

We define the representation $(P_a(i), P_a(\alpha))$ by $k\Delta(a, -) \in \operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$. In other words, for any vertex $x P_a(x)$ is the k-vector space spanned by paths from a to x: $P_a(x) = k\Delta(a, x) = \langle w | w : a \rightsquigarrow x \rangle_k$ and $P_a(\alpha)$ is the k-linear map defined by $P_a(\alpha)(w) = \alpha w$ for any arrow $\alpha : x \to y$ and any path $w : z \rightsquigarrow x$. Moreover, we define the representation $(Q_a(i), Q_a(\alpha))$ by $\operatorname{Hom}_k(k\Delta(-, a), k) : k\Delta \to \operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$.

Lemma 2.4 (Yoneda's Lemma). Let $a, b \in k\Delta$ and $M \in \operatorname{Func}_k(k\Delta, \operatorname{Mod} k)$. then the following hold.

- (1) We have the bijection $\theta_{-}: M(a) \to \operatorname{Hom}_{k\Delta}(k\Delta(a, -), M)$, where θ_{-} is defined by $(\theta_{\lambda})(b)(f) = M(f)(x)$ for $\lambda \in M(a)$, $f \in k\Delta(a, b)$.
- (2) We have the bijection $\theta_{-}: k\Delta(b, a) \to \operatorname{Hom}_{k\Delta}(k\Delta(a, -), k\Delta(b, -)).$

Example 2.5. For a quiver

$$\Delta: 1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$$

 $k\Delta = \langle e_1, e_2, e_3, \alpha, \beta \rangle_k$. A representation M of Δ over k is the following

$$M(1) \xrightarrow{M(\alpha)} M(2) \xleftarrow{M(\beta)} M(3)$$

By the standard technique of linear algebra, all indecomposable representations are up to isomorphisms the following

Example 2.6. For a quiver

$$\Delta': 1 \stackrel{\alpha}{\longleftarrow} 2 \stackrel{\beta}{\longrightarrow} 3$$

 $k\Delta' = \langle e_1, e_2, e_3, \alpha, \beta \rangle_k$. A representation M of Δ' over k is the following

$$N(1) \xleftarrow{N(\alpha)} N(2) \xrightarrow{N(\beta)} N(3)$$

By the standard technique of linear algebra, all indecomposable representations are up to isomorphisms the following

$$\begin{array}{lll} N_1 = Q_2: & 0 \leftarrow k \rightarrow 0 & N_2 = P_1: & k \leftarrow 0 \rightarrow 0 & N_3 = P_3: & 0 \leftarrow 0 \rightarrow k \\ N_4 = P_2: & k \leftarrow k \rightarrow k & N_5 = Q_3: & 0 \leftarrow k \rightarrow k & N_6 = Q_1: & k \leftarrow k \rightarrow 0 \end{array}$$

Definition 2.7. Let $\Delta = (\bar{\Delta}, \Omega)$ be a locally finite quiver, and *a* a sink (resp., a source) of $(\bar{\Delta}, \Omega)$. We define the new orientation $\sigma_a \Omega$ by reversing all arrows which are connected to the vertex *a*. We call σ_a the reflection. For a sink *a* in a quiver $(\bar{\Delta}, \Omega)$, we define the Bernstein-Gelfand-Ponomarev reflection functor (the BGP reflection functor) σ_a^+ : Rep_k $(\bar{\Delta}, \Omega) \rightarrow \text{Rep}_k(\bar{\Delta}, \sigma_a \Omega)$ as follows. For a *k*-representation $M = (M(i); M(\alpha))$ of $(\bar{\Delta}, \Omega)$, let

$$0 \to \sigma_a^+ M(a) \xrightarrow{(\beta_\alpha)} \oplus_{\alpha \in a^{\geq}} M(t(\alpha)) \xrightarrow{\sum_\alpha M(\alpha)} M(a)$$

be the canonical exact sequence and

$$\sigma_a^+ M(x) = \begin{cases} \sigma_a^+ M(a) & \text{if } x = a \\ M(x) & \text{if } x \neq a \end{cases} \qquad \sigma_a^+ M(\alpha) = \begin{cases} \beta_\alpha & \text{if } \alpha \in a^{\geq} \\ \alpha & \text{if } \alpha \notin a^{\geq} \end{cases}$$

Then $\sigma_a^+ M = (\sigma_a^+ M(i); \sigma_a^+ M(\alpha))$ is a representation of $(\bar{\Delta}, \sigma_a \Omega)$. Similarly, for a source b in a quiver $(\bar{\Delta}, \Omega)$, the BGP reflection functor $\sigma_b^- : \operatorname{\mathsf{Rep}}_k(\bar{\Delta}, \Omega) \to \operatorname{\mathsf{Rep}}_k(\bar{\Delta}, \sigma_b \Omega)$ is defined.

Theorem 2.8. Let $\Delta = (\bar{\Delta}, \Omega)$ be a locally finite quiver, and a sink of $(\bar{\Delta}, \Omega)$. Let \mathcal{T}_a (resp., \mathcal{Y}_a) be the subcategory of $\operatorname{Rep}_k(\bar{\Delta}, \Omega)$ (resp., $\operatorname{Rep}_k(\bar{\Delta}, \sigma_a\Omega)$) consisting representations which don't have S_a as a direct summand. Then the BGP reflection functors $\sigma_a^+ : \operatorname{Rep}_k(\bar{\Delta}, \Omega) \to \operatorname{Rep}_k(\bar{\Delta}, \sigma_a\Omega)$ and $\sigma_a^- : \operatorname{Rep}_k(\bar{\Delta}, \sigma_a\Omega) \to \operatorname{Rep}_k(\bar{\Delta}, \Omega)$ induce the equivalence between \mathcal{T}_a and \mathcal{Y}_a . A similar result holds for $\sigma_a^+ : \operatorname{rep}_k(\bar{\Delta}, \Omega) \to \operatorname{rep}_k(\bar{\Delta}, \sigma_a\Omega)$ and $\sigma_a^- : \operatorname{rep}_k(\bar{\Delta}, \sigma_a\Omega) \to \operatorname{rep}_k(\bar{\Delta}, \sigma_a\Omega)$.

Proof. By the construction of BGP reflection, we have the canonical functorial morphisms $\sigma_a^- \circ \sigma_a^+ \to \mathbf{1}_{\mathsf{Rep}_k(\bar{\Delta},\Omega)}$ and $\mathbf{1}_{\mathsf{Rep}_k(\bar{\Delta},\sigma_a\Omega)} \to \sigma_a^+ \circ \sigma_a^-$. For a representation $M = (M(i); M(\alpha))$ of $(\bar{\Delta}, \Omega)$, it is easy to see that $M \in \mathcal{T}_a$ if and only if $\sum_{\alpha \in a^{\geq}} \alpha$ is an epimorphism. Similarly, $N \in \mathcal{Y}_a$ if and only if $(\alpha)_{\alpha \in a^{\leq}}$ is a monomorphism for a representation $N = (N(i); N(\alpha))$ of $(\bar{\Delta}, \sigma_a \Omega)$. For $M \in \mathcal{T}_a$, we have a short exact sequence

$$0 \to \sigma_a^+ M(a) \xrightarrow{(\sigma_a^+ M(\alpha))_\alpha} \oplus_{\alpha \in a^{\geq}} M(t(\alpha)) \xrightarrow{\sum_\alpha M(\alpha)} M(a) \to 0$$

Then we have $\operatorname{Im}(\sigma_a^+|_{\mathcal{I}_a}) \subset \mathcal{Y}_a$, and $\mathbf{1}_{\operatorname{\mathsf{Rep}}_k(\bar{\Delta},\Omega)} \to \sigma_a^- \circ \sigma_a^+|_{\mathcal{I}_a}$ is an isomorphism. Similarly, $\operatorname{Im}(\sigma_a^-|_{\mathcal{Y}_a}) \subset \mathcal{I}_a$, and $\sigma_a^+ \circ \sigma_a^-|_{\mathcal{Y}_a} \to \mathbf{1}_{\operatorname{\mathsf{Rep}}_k(\bar{\Delta},\sigma_a\Omega)}$ is an isomorphism. \Box

Definition 2.9. Let $\overline{\Delta}$ be underlying graph of a quiver $\Delta = (\Delta_0, \Delta_1, h, t)$ with $\Delta_0 = \{1, \dots, n\}$, and $(-, -)_{\overline{\Delta}}$ the associated symmetric bilinear form. For a vertex a of $\overline{\Delta}$ and $\mathbf{x} \in \mathbb{Z}^n$, we define the following reflection of \mathbb{Z}^n

$$\sigma_a(\mathbf{x}) = \mathbf{x} - 2(\mathbf{x}, \mathbf{e}_a)_{\bar{\Delta}} \mathbf{e}_a$$

Here \mathbf{e}_a is the *a*-th fundamental vector. For $\{a_1, \dots, a_n\} = \{1, \dots, n\}, c = \sigma_{a_1}\sigma_{a_2}\cdots\sigma_{a_n}$ is called a Coxeter transformation. Moreover, we define the group generated by reflections

$$W_{\bar{\Delta}} = \{\sigma_{a_1} \cdots \sigma_{a_r} | r \ge 0, \ \sigma_{a_1}, \cdots, \sigma_{a_r} \text{ are reflections} \}$$

For $\mathbf{x} \in \mathbb{Z}^n$, \mathbf{x} is called positive $\mathbf{x} > \mathbf{0}$ if $\mathbf{x} \neq \mathbf{0}$ and $x_i \ge 0$ $(1 \le i \le n)$, \mathbf{x} is called a root if $\chi_{\bar{\Delta}}(\mathbf{x}) = 1$, and \mathbf{x} is called a radical vector if $\chi_{\bar{\Delta}}(\mathbf{x}) = 0$. In the case that $\bar{\Delta}$ is Dynkin, $W_{\bar{\Delta}}$ is called a Weyl group.

Definition 2.10. Let $\Delta = (\overline{\Delta}, \Omega)$ be a quiver with. A sequence of vertices $\{a_1, \dots, a_n\}$ is called an absorbing sequence (resp., diverging sequence) for $(\overline{\Delta}, \Omega)$ if a_{i+1} is a sink (resp., source) of $(\overline{\Delta}, \sigma_{a_i} \cdots \sigma_{a_1} \Omega)$ for any $0 \leq i < n$. For a finite quiver Δ which does not contain oriented cycles, we have both an absorbing sequence and a diverging sequence which is coincides with the set of vertices.

Corollary 2.11. Let $\Delta = (\bar{\Delta}, \Omega)$ be a finite quiver, a a sink and b a source of $(\bar{\Delta}, \Omega)$, and M an indecomposable representation in $\operatorname{rep}_k(\bar{\Delta}, \Omega)$.

(1) If $\sigma_a^+ M = 0$, then $M \cong S_a$.

FIGURE 1. Dynkin graphs

- (2) If $\sigma_a^+ M \neq 0$, then $\underline{\dim} \sigma_a^+ M = \sigma_a(\underline{\dim} M)$ and $\sigma_a^- \sigma_a^+ M \cong M$.
- (3) If $\sigma_b^- M = 0$, then $M \cong S_b$.
- (4) If $\sigma_b^- M \neq 0$, then $\underline{\dim} \sigma_b^- M = \sigma_b(\underline{\dim} M)$ and $\sigma_b^+ \sigma_b^- M \cong M$.

Example 2.12. In Examples 2.5 and 2.6, $\Delta' = (\bar{\Delta}, \sigma_2 \Omega)$, and we have the BGP reflections $\sigma_2^+ : \operatorname{rep}_k \Delta \to \operatorname{rep}_k \Delta'$ and $\sigma_2^- : \operatorname{rep}_k \Delta' \to \operatorname{rep}_k \Delta$ such that $\sigma_2^+ M_1 = 0$, $\sigma_2^- N_1 = 0$, $\sigma_2^+ M_i \cong N_i$ and $\sigma_2^- N_i \cong M_i$ $(2 \le i \le 6)$.

Theorem 2.13 (Root System and Weyl Group). Let $\Delta = (\Delta, \Omega)$ be a quiver such that $\overline{\Delta}$ is a Dynkin diagram. Then the following hold.

- (1) The Weyl group $W_{\overline{\Delta}}$ is a finite group.
- (2) There is no radical vector except the zero vector $\mathbf{0}$.
- (3) For any Coxeter transformation $c, c\mathbf{v} = \mathbf{v}$ implies $\mathbf{v} = \mathbf{0}$.

Corollary 2.14. Let $\Delta = (\bar{\Delta}, \Omega)$ be a quiver such that $\bar{\Delta}$ is a Dynkin diagram. For any indecomposable representation $M \operatorname{rep}_k(\bar{\Delta}, \Omega)$, there is a absorbing (resp.m diverging) sequence $\{a_1, \dots, a_s\}$ and some vertex a such that $M \cong \sigma_{a_s}^+ \cdots \sigma_{a_1}^+ S_a$ (resp., $M \cong$ $\sigma_{a_s}^- \cdots \sigma_{a_1}^- S_a)$.

Proof. Let $\Delta_0 = \{1, \dots, n\}, \{a_1, \dots, a_n\}$ an absorbing (resp., diverging) sequence with $\{a_1, \dots, a_n\} = \{1, \dots, n\}, \text{ and } c = \sigma_{a_n} \cdots \sigma_{a_1}.$ Since $W_{\bar{\Delta}}$ is a finite group, there is an integer r such that $c^r = 1$. Let $\mathbf{v} = \sum_{i=1}^r c^i \underline{\dim} M$, then $c\mathbf{v} = \mathbf{v}$. By Theorem 2.13 (3) $\mathbf{v} = \mathbf{0}$, and therefore $c^i \underline{\dim} M \neq \mathbf{0}$ for some i. According to Corollary 2.11, we have the statement.

Definition 2.15. Let $\Delta = (\bar{\Delta}, \Omega)$ be a finite connected quiver, and a a sink of $(\bar{\Delta}, \Omega)$. Then we have the canonical exact sequence in $\operatorname{Rep}_k(\bar{\Delta}, \Omega)$:

$$0 \to P_a \xrightarrow{(h^{\alpha})_{\alpha}} \bigoplus_{\alpha \in a^{\geq}} P_{t(\alpha)} \xrightarrow{\sum_{\alpha} \sigma(\alpha)} T_a \to 0$$

We define the representation

$$T = T_a \oplus \bigoplus_{b \neq a} P_b$$

-46-

Proposition 2.16. Let $\Delta = (\overline{\Delta}, \Omega)$ be a finite quiver, and a sink of $(\overline{\Delta}, \Omega)$. By identifying $\operatorname{Rep}_k(\overline{\Delta}, \Omega)$ with $\operatorname{Mod} k\Delta$, then the following hold.

- (1) The functor σ_a^+ is isomorphic to the functor $\operatorname{Hom}_{k\Delta}(T,-)$: $\operatorname{Mod} k(\bar{\Delta},\Omega) \to \operatorname{Mod} k(\bar{\Delta},\sigma_a\Omega)$.
- (2) $\mathcal{T}_a = \{ M \in \mathsf{Rep}_k(\bar{\Delta}, \Omega) | \operatorname{Ext}^1_{k\Delta}(T, M) = 0 \}$

Proof. (1) By Yoneda's lemma 2.4 we have the following isomorphism between exact sequences \mathbb{P}^{2}

(2) Since \mathcal{T}_a is the subcategory consisting representations which don't have S_a as a direct summand, $M \in \mathcal{T}_a$ if and only if $\sum_{\alpha} M(\alpha) : \bigoplus_{\alpha \in a^{\geq}} M(t(\alpha)) \to M(a)$ is an epimorphism if and only if $\operatorname{Hom}((h^{\alpha})_{\alpha}, M)$ is an epimorphism if and only if $\operatorname{Ext}^1(T, M) \cong \operatorname{Ext}^1(T_a, M) = 0$.

Definition 2.17. Let \mathcal{C} be an additive category. For $M \in \mathcal{C}$, We define Add M (resp., add M) the full subcategory of \mathcal{C} consisting of objects which are direct summands of coproducts (resp., finite coproducts) of copies of M.

Proposition 2.18. Let $\Delta = (\overline{\Delta}, \Omega)$ be a finite quiver, and a sink of $(\overline{\Delta}, \Omega)$, T a representation of Definition 2.15. Then the following hold.

- (1) $\operatorname{pdim}_{k\Delta} T \leq 1$.
- (2) $\operatorname{Ext}_{k\Delta}^{1}(T,T) = 0.$
- (3) We have an exact sequence $0 \to \bigoplus_{x \in \Delta_0} P_x \to T^0 \to T^1 \to 0$ with $T^0, T^1 \in \operatorname{\mathsf{add}} T$.

Proof. By the definition of T, we have the exact sequence

$$0 \to \bigoplus_{x \in \Delta_0} P_x \to (\bigoplus_{x \in \Delta_0 \setminus \{a\}} P_x) \oplus (\bigoplus_{\alpha \in a^{\geq}} P_{t(\alpha)}) \to T_a \to 0$$

Then the statements (1) and (3) hold. If T_a has P_a as a direct summand, then so has $\bigoplus_{\alpha \in a^{\geq}} P_{t(\alpha)}$. This contradicts in *a* being a sink. Therefore T_a does not have P_a as a direct summand. By Proposition 2.16, we have $\operatorname{Ext}^1(T_a, T_a) = 0$. Similarly, $\operatorname{Ext}^1(T_a, P_b) = 0$ for $b \neq a$ because P_b does not have P_a as a direct summand. \Box

3. TILTING MODULES

For a ring R, we denote by Mod R^{op} (resp., mod R^{op}) the category of right (resp., finitely presented right) R-modules, and denote by $\text{Proj } R^{\text{op}}$ (resp., $\text{proj } R^{\text{op}}$, $\text{Inj } R^{\text{op}}$) the category of projective (resp., finitely projective, injective) R-modules.

Definition 3.1. Let R be a ring. A right R-module T is called a (classical) tilting module provided that the following hold.

- (1) There is an exact sequence $0 \to P_1 \to P_0 \to T \to 0$ with $P_1, P_0 \in \operatorname{proj} R^{\operatorname{op}}$.
- (2) $\operatorname{Ext}_{R}^{1}(T,T) = 0.$
- (3) There is an exact sequence $0 \to R \to T^0 \to T^1 \to 0$ with $T^0, T^1 \in \mathsf{add} T$.

Lemma 3.2. Let R be a ring, X a right R-module with $S = \operatorname{End}_R(X)$, and $X' \in \operatorname{add} X$.

- (1) $\operatorname{Hom}_{\mathcal{C}}(X',Y) \xrightarrow{\sim} \operatorname{Hom}_{S}(\operatorname{Hom}_{R}(X,X'),\operatorname{Hom}_{R}(X,Y))$ $(f \mapsto \operatorname{Hom}_{R}(X,f)) \text{ for all } Y \in \operatorname{\mathsf{Mod}} R^{\operatorname{op}}.$
- (2) $\operatorname{Hom}_R(X, X') \otimes_S X \xrightarrow{\sim} X' \quad (f \otimes x \mapsto f(x))$
- (3) $X' \xrightarrow{\sim} \operatorname{Hom}_{S}(\operatorname{Hom}_{R}(X', X), X) \quad (x' \mapsto (f \mapsto f(x')))$

Proof. Let $q_1, \dots, q_n : X' \to X$ and $p_1, \dots, p_n : X \to X'$ be morphisms such that $\sum_{i=1}^n p_i q_i = 1$. Then the following are the inverse of the above: Hom_S(Hom_P(X, X') Hom_P(X, Y)) \to Hom_S(X', Y)($\phi \mapsto \sum_{i=1}^n \phi(n_i) q_i$)

$$\operatorname{Hom}_{S}(\operatorname{Hom}_{R}(X, X'), \operatorname{Hom}_{R}(X, Y)) \to \operatorname{Hom}_{\mathcal{C}}(X', Y)(\phi \mapsto \sum_{i=1}^{n} \phi(p_{i})q_{i}) X' \to \operatorname{Hom}_{R}(X, X') \otimes_{S} X \quad (x' \mapsto \sum_{i=1}^{n} p_{i} \otimes q_{i}(x')) \operatorname{Hom}_{S}(\operatorname{Hom}_{R}(X', X), X) \to X' \quad (\psi \mapsto \sum_{i=1}^{n} p_{i}\psi(q_{i}))$$

Lemma 3.3. Let A be a finite dimensional k-algebra, $M, N \in \text{mod } A^{\text{op}}$. Then there exists a morphism $f : M^{\oplus n} \to N$ such that $\text{Hom}(M, f) : \text{Hom}_A(M, M^{\oplus n}) \to \text{Hom}_A(M, N)$ is surjective.

Proof. Since $\operatorname{Hom}_A(M, N)$ is a finite dimensional k-vector space, we can take a k-basis f_1, \dots, f_n of $\operatorname{Hom}_A(M, N)$, and then $f = (f_1, \dots, f_n) : M^{\oplus n} \to N$.

Definition 3.4. Let A be a finite dimensional k-algebra, T_A a tilting right A-module. We define a pair of full subcategories of $\text{mod } A^{\text{op}}$

$$\mathcal{T}(T) = \{ X \in \operatorname{mod} A^{\operatorname{op}} : \operatorname{Ext}^{1}_{A}(T, X) = 0 \},\$$

$$\mathcal{F}(T) = \{ X \in \operatorname{mod} A^{\operatorname{op}} : \operatorname{Hom}_{A}(T, X) = 0 \}.$$

For any $X \in \operatorname{\mathsf{mod}} A^{\operatorname{op}}$, we define a subobject of X

$$t_T(X) = \sum_{f \in \operatorname{Hom}_A(T,X)} \operatorname{Im} f$$

and an exact sequence in $\operatorname{\mathsf{mod}} A^{\operatorname{op}}$

$$(e_X): 0 \to t_T(X) \xrightarrow{j_X} X \to f_T(X) \to 0.$$

Definition 3.5. A pair $(\mathcal{T}, \mathcal{F})$ of full subcategories in an abelian category \mathcal{A} is called a torsion pair of \mathcal{A} provided that the following conditions are satisfied:

- (i) $\mathcal{T} \cap \mathcal{F} = \{0\};$
- (ii) \mathcal{T} is closed under factor objects;
- (iii) \mathcal{F} is closed under subobjects;
- (iv) for any object X of \mathcal{A} , there exists an exact sequence $0 \to X' \to X \to X'' \to 0$ in \mathcal{A} with $X' \in \mathcal{T}$ and $X'' \in \mathcal{F}$.

Proposition 3.6. Let A be a finite dimensional k-algebra, T_A a tilting right A-module. Then $(\mathcal{T}(T), \mathcal{F}(T))$ is a torsion pair of mod A^{op} such that $\mathcal{T}(T)$ is the category of finitely generated right A-modules which are generated by T. *Proof.* It is clear that $\mathcal{F}(T)$ is closed under submodules. Since $\operatorname{Ext}_A^2(T, -) = 0$, $\mathcal{T}(T)$ is closed under factor modules. For any $X \in \operatorname{mod} A^{\operatorname{op}}$, we have an exact sequence

 $0 \to \operatorname{Hom}(T, t_T(X)) \xrightarrow{\sim} \operatorname{Hom}(T, X) \to \operatorname{Hom}(T, f_T(X)) \to \operatorname{Ext}^1(T, t_T X)$

Since $\operatorname{Ext}^{1}(T, tX) = 0$, we have $\operatorname{Hom}(T, f_{T}(X)) = 0$, and hence $t_{T}(X) \in \mathcal{T}(T), f_{T}(X) \in \mathcal{F}(T)$. For any $Y \in \operatorname{mod} A^{\operatorname{op}}$, we have an exact sequence

$$0 \to \operatorname{Hom}(T^1, Y) \to \operatorname{Hom}(T^0, Y) \to \operatorname{Hom}(A, Y) \to \operatorname{Ext}^1(T^1, Y)$$

If $Y \in \mathcal{T}(T) \cap \mathcal{F}(T)$, then $\operatorname{Hom}(T^0, Y) = \operatorname{Ext}^1(T^1, Y) = 0$. Therefore $Y \cong \operatorname{Hom}(A, Y) = 0$.

Proposition 3.7. Let A be a finite dimensional k-algebra, T_A a tilting right A-module with $B = \text{End}_A(T)$. Then the following hold for $M, N \in \mathcal{T}(T)$.

- (1) We have an exact sequence $\cdots \to T_1 \to T_0 \to M \to 0$ $(T_i \in \operatorname{\mathsf{add}} T)$ such that $\cdots \to \operatorname{Hom}_A(T, T_1) \to \operatorname{Hom}_A(T, T_0)$ is a projective resolution of $\operatorname{Hom}_A(T, M)$.
- (2) $\operatorname{Tor}_{1}^{B}(\operatorname{Hom}_{A}(T, M), T) = 0.$
- (2) $\operatorname{Hom}_A(T, M) \otimes_B T \cong M.$
- (4) $\operatorname{Ext}_{A}^{i}(M, N) \xrightarrow{\sim} \operatorname{Ext}_{B}^{i}(\operatorname{Hom}_{A}(T, M), \operatorname{Hom}_{A}(T, N))$ for any *i*.

Proof. By Lemma 3.3, We have exact sequences $0 \to M_{i+1} \to T_i \to M_i \to 0$ such that $M_0 = M, T_i \in \operatorname{add} T$ and $M_i \in \mathcal{T}(T)$ for any *i*. Then we have exact sequences

$$0 \to \operatorname{Hom}_A(T, M_{i+1}) \to \operatorname{Hom}_A(T, T_i) \to \operatorname{Hom}_A(T, M_i) \to 0$$

Therefore, the resolution $T_{\bullet} \to M$ satisfies that $\operatorname{Hom}_A(T, T_{\bullet}) \to \operatorname{Hom}_A(T, M)$ is a projective resolution. By Lemma 3.2 we have a commutative diagram

For $N \in \mathcal{T}(T)$, we have an exact sequence and an isomorphism

$$0 \to \operatorname{Hom}_{A}(M_{i}, N) \to \operatorname{Hom}_{A}(T_{i}, N) \to \operatorname{Hom}_{A}(M_{i+1}, N) \to \operatorname{Ext}_{A}^{1}(M_{i}, N) \to 0$$
$$\operatorname{Ext}_{A}^{j+1}(M_{i+1}, N) \cong \operatorname{Ext}_{A}^{j+2}(M_{i}, N)$$

for any $i, j \ge 0$. By Lemma 3.2 we have

$$\operatorname{Ext}_{B}^{i}(\operatorname{Hom}_{A}(T, M), \operatorname{Hom}_{A}(T, N)) \cong \operatorname{H}^{i}(\operatorname{Hom}_{B}(\operatorname{Hom}_{A}(T, T_{\bullet}), \operatorname{Hom}_{A}(T, N)))$$
$$\cong \operatorname{H}^{i}(\operatorname{Hom}_{A}(T_{\bullet}, N))$$
$$\cong \begin{cases} \operatorname{Hom}_{A}(M, N) & (i = 0) \\ \operatorname{Ext}_{A}^{1}(M_{i}, N) \cong \operatorname{Ext}_{A}^{i}(M, N) & (i > 0) \end{cases}$$

Proposition 3.8. Let A be a finite dimensional k-algebra, T_A a tilting right A-module with $B = \operatorname{End}_A(T)$. Then the following hold for $M \in \operatorname{mod} A^{\operatorname{op}}$ and $N \in \operatorname{mod} B^{\operatorname{op}}$.

- (1) $0 \to \operatorname{Hom}_A(T, M) \otimes_B T \xrightarrow{\epsilon_M} M \to \operatorname{Tor}_1^B(\operatorname{Ext}_A^1(T, M), T) \to 0$ $\operatorname{Ext}_A^1(T, M) \otimes_B T = 0$
- (2) $0 \to \operatorname{Ext}_{A}^{1}(T, \operatorname{Tor}_{1}^{B}(N, T)) \to N \to \operatorname{Hom}_{A}(T, N \otimes_{B} T) \to 0$ $\operatorname{Hom}_{A}(T, \operatorname{Tor}_{1}^{B}(N, T)) = 0$

Proof. By applying $\operatorname{Hom}_A(-, T)$ to the exact sequence $0 \to A \to T^0 \to T^1 \to 0$, we have a projective resolution of $_BT: 0 \to Q_1 \to Q_0 \to T \to 0$.

(1) Let $M \to I^{\bullet}$ be an injective resolution and $F := \operatorname{Hom}_A(T, -)$, then by Proposition 3.7 we have the exact sequence

$$0 \to F(I^{\bullet}) \otimes_B Q_1 \to F(I^{\bullet}) \otimes_B Q_0 \to F(I^{\bullet}) \otimes_B T \to 0$$

By Proposition 3.7 we have $F(I^{\bullet}) \otimes_B T \cong I^{\bullet}$. Therefore we have the exact sequence

$$0 \to F(M) \otimes_B Q_1 \to F(M) \otimes_B Q_0 \to M \to \operatorname{Ext}^1_A(T, M) \otimes_B Q_1$$
$$\to \operatorname{Ext}^1_A(T, M) \otimes_B Q_0 \to 0$$

(2) Let $L_{\bullet} \to N$ be a projective resolution. Applying $\operatorname{Hom}(-, L_{\bullet} \otimes_B T)$ to the projective resolution $0 \to P_1 \to P_0 \to T \to$, we have the exact sequence

$$0 \to \operatorname{Hom}_{A}(T, L_{\bullet} \otimes_{B} T) \to \operatorname{Hom}_{A}(P_{0}, L_{\bullet} \otimes_{B} T) \to \operatorname{Hom}_{A}(P_{1}, L_{\bullet} \otimes_{B} T) \to 0$$

Since $\operatorname{Hom}_A(T, L_{\bullet} \otimes_B T) \cong L_{\bullet}$, we have the exact sequence

$$0 \to \operatorname{Hom}_{A}(P_{0}, \operatorname{Tor}_{1}^{B}(N, T)) \to \operatorname{Hom}_{A}(P_{1}, \operatorname{Tor}_{1}^{B}(N, T)) \to N$$
$$\to \operatorname{Hom}_{A}(P_{0}, L_{\bullet} \otimes_{B} T) \to \operatorname{Hom}_{A}(P_{1}, L_{\bullet} \otimes_{B} T) \to 0$$

For a finite dimensional k-algebra A, let $S_1, \dots S_n$ be a complete set of simple right A-modules. Let F(A) be the free abelian group generated by isomorphism classes [X] of right A-modules $X \in \operatorname{mod} A^{\operatorname{op}}$, R(A) the subgroup of F(A) generated by [Y] - [X] - [Z] for all exact sequence $0 \to X \to Y \to Z \to 0$, and the Grothendieck group of A is $K_0(A) = F(A)/R(A)$. Then $K_0(A)$ is generated by $S_1, \dots S_n$, and hence $K_0(A) \cong \mathbb{Z}^n$. For $M \in \operatorname{mod} A^{\operatorname{op}}$, we define $\operatorname{\underline{\dim}} M := (\#S_i$ -composition factor of $M)_i$.

Theorem 3.9. Let A be a finite dimensional k-algebra, T_A a tilting right A-module with $B = \operatorname{End}_A(T)$. Let $F = \operatorname{Hom}_A(T, -), F' = \operatorname{Ext}_A^1(T, -), G = - \otimes_B T, G' = \operatorname{Tor}_1^B(-, T)$, and $\mathcal{X}(T) = \operatorname{Ker} G, \ \mathcal{Y}(T) = \operatorname{Ker} G'$ Then the following hold.

- (1) $(\mathcal{X}(T), \mathcal{Y}(T))$ is a torsion pair of mod B^{op} .
- (2) F and G induce the equivalence between $\mathcal{T}(T)$ and $\mathcal{Y}(T)$.
- (3) F' and G' induce the equivalence between $\mathcal{F}(T)$ and $\mathcal{X}(T)$.
- (4) FG' = F'G = 0 and GF' = G'F = 0.
- (5) $_BT$ is a tilting left B-module with $A^{\text{op}} \cong \text{End}_B(T)$.
- (6) Let $f : K_0(A) \to K_0(B)$ be a function defined by $f(\underline{\dim}M) = \underline{\dim}F(M) \underline{\dim}F'(M)$ for $M \in \text{mod } A^{\text{op}}$, then f is a group isomorphism.

Proof. (4) $G(N) \in \mathcal{T}$ implies F'G = 0. By Proposition 3.7 G'F = 0. By Proposition 3.8 FG' = 0 and GF' = 0.

(1) By Proposition 3.8, $N \in \mathcal{X}(T) \cap \mathcal{Y}(T)$ implies N = 0. By (4) and Proposition 3.8 $(\mathcal{X}(T), \mathcal{Y}(T))$ is a torsion pair of mod B^{op}

(2), (3) By Proposition 3.8.

(5) Applying $(-)^{**} = \operatorname{Hom}_B(\operatorname{Hom}_A(-,T),T)$ to $0 \to A \to T^0 \to T^1 \to 0$, by Lemma 3.2 we have a commutative diagram

where all vertical arrows are isomorphisms. It is easy to see that the composition $A \xrightarrow{\sim} A^{**} \xrightarrow{\sim} \operatorname{End}_B(T)$ is an anti-ring isomorphism.

(6) For an exact sequence $0 \to X \to Y \to Z \to 0$ in mod A^{op} , we have an exact sequence

$$0 \to F(X) \to F(Y) \to F(Z) \to F'(X) \to F'(Y) \to F'(Z) \to 0$$

Then $f(\underline{\dim} Y) = f(\underline{\dim} X) + f(\underline{\dim} Z)$ and f is a group morphism. By Lemma 3.8, f is an epimorphism, and rank $K_0(A) \ge \operatorname{rank} K_0(B)$. By (5) we have rank $K_0(A^{\operatorname{op}}) \le \operatorname{rank} K_0(B^{\operatorname{op}})$. Therefore f is an isomorphism.

Theorem 3.10. Let A be a finite dimensional k-algebra, T_A a tilting right A-module with $B = \text{End}_A(T)$. Then the following hold.

- (1) For $M \in \mathcal{T}(T)$, $\operatorname{idim} F(M) \leq \operatorname{idim} M + 1$.
- (2) For $N \in \mathcal{F}(T)$, $\operatorname{idim} F'(N) \leq \operatorname{idim} N$ and $\operatorname{Ext}_B^n(F(-), F'(N)) = 0$ if $\operatorname{idim} N = n$.
- (3) For a right injective A-module I, we have a functorial isomorphism $\operatorname{Hom}_A -, I)|_{\mathcal{F}(T)} \cong \operatorname{Ext}_A^1(F'(-), F(I))|_{\mathcal{F}(T)}.$

Proof. Let $0 \to M \to I^0 \to \cdots \to I^n \to 0$ be an injective resolution.

(1) Since any injective right A-module belong to $\mathcal{T}(T)$ and $\mathcal{T}(T)$ is closed under factor modules, we have an exact sequence $0 \to F(M) \to F(I^0) \to \cdots \to F(I^n) \to 0$. $F(A^{\vee}) \cong T^{\vee}$ implies idim $F(A^{\vee}) \leq 1$. By $F(I) \in \operatorname{add} F(A^{\vee})$, we have idm $F(M) \leq n+1$.

(2) Assume that $\operatorname{idim} N \leq n$. Let $0 \to N \to Q \to K \to 0$ be an exact sequence with Q being injective, then we have an exact sequence $0 \to F(Q) \to F(K) \to F'(N) \to 0$. Since $\operatorname{idim} F(Q) \leq 1$ and $\operatorname{idim} F(K) \leq n - 1 + 1$, $\operatorname{idim} F'(N) \leq n$. For $M \in \mathcal{T}(T)$, we have an exact sequence

$$\operatorname{Ext}_{B}^{n}(F(M), F(K)) \to \operatorname{Ext}_{B}^{n}(F(M), F'(N)) \to \operatorname{Ext}_{B}^{n+1}(F(M), F(Q))$$

By (1) and $\operatorname{Ext}_{B}^{n}(F(M), F(K)) \cong \operatorname{Ext}_{A}^{n}(M, K) = 0$, we have $\operatorname{Ext}_{B}^{n}(F(M), F'(N)) = 0$.

(3) By Proposition 3.7 we have a commutative diagram

Since $\operatorname{Ext}_{B}^{1}(F(K), F(I)) \cong \operatorname{Ext}_{A}^{1}(K, I) = 0$, α_{N} is an isomorphism.

Corollary 3.11. gldim $B \leq \text{gldim } A + 1$.

Corollary 3.12. If gldim $A \leq 1$, then $(\mathcal{X}(T), \mathcal{Y}(T))$ splits, that is $\operatorname{Ext}_{B}^{1}(\mathcal{X}(T), \mathcal{Y}(T)) = 0$

Lemma 3.13 (Bongartz's lemma). Let A be a finite dimensional k-algebra, T_A a finitely generated right A-module such that pdim $T \leq 1$ and $\operatorname{Ext}^1_A(T,T) = 0$. Then there exists a finitely generated right A-module T' such that $T \oplus T'$ is a tilting module.

Proof. Let e_1, \dots, e_n be a k-basis of $\operatorname{Ext}^1_A(T, A)$. Consider the push-out diagram

then we have an exact sequence

$$\operatorname{Hom}_A(T, T^{\oplus n}) \xrightarrow{\circ} \operatorname{Ext}^1_A(T, A) \to \operatorname{Ext}^1_A(T, T') \to 0$$

By the construction of e, δ is an epimorphism, and hence $\operatorname{Ext}_A^1(T, T') = 0$. Moreover we have exact sequences

$$0 = \operatorname{Ext}_{A}^{1}(T^{\oplus n}, T) \to \operatorname{Ext}_{A}^{1}(T', T) \to \operatorname{Ext}_{A}^{1}(A, T) = 0$$
$$0 = \operatorname{Ext}_{A}^{1}(T^{\oplus n}, T') \to \operatorname{Ext}_{A}^{1}(T', T') \to \operatorname{Ext}_{A}^{1}(A, T') = 0$$

Therefore we have $\operatorname{Ext}_{A}^{1}(T \oplus T', T \oplus T') = 0$. It is clear that $\operatorname{pdim} T' \leq 1$. Hence $T \oplus T'$ is a tilting module.

Theorem 3.14. Let A be a finite dimensional k-algebra, T_A a finitely generated right A-module such that pdim $T \leq 1$ and $\operatorname{Ext}^1_A(T,T) = 0$. Then the following are equivalent.

- (1) T is a tilting A-module.
- (2) The number of non-isomorphic indecomposable modules which are direct summand of T is the number of non-isomorphic simple A-modules.

Proof. $(1) \Rightarrow (2)$ By Theorem 3.10. $(2) \Rightarrow (1)$ By Lemma 3.13.

4. TRIANGULATED CATEGORIES

Definition 4.1. A triangulated category C is an additive category together with

(1) an autofunctor $\Sigma : \mathcal{C} \xrightarrow{\sim} \mathcal{C}$ (i.e. there is Σ^{-1} such that $\Sigma \circ \Sigma^{-1} = \Sigma^{-1} \circ \Sigma = \mathbf{1}_{\mathcal{C}}$) called the *translation* (or suspension), and

(2) a collection \mathcal{T} of sextuples (X, Y, Z, u, v, w):

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \Sigma(X)$$

called (*distinguished*) triangles. These data are subject to the following four axioms: (TR1) (1) For a commutative diagram of which all vertical arrows are isomorphisms

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} \Sigma(X) \\ & & & \downarrow^{f} & & \downarrow^{g} & & \downarrow^{h} & & \downarrow^{\Sigma(f)} \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} \Sigma(X') \end{array}$$

-52-

if (X, Y, Z, u, v, w) is a (distinguished) triangle, then (X', Y', Z', u', v', w') is a (distinguished) triangle.

(2) Every morphism $u: X \to Y$ is embedded in a (distinguished) triangle

(3) For any $X \in \mathcal{C}$,

$$X \xrightarrow{1} X \to 0 \to \Sigma(X)$$

is a (distinguished) triangle

(TR2) A sextuple

$$X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \Sigma(X)$$

is a (distinguished) triangle if and only if

$$Y \xrightarrow{v} Z \xrightarrow{w} \Sigma(X) \xrightarrow{-\Sigma(u)} \Sigma(Y)$$

is a (distinguished) triangle.

(TR3) For any (distinguished) triangles (X, Y, Z, u, v, w), (X', Y', Z', u', v', w') and a commutative diagram

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} \Sigma(X) \\ & & & & \downarrow^{g} \\ & & & \downarrow^{g} \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} \Sigma(X') \end{array}$$

there exists $h: \mathbb{Z} \to \mathbb{Z}'$ which makes a commutative diagram

$$\begin{array}{cccc} X & \stackrel{u}{\longrightarrow} Y & \stackrel{v}{\longrightarrow} Z & \stackrel{w}{\longrightarrow} \Sigma(X) \\ & & & & \downarrow^{g} & & \downarrow^{h} & & \downarrow^{\Sigma(f)} \\ X' & \stackrel{u'}{\longrightarrow} Y' & \stackrel{v'}{\longrightarrow} Z' & \stackrel{w'}{\longrightarrow} \Sigma(X') \end{array}$$

(TR4) (Octahedral axiom) For any two consecutive morphisms $u : X \to Y$ and $v : Y \to Z$, if we embed u, vu and v in (distinguished) triangles (X, Y, Z', u, i, i'), (X, Z, Y', vu, k, k') and (Y, Z, X', v, j, j'), respectively, then there exist morphisms

 $f: Z' \to Y', g: Y' \to X'$ such that the following diagram commute

and the third column is a triangle.

Sometimes, we write X[i] for $\Sigma^i(X)$.

Definition 4.2 (∂ -functor). Let \mathcal{C} , \mathcal{C}' be triangulated categories. An additive functor $F : \mathcal{C} \to \mathcal{C}'$ is called a ∂ -functor (sometimes *exact functor*) provided that there is a functorial isomorphism $\alpha : F\Sigma_{\mathcal{C}} \xrightarrow{\sim} \Sigma_{\mathcal{C}'} F$ such that

$$F(X) \xrightarrow{F(u)} F(Y) \xrightarrow{F(v)} F(Z) \xrightarrow{\alpha_X F(w)} \Sigma_{\mathcal{C}'}(F(X))$$

is a triangle in \mathcal{C}' whenever $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} \Sigma_{\mathcal{C}}(X)$ is a triangle in \mathcal{C} . Moreover, if a ∂ -functor F is an equivalence, then F is called a *triangulated equivalence*. In this case, we denote by $\mathcal{C} \stackrel{\Delta}{\cong} \mathcal{C}'$.

For $(F, \alpha), (G, \beta) : \mathcal{C} \to \mathcal{C}'$ ∂ -functors, a functorial morphism $\phi : F \to G$ is called a ∂ -functorial morphism if

$$(\Sigma_{\mathcal{C}'}\phi)\circ\alpha=\beta\circ\phi\Sigma_{\mathcal{C}}$$

We denote by $\partial(\mathcal{C}, \mathcal{C}')$ the collection of all ∂ -functors from \mathcal{C} to \mathcal{C}' , and denote by $\partial \operatorname{Mor}(F, G)$ the collection of ∂ -functorial morphisms from F to G.

Proposition 4.3. Let $F : \mathcal{C} \to \mathcal{C}'$ be a ∂ -functor between triangulated categories. If $G : \mathcal{C}' \to \mathcal{C}$ is a right (or left) adjoint of F, then G is also a ∂ -functor.

Definition 4.4. A contravariant (resp., covariant) additive functor $H : \mathcal{C} \to \mathcal{A}$ from a triangulated category \mathcal{C} to an abelian category \mathcal{A} is called a *homological functor* (resp., *a cohomological functor*), if for any triangle (X, Y, Z, u, v, w) in \mathcal{C} the sequence

$$\begin{split} H(\Sigma(X)) &\to H(Z) \to H(Y) \to H(X) \\ (\text{resp.}, \ H(X) \to H(Y) \to H(Z) \to H(\Sigma(X)) \) \end{split}$$

is exact. Taking $H(\Sigma^i(X)) = H^i(X)$, we have the long exact sequence:

$$\dots \to H^{i+1}(X) \to H^i(Z) \to H^i(Y) \to H^i(X) \to \dots$$

(resp., $\dots \to H^i(X) \to H^i(Y) \to H^i(Z) \to H^{i+1}(X) \to \dots$)

Proposition 4.5. The following hold.

(1) If (X, Y, Z, u, v, w) is a triangle, then vu = 0, wv = 0 and $\Sigma(u)w = 0$.

- (2) For any $X \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(-, X) : \mathcal{C} \to \mathfrak{Ab}$ (resp., $\operatorname{Hom}_{\mathcal{C}}(X, -) : \mathcal{C} \to \mathfrak{Ab}$) is a homological functor (resp., a cohomological functor).
- (3) For any homomorphism of triangles

if two of f, g and h are isomorphisms, then the rest is also an isomorphism.

Proof. First, consider the following morphism between triangles

- (1) Taking $M = Z, \beta = v, \gamma = 1_Z$, we get the statement by (TR1) (3), (TR2), (TR3).
- (2) Take β with $\beta \circ u = 0$, then there is γ by (TR2), (TR3).
- (3) By (2), we have a morphism between long exact sequences

Here $h_M = Hom_{\mathcal{C}}(-, M)$ for any object M.

Proposition 4.6. A triangle (X, Y, Z, u, v, 0) is isomorphic to $(X, Z \oplus X, Z, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \end{bmatrix}, 0)$.

Proof. Since $\operatorname{Hom}_{\mathcal{C}}(Z,Z) \xrightarrow{0} \operatorname{Hom}_{\mathcal{C}}(Z,\Sigma(X))$, by Proposition 4.5, there is $s: Z \to Y$ such that $vs = 1_Z$. Then we have a commutative diagram

where $\mu = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\pi = \begin{bmatrix} 1 & 0 \end{bmatrix}$, $\alpha = \begin{bmatrix} s & u \end{bmatrix}$.

Definition 4.7 (Compact Object). Let C be a triangulated category. An object $C \in C$ is called a *compact* object in C if the canonical morphism

$$\coprod_{i \in I} \operatorname{Hom}_{\mathcal{C}}(C, X_i) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{C}}(C, \coprod_{i \in I} X_i)$$

is an isomorphism for any set $\{X_i\}_{i \in I}$ of objects (if $\coprod_{i \in I} X_i$ exists in \mathcal{C}).

For a triangulated category \mathcal{C} , a set \mathcal{S} of compact objects is called a generating set if $\operatorname{Hom}_{\mathcal{C}}(\mathcal{S}, X) = 0 \Rightarrow X = 0$, and if $\Sigma(\mathcal{S}) = \mathcal{S}$. A triangulated category \mathcal{C} is compactly generated if \mathcal{C} contains arbitrary coproducts, and if it has a generating set.

5. Derived Categories

Throughout this section, \mathcal{A} is an abelian category and \mathcal{B} , \mathcal{C} are additive subcategories of \mathcal{A} .

Definition 5.1 (Complex). A (cochain) complex is a collection $X^{\cdot} = (X^n, d_X^n : X^n \to X^{n+1})_{n \in \mathbb{Z}}$ of objects and morphisms of \mathcal{B} such that $d_X^{n+1} d_X^n = 0$. A complex $X^{\cdot} = (X^n, d_X^n : X^n \to X^{n+1})_{n \in \mathbb{Z}}$ is called bounded below (resp., bounded above, bounded) if $X^n = 0$ for $n \ll 0$ (resp., $n \gg 0$, $n \ll 0$ and $n \gg 0$).

we define an objects of \mathcal{A} for all $n \in \mathbb{Z}$

$$Z^{n}(X^{\cdot}) = \operatorname{Ker} d_{X}^{n} \qquad B^{n}(X^{\cdot}) = \operatorname{Im} d_{X}^{n-1}$$
$$C^{n}(X^{\cdot}) = \operatorname{Cok} d_{X}^{n-1} \qquad \operatorname{H}^{n}(X^{\cdot}) = Z^{n}(X^{\cdot}) / \operatorname{B}^{n}(X^{\cdot})$$
$$\text{the } n\text{th cohomology,}$$

A complex $X^{\cdot} = (X^n, d_X^n)$ is called a null complex if $H^n(X^{\cdot}) = 0$ for all $n \in \mathbb{Z}$.

A morphism $f: X \to Y$ of complexes is a collection of morphisms $f^n: X^n \to Y^n$ satisfying $d_Y^n f^n = f^{n+1} d_X^n$ for any $n \in \mathbb{Z}$.

We denote by $C(\mathcal{B})$ (resp., $C^+(\mathcal{B})$, $C^-(\mathcal{B})$, $C^b(\mathcal{B})$) the category of complexes (resp., bounded below complexes, bounded above complexes, bounded complexes) of \mathcal{B} . An autofunctor $\Sigma : C(\mathcal{B}) \to C(\mathcal{B})$ is called translation if $(\Sigma(X^{\cdot}))^n = X^{n+1}$ and $(\Sigma(d_X))^n =$ $-d_X^{n+1}$ for any complex $X^{\cdot} = (X^n, d_X^n)$.

In $C(\mathcal{A})$, a morphism $u: X^{\cdot} \to Y^{\cdot}$ is called a quasi-isomorphism if $H^{n}(u)$ is an isomorphism for any n.

In this section, "*" means "nothing", "+", "-" or "b".

Definition 5.2 (Truncations). For a complex $X^{\cdot} = (X^i, d^i)$, we define the following truncations:

$$\tau_{\geq n} X^{\cdot} : \dots \to 0 \to X^{n} \to X^{n+1} \to X^{n+2} \to \dots,$$

$$\tau_{\leq n} X^{\cdot} : \dots \to X^{n-2} \to X^{n-1} \to X^{n} \to 0 \to \dots.$$

Then we have exact sequences in $C(\mathcal{A})$

$$O \to \tau_{\geq n}(X^{\boldsymbol{\cdot}}) \to X^{\boldsymbol{\cdot}} \to \tau_{\leq n+1}(X^{\boldsymbol{\cdot}}) \to O$$

Definition 5.3 (Mapping Cone). For $u \in \text{Hom}_{\mathsf{C}(\mathcal{B})}(X^{\cdot}, Y^{\cdot})$, the mapping cone of u is a complex $M^{\cdot}(u)$ with

$$M^{n}(u) = X^{n+1} \oplus Y^{n},$$

$$d^{n}_{M^{\bullet}(u)} = \begin{bmatrix} -d^{n+1}_{X} & 0\\ u^{n+1} & d^{n}_{X} \end{bmatrix} : X^{n+1} \oplus Y^{n} \to X^{n+2} \oplus Y^{n+1}.$$

$$-56-$$

Definition 5.4 (Homotopy Category). Two morphisms $f, g \in \operatorname{Hom}_{\mathsf{C}(\mathcal{B})}(X^{\cdot}, Y^{\cdot})$ is said to be *homotopic* (denote by $f \simeq g$) if there is a collection of morphisms $h = (h^n)$, $h^n : X^n \to Y^{n-1}$ such that

$$f^{n} - g^{n} = d_{Y}^{n-1}h^{n} + h^{n+1}d_{X}^{n}$$

for all $n \in \mathbb{Z}$. The homotopy category $\mathsf{K}^*(\mathcal{B})$ of \mathcal{B} is defined by

(1) $\operatorname{Ob}(\mathsf{K}^*(\mathcal{B})) = \operatorname{Ob}(\mathsf{C}^*(\mathcal{B})),$ (2) $\operatorname{Hom}_{\mathsf{K}^*(\mathcal{B})}(X^{\cdot}, Y^{\cdot}) = \operatorname{Hom}_{\mathsf{C}^*(\mathcal{B})}(X^{\cdot}, Y^{\cdot}) / \underset{h}{\simeq} \text{ for } X^{\cdot}, Y^{\cdot} \in \operatorname{Ob}(\mathsf{K}^*(\mathcal{B})).$

Proposition 5.5. A category $K^*(\mathcal{B})$ is a triangulated category whose distinguished triangles are defined to be isomorphic to

$$X^{\cdot} \xrightarrow{u} Y^{\cdot} \xrightarrow{v} M^{\cdot}(u) \xrightarrow{w} \Sigma(X^{\cdot})$$

for any $u: X^{\cdot} \to Y^{\cdot}$ in $\mathsf{K}^*(\mathcal{B})$.

Definition 5.6 (Derived Category). The derived category $D^*(\mathcal{A})$ of an abelian category \mathcal{A} is the quotient category by quasi-isomorphisms, that is the category satisfying

- (1) $\operatorname{Ob}(\mathsf{D}^*(\mathcal{A})) = \operatorname{Ob}(\mathsf{K}^*(\mathcal{A})).$
- (2) For $X, Y \in Ob(D^*(\mathcal{A}))$, let $V(X^{\cdot}, Y^{\cdot}) = \{(s, Y'^{\cdot}, f) | s : Y^{\cdot} \to Y'^{\cdot} \in Qis, f : X^{\cdot} \to Y^{\cdot}\}$. In $V(X^{\cdot}, Y^{\cdot})$, we define $(s, Y'^{\cdot}, f) \sim (s', Y''^{\cdot}, f')$ if there is (s'', Y'''^{\cdot}, f') such that all triangles are commutative in the following diagram:

Then we define a morphism from X^{\cdot} to Y^{\cdot} by an equivalence class $s^{-1}f$ of (s, Y', f).

(3) For $s^{-1}f: X^{\cdot} \to Y^{\cdot}, t^{-1}g: Y^{\cdot} \to Z^{\cdot}$, there are $s': Z'^{\cdot} \to Z''^{\cdot} \in \mathsf{Qis}$ and $g': Y'^{\cdot} \to Z''^{\cdot}$ such that $s' \circ g = g' \circ s$. Then we define $(t^{-1}g) \circ (s^{-1}f) = (s' \circ t)^{-1}g \circ f$.

Moreover, we define the quotient functor $Q: \mathsf{K}^*(\mathcal{A}) \to \mathsf{D}^*(\mathcal{A})$ by

- (Q1) $Q(X^{\cdot}) = X^{\cdot}$ for $X^{\cdot} \in \mathsf{K}^*(\mathcal{A})$.
- (Q2) $Q(f) = 1_{Y}^{-1} f$ for a morphism $f : X^{\cdot} \to Y^{\cdot}$ in $\mathsf{D}^{*}(\mathcal{A})$.

Proposition 5.7. The following hold.

- (1) $\mathsf{D}^*(\mathcal{A})$ is a triangulated category, and the canonical functor $Q : \mathsf{K}^*(\mathcal{A}) \to \mathsf{D}^*(\mathcal{A})$ is a ∂ -functor.
- (2) The *i*-th cohomology of complexes is a cohomological functor in the sense of Definition 4.4.

Lemma 5.8. Let A be a ring. For $X \in \mathsf{K}(\mathsf{Mod}\,A)$ and $I \in \mathsf{K}^+(\mathsf{Inj}\,A)$ (resp., $P \in \mathsf{K}^-(\mathsf{Proj}\,A)$), if X is null, then we have

$$\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(X^{\bullet}, I^{\bullet}) = 0.$$

$$(resp., \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(P^{\bullet}, X^{\bullet}) = 0)$$

Proposition 5.9. The following hold for a ring A.

(1) $\mathsf{K}^{-}(\operatorname{Proj} A) \stackrel{\triangle}{\cong} \mathsf{D}^{-}(\operatorname{\mathsf{Mod}} A).$ (2) $\mathsf{K}^{+}(\operatorname{Inj} A) \stackrel{\triangle}{\cong} \mathsf{D}^{+}(\operatorname{\mathsf{Mod}} A).$

6. TILTING COMPLEXES

Definition 6.1. Let C be a triangulated category. A subcategory \mathcal{B} of C is said to generates C as a triangulated category if C is the smallest triangulated full subcategory which is closed under isomorphisms and contains \mathcal{B} .

Theorem 6.2. Let A, B be rings. The following are equivalent.

- (1) $\mathsf{D}^{-}(\mathsf{Mod}\,A) \stackrel{\triangle}{\cong} \mathsf{D}^{-}(\mathsf{Mod}\,B).$
- (2) $\mathsf{D}^{\mathrm{b}}(\mathsf{Mod}\,A) \stackrel{\triangle}{\cong} \mathsf{D}^{\mathrm{b}}(\mathsf{Mod}\,B).$
- (3) $\mathsf{K}^{\mathsf{b}}(\mathsf{Proj}\,A) \stackrel{\triangle}{\cong} \mathsf{K}^{\mathsf{b}}(\mathsf{Proj}\,B).$
- (4) $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A) \stackrel{\bigtriangleup}{\cong} \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,B).$
- (5) There exists $T \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$ with $B \cong \operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)}(T)$ such that (a) $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(T, T[i]) = 0$ for $i \neq 0$, (b) add T_A generates $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$.

$$-58-$$

(6) There exists $T \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)$ with $B \cong \operatorname{Hom}_{\mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)}(T)$ such that (a) $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod} A)}(T, T[i]) = 0$ for $i \neq 0$, (b) For $X \in \mathsf{K}^{-}(\operatorname{Proj} A)$, X = O whenever $\operatorname{Hom}_{\mathsf{K}^{-}(\operatorname{Proj} A)}(T, X[i])$ = 0 for all i.

Definition 6.3. A complex $T_A \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$ is called a tilting complex for A provided that

- (1) $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(T^{\cdot}, T^{\cdot}[i]) = 0$ for $i \neq 0$.
- (2) add T_A^{\bullet} generates $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$.

We say that B is *derived equivalent* to A if there is a tilting complex T_A such that $B \cong \operatorname{End}_{\mathsf{K}(\mathsf{Mod}\,A)}(T)$.

Remark 6.4. Miyashita defined a tilting module of finite projective dimension as follows. Let R be a ring. A right R-module T is called a tilting module of projective dimension n provided that the following hold.

- (1) There is an exact sequence $0 \to P_n \to \cdots \to P_0 \to T \to 0$ with $P_0, \cdots, P_n \in \operatorname{proj} R^{\operatorname{op}}$.
- (2) $\operatorname{Ext}_{R}^{i}(T,T) = 0 \ (i > 0).$
- (3) There is an exact sequence $0 \to R \to T^0 \to \cdots \to T^n \to 0$ with $T^0, \cdots, T^n \in \operatorname{add} T$.

Then the projective resolution of T is a tilting complex. Happel and Cline-Parshall-Scott showed that the derived functor $\mathbf{R}^{\mathrm{b}} \operatorname{Hom}_{R}(T, -) : \mathsf{D}^{\mathrm{b}}(\operatorname{\mathsf{Mod}} R) \to \mathsf{D}^{\mathrm{b}}(\operatorname{\mathsf{Mod}} S)$ is an equivalence.

Lemma 6.5. For $X \in \mathsf{D}^{-}(\mathsf{Mod}\,A)$, the following are equivalent.

- (1) $X \in \mathsf{D}^{\mathsf{b}}(\mathsf{Mod}\,A)$.
- (2) For any $Y \in D^{-}(Mod A)$, there is n such that $Hom_{D(Mod A}(Y, X [i])) = 0$ for all i < n.

Proof. $1 \Rightarrow 2$. We may assume $X \in \mathsf{C}^{\mathsf{b}}(\mathsf{Mod}\,A), Y \in \mathsf{K}^{-}(\mathsf{Proj}\,A)$. Then $\operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,A)}(Y, X \cdot [i]) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(Y, X \cdot [i])$.

 $2 \Rightarrow 1$. Since $\operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,A^{\mathrm{b}})}(A, X^{\cdot}[i]) \cong \operatorname{H}^{i}(X^{\cdot})$, it is easy.

For an additive category \mathcal{B} and $m \leq n$, we write $\mathsf{K}^{[m,n]}(\mathcal{B})$ for the full subcategory of $\mathsf{K}(\mathcal{B})$ consisting of complexes X^{\cdot} with $X^{i} = O$ for i < m, n < i.

Lemma 6.6. For $X \in \mathsf{D}^{\mathsf{b}}(\mathsf{Mod}\,A)$, the following are equivalent.

- (1) X[·] is isomorphic to an object of $K^{b}(\operatorname{Proj} A)$.
- (2) For any $Y \in \mathsf{D}^{\mathsf{b}}(\mathsf{Mod}\,A)$, there is n such that $\operatorname{Hom}_{\mathsf{D}(\mathsf{Mod}\,A}(X, Y \cdot [i]) = 0$ for all i > n.

Proof. $1 \Rightarrow 2$. It is trivial.

 $2 \Rightarrow 1$. We may assume $X^{\cdot} \in \mathsf{K}^{-}(\operatorname{\mathsf{Proj}} A)$. Let $M = \prod_{i \in \mathbb{Z}} \operatorname{C}^{i}(X^{\cdot})$. If $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(X^{\cdot}, \operatorname{C}^{i}(X^{\cdot})[-i]) = 0$, then we have exact sequences

$$\operatorname{Hom}_A(X^{i+1}, C^i(X^{\cdot})) \to \operatorname{Hom}_A(C^i(X^{\cdot}), C^i(X^{\cdot})) \to O.$$

This means that the canonical morphisms $C^i(X) \to X^{i+1}$ are split monomorphisms. Hom_{K⁻(Mod A)}(X, M[i]) = 0 for all i > n if and only if X is isomorphic to an object in $\mathsf{K}^{[-n,\infty)}(\operatorname{Proj} A)$.

Definition 6.7 (Perfect Complex). A complex $X \in D(Mod A)$ is called *a perfect complex* if X is isomorphic to a complex of $K^{b}(\operatorname{proj} A)$ in D(Mod A). We denote by $D(Mod A)_{\operatorname{perf}}$ the triangulated full subcategory of D(Mod A) consisting of perfect complexes.

Lemma 6.8. For $X \in \mathsf{K}^{\mathsf{b}}(\mathsf{Proj} A)$, the following are equivalent.

- (1) X is a compact object in $K^{b}(\operatorname{Proj} A)$.
- (2) X[•] is isomorphic to an object of $\mathsf{K}^{\mathsf{b}}(\mathsf{proj}\,A)$.

Proof. $2 \Rightarrow 1$. It is easy.

 $1 \Rightarrow 2$. Let $X^{\cdot} = X^0 \xrightarrow{d^0} X^1 \to \ldots \to X^n$, with $X^i \in \operatorname{Proj} A$. By adding $P \xrightarrow{1} P$ to X^{\cdot} , we may assume that X^0 is a free A-module $A^{(I)}$. If I is a finite set, then by $2 \Rightarrow 1 X^0$ is also compact, and hence $\tau_{\geq 1} X^{\cdot}$ is compact. by induction on n, we get the assertion. Otherwise, since we have $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(X^{\cdot}, A^{(I)}) \cong \operatorname{Hom}_{\mathsf{K}(\mathsf{Mod}\,A)}(X^{\cdot}, A)^{(I)}$, the canonical morphism $X^{\cdot} \to A^{(I)}$ factors through a direct summand $\mu : A^m \hookrightarrow A^{(I)}$ for some $m \in \mathbb{N}$. Then there is a homotopy morphism $h : X^1 \to A^{(I)}$ such that $1_{A^{(I)}} - \mu g = hd^0$ with some $g : A^{(I)} \to A^m$. Let $A^{(I)} = A^m \oplus A^{(J)}$ be the canonical decomposition, then $A^{(J)} \xrightarrow{d^0|_{A^{(J)}}} X^1 \xrightarrow{ph} A^{(J)} = 1_{A^{(J)}}$, where $p : A^{(I)} \to A^{(J)}$ is the canonical projection. Therefore $X^{\cdot} \cong \operatorname{M}^{\cdot}(1_{A^{(J)}})[-1] \oplus X^{\prime}$, where $X^{\prime} : A^m \to X^{\prime 1} \to \ldots \to X^n$ with $X^{\prime 1}$ being a direct summand of X^1 . Then we reduce the case of X^0 being a finitely generated free A-module.

Lemma 6.9. Let $T \in \mathsf{K}^{\mathsf{b}}(\mathsf{proj} A)$ with $\operatorname{Hom}_{\mathsf{K}(\mathsf{Mod} A)}(T, T \cdot [i]) = 0$ for $i \neq 0$, and $B = \operatorname{End}_{\mathsf{K}(\mathsf{Mod} A)}(T)$. Then there exists a fully faithful ∂ -functor $F : \mathsf{K}^{-}(\mathsf{Proj} B) \to \mathsf{K}^{-}(\mathsf{Proj} A)$ such that

- (1) $FB \cong T^{\cdot}$.
- (2) F preserves coproducts.
- (3) F has a right adjoint $G : \mathsf{K}^{-}(\mathsf{Proj}\,A) \to \mathsf{K}^{-}(\mathsf{Proj}\,B)$.

Proof. [Skip] This lemma is important. But the proof is out of the methods of derived categories. \Box

Lemma 6.10. If T^{\cdot} satisfies the condition (G), then $F : \mathsf{K}^{-}(\mathsf{Proj} B) \to \mathsf{K}^{-}(\mathsf{Proj} A)$ is an equivalence.

(G) For $X^{\cdot} \in \mathsf{K}^{-}(\operatorname{Proj} A)$, $X^{\cdot} = O$ whenever $\operatorname{Hom}_{\mathsf{K}^{-}(\operatorname{Proj} A)}(T^{\cdot}, X^{\cdot}[i])$ = 0 for all *i*.

Proof. Let $X \in \mathsf{K}^{-}(\mathsf{Proj} A)$ such that GX = O. Then $\operatorname{Hom}_{\mathsf{K}^{-}(\mathsf{Proj} A)}(T, X[i]) \cong \operatorname{Hom}_{\mathsf{K}^{-}(\mathsf{Proj} B)}(B, GX[i]) = 0$ for all i. Therefore $\operatorname{Ker} G = \{O\}$. By the left version of Proposition 6.11, G and F are equivalences.

Proposition 6.11. Let C and C' be triangulated categories, $F : C \to C'$ a ∂ -functor which has a fully faithful left adjoint $S : C' \to C$. Then F induces an equivalence between $C/\operatorname{Ker} F$ and C'.

Proof. By the universal property of $Q : \mathcal{C} \to \mathcal{C} / \operatorname{Ker} F$, we have the following commutative diagram

If $f : X \to Y$ is a morphism in \mathcal{C} , then Ff is an isomorphism if and only if Qf is an isomorphism. For every object $M \in \mathcal{C}$, $FSFM \to FM$ is an isomorphism, and then $QSFM \to QM$ is an isomorphism. Therefore $QSF \to Q$ is an isomorphism. By the universal property of Q and QSF = QSF'Q, we have $\mathbf{1}_{\mathcal{C}/\operatorname{Ker} F} \cong QSF'$. Since, $F'QS = FS \cong \mathbf{1}_{\mathcal{C}'}, F'$ is an equivalence. \Box

Remark 6.12. Let C be a triangulated category. For an additive subcategory \mathcal{B} of C, we can construct the smallest triangulated full subcategory \mathcal{EB} which is closed under isomorphisms and contains \mathcal{B} as follows.

Let $\mathcal{E}^0 \mathcal{B} = \mathcal{B}$. For n > 0, let $\mathcal{E}^n \mathcal{B}$ be the full subcategory of \mathcal{C} consisting of objects X there exist $U, V \in \mathcal{E}^{n-1} \mathcal{B}$ satisfying that either of (X, U, V, *, *, *) or (U, V, X, *, *, *) is a triangle in \mathcal{C} . Then it is easy to see that $\mathcal{E}\mathcal{B} = \bigcup_{n \ge 0} \mathcal{E}^n \mathcal{B}$ is the smallest triangulated full subcategory which is closed under isomorphisms and contains \mathcal{B}

Theorem 6.13. Let T be a complex of $K^{b}(\text{proj } A)$ such that

- (a) Hom_{K(Mod A)}(T, T[i]) = 0 for $i \neq 0$,
- (b) add T_A generates $K^{\rm b}(\operatorname{proj} A)$.

Then $F : \mathsf{K}^{-}(\mathsf{Proj}\,B) \to \mathsf{K}^{-}(\mathsf{Proj}\,A)$ is an equivalence.

Proof. It suffices to show that T satisfies the condition of Lemma 6.10. Since $\operatorname{add} T_A$ generates $\mathsf{K}^{\mathsf{b}}(\operatorname{proj} A)$, if $\operatorname{Hom}_{\mathsf{K}^-(\operatorname{Proj} A)}(T, X[i]) = 0$ for all i, then $\operatorname{Hom}_{\mathsf{K}^-(\operatorname{Proj} A)}(A, X[i]) = 0$ for all i. Thus X = O.

References of Section

[ASS], [草], [Ri], [Po], [Br].
 [ASS], [草], [Ri], [Po], [Br].
 [ASS], [Bo], [Ri], [AHK].
 [We], [Ve], [RD], [KV], [Ne3], [BBD] ([Ne1], [Ne2]).
 [We], [Ve], [RD].
 [Rd1], [Rd2], [AHK] ([BBD], [CPS], [Ha], [Mi]).

References

[AHK] L. Angeleri Hügel, D. Happel, H. Krause, "Handbook of Tilting Theory", London Math. Soc. Lecture Notes 332, Cambridge University Press, 2007.

- [ASS] I. Assem, D. Simson, A. Skowronski, "Elements of The Representation Theory of Associative Algebras", London Math. Soc. Student Texts 65, Cambridge University Press, 2006.
- [BBD] A. A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque 100, 1982.
- [Bo] K. Bongartz, "Tilted Algebras", Lecture Notes in Math. 903, Springer-Verlag, Berlin (1982), 26-38.
- [Br] N. Bourbaki, "Groupes et algebres de Lie", Chapitres 4, 5 et 6, Hermann, Paris, 1968.
- [CPS] E. Cline, B. Parshall, L. Scott, Derived categories and Morita theory, J. Algebra 104 (1986), no. 2, 397–409.
- [Ha] D. Happel, "Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras", London Math. Soc. Lecture Notes 119, Cambridge University Press, 1987.
- [KV] B. Keller, D. Vossieck, Sous Les Catégorie Dérivées, C. R. Acad. Sci. Paris 305 (1987), 225-228.
- [Mi] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146.
- [Ne1] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel. Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566.
- [Ne2] A. Neeman, The Grothendieck duality theorem via Bousfield's techniques and Brown representability, J. American Math. Soc. 9 (1996), 205–236.
- [Ne3] A. Neeman, "Triangulated categories", Annals of Mathematics Studies 148, Princeton Univ. Press, 2001.
- [Po] N. Popescu, "Abelian Categories with Applications to Rings and Modules", Academic Press, London-New York, 1973.
- [RD] R. Hartshorne, "Residues and Duality", Lecture Notes in Math. 20, Springer-Verlag, Berlin, 1966.
- [Rd1] J. Rickard, Morita Theory for Derived Categories, J. London Math. Soc. 39 (1989), 436-456.
- [Rd2] J. Rickard, Derived Equivalences as Derived Functors, J. London Math. Soc. 43 (1991), 37-48.
- [Ri] C.M. Ringel, "Tame Algebras and Integral Quadratic Forms", Lecture Notes in Math. 1099, Springer-Verlag, Berlin, 1984.
- [Ve] J. Verdier, "Catéories Déivées, état 0", pp. 262-311, Lecture Notes in Math. 569, Springer-Verlag, Berlin, 1977.
- [We] C. A. Weibel, "An Introduction to Homological Algebra," Cambridge studies in advanced mathematics. 38, Cambridge Univ. Press, 1995.
- [草] 草場 公邦, "行列特論", 裳華房, 1979.

J. MIYACHI: DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, KOGANEI-SHI, TOKYO, 184-8501, JAPAN

E-mail address: miyachi@u-gakugei.ac.jp