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Abstract. There are several research fields called noncommutative algebraic geome-
try. In this note, we will introduce the one founded by M. Artin. Roughly speaking,
in this research field, we study noncommutative algebras using ideas and techniques of
algebraic geometry. Since classification of low dimensional schemes is one of the most
active projects in algebraic geometry, classification of low dimensional noncommutative
schemes is the main project in noncommutative algebraic geometry. In fact, since non-
commutative projective curves were classified by Artin and Stafford, one of the most
active projects in this field is to classify noncommutative projective surfaces. In this
note, we will focus on the classification of the simplest noncommutative projective sur-
faces, namely, quantum projective planes, due to Artin, Tate, and Van den Bergh. We
will also relate this project to the study of Frobenius Koszul algebras.

1. Overview

1.1. Motivations. In this note, we fix a field k. An algebra always means an algebra
finitely generated over k, and a scheme always means a scheme of finite type over k. That
is, every algebra is of the form R = T (V )/I where V is a finite dimensional vector space
over k, T (V ) is the tensor algebra on V over k, and I is a two-sided ideal of T (V ). By
choosing a basis {x1, . . . , xn} for V over k, we may also write R = k〈x1, . . . , xn〉/I where
k〈x1, . . . , xn〉 is the free algebra on {x1, . . . , xn} over k. In particular, if R is commutative,
then we may write R = S(V )/I = k[x1, . . . , xn]/I where S(V ) is the symmetric algebra
on V over k and k[x1, . . . , xn] is the polynomial algebra on {x1, . . . , xn} over k. A scheme
of finite type over k is a scheme which can be covered by a finite number of affine schemes
of commutative algebras finitely generated over k. We denote by ModR the category
of right R-modules, and by modR the full subcategory of ModR consisting of finitely
generated ones.
Our impossible dream is to classify all algebras. Following algebraic geometry or alge-

braic topology, it is natural to start classifying algebras of low dimensions. Depending
on the research fields, there are several candidates for which dimension function of an
algebra we should use for this purpose. Since we follow the ideas of algebraic geometry,
we use Gelfand-Kirillov dimension (GKdimension) defined below.

Definition 1. Let R = T (V )/I be an algebra and Rn = (k+ V )
n the standard filtration

of R. We define the Gelfand-Kirillov dimension (GKdimension) of R by

GKdimR = lim sup
n→∞

log(dimk Rn)/ log n.

If R is a commutative algebra, then GKdimR = KdimR, the Krull dimension of R.

—119—



Let R be an algebra. Since GKdimR = 0 if and only if R is finite dimensional over k,
classifying all algebras of GKdimension 0 is the same as classifying all artinian algebras,
which is already an impossible dream even in the commutative case. There are two natural
directions to proceed:

(1) Classify only nice algebras. The concept “nice” largely depends on the research
fields. For example, in representation theory of finite dimensional algebras, classi-
fying all Frobenius (self-injective) algebras is active.

(2) Classify algebras up to something weaker than isomorphism. This also depends
on the research fields. For example, in representation theory of finite dimensional
algebras, classifying algebras up to Morita equivalence, derived equivalence, stable
equivalence, etc. is active.

In noncommutative algebraic geometry, we follow ideas of algebraic geometry. So we will
first review the classification problem in algebraic geometry.

1.2. Commutative Algebras. Recall that every commutative algebra is of the form
R = k[x1, . . . , xn]/I. Roughly speaking, the affine scheme associated to R is defined as a
set by

X = SpecR = V(I) := {p = (a1, . . . , an) ∈ kn | f(p) = 0 for all f ∈ I}

endowed with some topology, called Zariski topology, together with the sheaf of algebras
OX on it, called the structure sheaf. Note that if I = (f1, . . . , fm) where f1, . . . , fm ∈
k[x1, . . . , xn], then

V(I) = {p = (a1, . . . , an) ∈ kn | f1(p) = · · · = fm(p) = 0}.

There are close relationships between an algebra R and a topological space SpecR. For
example:

(1) KdimR = dimSpecR.
(2) R is an integral domain if and only if SpecR is (reduced and) irreducible, that is, it

is not a union of a finite number of smaller schemes. Such a scheme is often called
an affine variety.

(3) R is regular if and only if SpecR is smooth, that is, it has no singularities.

We have the following lemma.

Lemma 2. Let R,R′ be commutative algebras. Then

R ∼= R′

⇐⇒ ModR ∼= ModR′

⇐⇒ SpecR ∼= SpecR′.

It follows that:

—120—



Classifying commutative





algebras
integral domains
regular algebras



 of Krull dimension d

up to isomorphism

⇐⇒ Classifying commutative





algebras
integral domains
regular algebras



 of Krull dimension d

up to Morita equivalence

⇐⇒ Classifying affine





schemes
varieties

smooth schemes



 of dimension d

up to isomorphism.

The following example suggests that the third classification is easiest.

Example 3. Let

• R = R[x, y]/(x3 − y2).
• R′ = R[x, y]/(x3 + x2 − y2).
• R′′ = R[x, y]/(x2 − 2xy − y3 + 3y2 − y).

It is not easy to find an algebra homomorphism between the above algebras nor a functor
between modules categories over the above algebras. However, it is easy to see that

• SpecR = V(x3 − y2) is a cuspidal curve.
• SpecR′ = V(x3 + x2 − y2) is a nodal curve.
• SpecR′′ = V(x2 − 2xy − y3 + 3y2 − y) is a nodal curve.

In fact, using algebraic geometry, we can show that

SpecR �∼= SpecR′ ∼= SpecR′′.

As we have already mentioned, it is too difficult to classify all commutative algebras
even of dimension 0, so it is too difficult to classify all affine schemes of dimension 0. In
the classification of schemes in algebraic geometry, it is acceptable to assume that k is
algebraically closed because classification problems become far more difficult if we do not
assume so. It is also reasonable to classify only irreducible schemes (varieties) because
every scheme is a finite union of irreducible ones. In dimension 0, there is only one affine
variety up to isomorphism, namely a single point, or there is only one integral domain up
to isomorphism, namely k itself. To classify higher dimensional ones, there are again two
directions to proceed:

(1) Add more conditions on a scheme, namely, classify only smooth projective schemes.
(2) Classify schemes up to something weaker than isomorphism, namely, classify schemes

up to birational equivalence.

We will explain both methods as below.
(1) Classification of smooth projective schemes. Unfortunately, classifying all

smooth affine schemes of low dimensions is not yet easy. In algebraic topology, it is far
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easier to classify only compact surfaces than to classify arbitrary surfaces. In this principle,
we want to classify only “compact” schemes. One way to proceed is to “compactify” affine
schemes to make them projective schemes. A basic process is as follows.

Definition 4. An algebra A is graded if it is endowed with a k-vector space decompo-
sition A = ⊕i∈ZAi such that AiAj ⊆ Ai+j for all i, j ∈ Z. Elements of Ai are called
homogeneous of degree i. A right A-module M is graded if it is endowed with a k-vector
space decomposition M = ⊕i∈ZMi such that MiAj ⊆Mi+j for all i, j ∈ Z. We denote by
GrModA the category of graded right A-modules, and by grmodA the full subcategory
of GrModA consisting of finitely generated ones.

In this note, a graded algebra always means a graded algebra finitely generated in degree
1 over k, that is, Ai = 0 for all i < 0, A0 = k, and Ai = A1 · · ·A1 (i-factors) for all i ≥ 1.
Typical examples are the tensor algebra T (V ) where T (V )i = V ⊗i, and a polynomial
algebra k[x1, · · · , xn] where k[x1, · · · , xn]i = { homogeneous polynomials of degree i} ∪
{0}. In fact, every graded algebra is of the form A = T (V )/I where I is a homogeneous
two-sided ideal of T (V ), that is, I is generated by homogeneous elements of T (V ). Again,
by choosing a basis {x1, . . . , xn} for V over k, we may also write A = k〈x1, . . . , xn〉/I.
In particular, if A is commutative, then we may write A = k[x1, . . . , xn]/I where I is a
homogeneous ideal of k[x1, . . . , xn], that is, I is generated by (finitely many) homogeneous
polynomials.
Recall that the projective space is defined by Pn−1 = (kn \ {(0, . . . , 0)})/ ∼ where

(a1, . . . , an) ∼ (λa1, . . . ,λan) for all λ ∈ k \ {0}. For example, (a, b) = (c, d) in P1 if and
only if ad = bc. Let A = k[x1, . . . , xn]/I be a commutative graded algebra where I is a
homogeneous ideal of k[x1, . . . , xn]. Roughly speaking, the projective scheme associated
to A is defined as a set by

X = ProjA = V(I) := {p = (a1, . . . , an) ∈ Pn−1 | f(p) = 0 for all homogeneous f ∈ I}

endowed with some topology, called Zariski topology, together with the sheaf of algebras
OX on it, called the structure sheaf. Note that if I = (f1, . . . , fm) where f1, . . . , fm ∈
k[x1, . . . , xn] are homogeneous polynomials, then

V(I) = {p = (a1, . . . , an) ∈ Pn−1 | f1(p) = · · · = fm(p) = 0}.

Given a commutative algebra R, we can always homogenize the relations of R by
adding one more generator t to make it a graded algebra R̃ generated in degree 1, so we
can take Proj R̃ as examples below. Moreover, we can recover the original algebra from
R̃ by R ∼= (R̃[t−1])0. Although Proj R̃ is hardly compact in Zariski topology, it somehow
behaves like a compact manifold in algebraic topology. Since SpecR is open and dense in
Proj R̃, this process looks like a compactification of SpecR.

Example 5. Let

• R = R[x, y]/(x2 − y) so that SpecR = V(x2 − y) is a parabola.
• R′ = R[x, y]/(xy − 1) so that SpecR′ = V(xy − 1) is a hyperbola.
• R′′ = R[x, y]/(x2 + y2 − 1) so that SpecR′′ = V(x2 + y2 − 1) is a circle.

It follows that none of the above affine schemes are isomorphic to one another. However,
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• R̃ = R[x, y, t]/(x2− yt) so that Proj R̃ = V(x2− yt) becomes a circle by adding one
point (0, 1, 0) ∈ P2.

• R̃′ = R[x, y, t]/(xy − t2) so that Proj R̃′ = V(xy − t2) becomes a circle by adding
two points (0, 1, 0), (1, 0, 0) ∈ P2.

• R̃′′ = R[x, y, t]/(x2 + y2 − t2) = R[x, y, t]/(x2 − (y + t)(−y + t)) so that Proj R̃′′ =
V(x2 + y2 − t2) is a circle as before.

It follows that
Proj R̃ ∼= Proj R̃′ ∼= Proj R̃′′.

(2) Classification of schemes up to birational equivalence. The second method
is as follows:

Definition 6. We say that two (affine or projective) varieties X and Y are birationally
equivalent if there are open dense subsets U ⊂ X and V ⊂ Y such that U ∼= V .

If R is an integral domain, then we can construct the field of quotients Q(R) = {ab−1 |
a, b ∈ R, b �= 0} of R, which is an extension field of k. We define the function field of
X = SpecR by k(X) = Q(R). If A is a graded integral domain, then we can construct
Qgr(A)0 = {ab−1 | a, b ∈ A are homogeneous of the same degree, b �= 0}, which is an
extension field of k. We define the function field of X = ProjA by k(X) = Qgr(A)0.

Theorem 7. Two (affine or projective) varieties X and Y are birationally equivalent if
and only if k(X) ∼= k(Y ).

That is, two affine varieties SpecR and SpecR′ are birationally equivalent if and only
if Q(R) ∼= Q(R′). It follows that classifying all varieties of dimension d up to birational
equivalence is the same as classifying all extension fields of transcendence degree d.

Example 8. If R = k[x, y]/(x3 − y2), then the map
V(x3 − y2) \ {(0, 0)}→ k \ {0}; (a, b) �→ b/a

is an isomorphism. If R′ = k[x, y]/(x3 + x2 − y2), then the map
V(x3 + x2 − y2) \ {(0, 0)}→ k \ {0}; (a, b) �→ b/a

is an isomorphism. So SpecR,SpecR′, Spec k[t] are all birationally equivalent. In fact,
Q(R) ∼= Q(R′) ∼= k(t).

By resolution of singularities, every variety is birationally equivalent to a smooth pro-
jective scheme, so classifying all varieties up to birational equivalence is weaker than
classifying all smooth projective schemes up to isomorphism. However, in dimension 1,
they are the same in the sense below. From now on, we will call a variety of dimension 1
a curve, and a variety of dimension 2 a surface.

Theorem 9. For each curve X, there exists a unique smooth projective curve up to iso-
morphism which is birationally equivalent to X.

It is a common agreement that the classification of curves had been completed in a
sense that, for a each curve, there is a birational invariant g, called a genus. For each
genus g, there is a varietyMg, called the variety of moduli of curves of genus g such that
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dimMg =





0 if g = 0

1 if g = 1

3g − 3 if g ≥ 2,
which parameterizes all smooth projective curves of genus

g.
In dimension 2, these two classifications are not the same. In fact, classifying all smooth

projective surfaces up to isomorphism is difficult. On the other hand, the classification of
surfaces up to birational equivalence is considered to be successful in a sense that, for each
surface, there is a unique special surface, called the minimal model, which is birationally
equivalent to it, except for a rational surface (a surface birationally equivalent to P2), and
a birationally ruled surface (a surface birationally equivalent to P1×C where C is a curve).
For these two exceptions, minimal models are not unique, but they are well-known. A
minimal model is important since every surface can be obtained by blowing-up a minimal
model several times.

1.3. Noncommutative Projective Varieties. Now we turn to noncommutative alge-
bras. Since classification of low dimensional varieties has been successful in algebraic
geometry, we would like to classify noncommutative algebras (varieties) of low dimen-
sions, following ideas and techniques of algebraic geometry. As in the commutative case,
we restrict ourselves to domains over an algebraically closed field k. It is easy to see that
the only domain of GKdimension 0 is k. The following theorem due to Small and Warfield
is rather surprising.

Theorem 10. [17] Every finitely generated domain of GKdimension 1 is commutative.

The above theorem says that every noncommutative affine curve is in fact commuta-
tive. It is already too difficult to classify all domains of GKdimension 2. Since every
noncommutative algebra can be homogenized as in the commutative case (see examples
below), we will focus on graded algebras, and classify their associated projective schemes.
In modern algebraic geometry, the category ModOX of quasi-coherent OX -modules

play an essential role to study scheme X. In fact, every scheme X determines and is
determined by the category ModOX by Rosenberg [15], so it is reasonable to identify a
scheme X with the category ModOX . The following classical result is due to Serre.

Theorem 11. [16] If A is a commutative graded algebra finitely generated in degree 1
over k and X = ProjA, then

ModOX ∼= GrModA/FdimA

where FdimA is the full subcategory of GrModA consisting of direct limits of finite di-
mensional modules over k.

The following definition of a noncommutative projective scheme due to Artin and Zhang
was motivated by the above result.

Definition 12. [5] Let A be a graded algebra. We define a noncommutative projective
scheme associated to A by the quotient category

ProjA := GrModA/FdimA.
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If A is a noetherian graded domain, then we define the function field of X = ProjA by

k(X) := Qgr(A)0 = {ab−1 | a, b ∈ A are homogeneous of the same degree, b �= 0}.

As usual, we define projA := grmodA/ fdimA where fdimA is the full subcategory of
grmodA consisting of finite dimensional modules over k. Roughly speaking, objects in
projA are the same as those in grmodA, but two modulesM,N ∈ grmodA are isomorphic
in projA if and only if M≥n ∼= N≥n in grmodA for some n. Note that k(X) is a division
algebra over k. We have the following lemma.

Lemma 13. Let A,A′ be noetherian graded domains, and X = ProjA,X ′ = ProjA′.
Then

A ∼= A′

=⇒ GrModA ∼= GrModA′ (graded Morita equivalent)
=⇒ X ∼= X ′

=⇒ k(X) ∼= k(X ′) (birationally equivalent).

This implies that there are four levels of classifying noetherian graded domains. If A
is a noetherian graded domain of GKdimension 2, then it is reasonable to call ProjA
a noncommutative projective curve. Artin and Stafford [3] classified noncommutative
projective curves in this sense as follows.
Let A be a noetherian graded domain of GKdimension 2, X = ProjA, and K =

Z(k(X)), the center of k(X). Potentially, there are two possibilities, either tr.degkK =
0 or tr. degkK = 1, however, since GKdim k(X) = 1, it follows that k(X) is finite
dimensional over its center K by Small and Warfield [17], so tr.degkK = 1 and k(X) ∈
Br(K), the Brauer group of K. Since k is algebraically closed, k(X) = K by Tsen’s
theorem. By the classification of commutative curves, there exists a curve E such that
k(X) ∼= K ∼= k(E). It says that every noncommutative projective curve is birationally
equivalent to a commutative curve. Surprisingly, more is true.

Theorem 14. [3] If A is a graded domain of GKdimension 2 generated in degree 1, then
A is noetherian. Moreover, there is a pair (E, σ) where E is a curve, and σ ∈ AutE such
that

An ∼= H0(E,L⊗E σ∗L⊗E · · ·⊗E (σn−1)∗L)
for all n� 0 where L = OE(1) is an ample invertible sheaf on E. In particular, ProjA ∼=
ModOE.

The above theorem says that every noncommutative projective curve is isomorphic to
a commutative curve, so the classification of noncommutative projective curve can be
regarded as settled. We will see later that a geometric pair (E,σ) above play an essential
role in classifying higher dimensional noncommutative projective schemes.
If A is a noetherian graded domain of GKdimension 3, then it is reasonable to call

ProjA a noncommutative projective surface. The classification of noncommutative pro-
jective surfaces is wide open even up to birational equivalence, which is the same as the
classification of division algebras of transcendence degree 2. Here is a conjecture due to
Artin (slightly modified by the author).
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Conjecture 15. [1] Let A be a noetherian graded domain of GKdimension 3, X = ProjA,
and K = Z(k(X)).

(1) (quantum rational surface) If tr. degkK = 0 so that K = k, then k(X) ∼= K(q-P2)
where q-P2 is a quantum projective plane defined later.

(2) (birationally quantum ruled surface) If tr. degkK = 1 so that there is a curve E
such that K ∼= k(E), then k(X) ∼= K(t; σ) for some σ ∈ AutK (or σ ∈ AutE).

(3) If tr. degkK = 2 so that there is a surface S such that K ∼= k(S), then k(X) ∈
Br(K), that is, k(X) is finite dimensional over K.

Although classification of noncommutative projective surfaces is nowhere in sight, many
important techniques to classify commutative surfaces has been extended to noncommu-
tative settings:

(1) Serre’s duality [6], [23].
(2) Intersection theory [7], [14].
(3) Riemann-Roch theorem [7], [9].
(4) Blowing up [21].

In the next section, we will focus on the classification of the simplest noncommutative
surfaces called quantum projective planes.

2. Quantum Projective Planes

2.1. AS-regular Algebras. The simplest surface in algebraic geometry is the affine
plane, which is Spec k[x, y], so the simplest noncommutative surfaces must be a “quantum”
affine plane, which should be “SpecR”, where R is a noncommutative analogue of k[x, y].
There are some noncommutative algebras analogous to k[x, y] such as:

• R = k〈x, y〉/(xy − αyx) where α ∈ k \ {0} (a skew polynomial algebra).
• R′ = k〈x, y〉/(xy − yx− x) (the enveloping algebra of the 2-dimension non-abelian
Lie algebra).

• R′′ = k〈x, y〉/(xy − yx− 1) (the 1st Weyl algebra).
All of the above algebras are regular algebras of GKdimension 2. Although these algebras
can be regarded as coordinate rings of a “quantum” affine plane, we do not have a precise
definition of it yet. As in the commutative case, we can homogenize any algebras. For
example:

• R̃ = k〈x, y〉[z]/(xy − αyx) = k〈x, y, z〉/(xy − αyx, yz − zy, zx− xz).
• R̃′ = k〈x, y〉[z]/(xy − yx− xz) = k〈x, y, z〉/(xy − yx− xz, yz − zy, zx− xz).
• R̃′′ = k〈x, y〉[z]/(xy − yx− z2) = k〈x, y, z〉/(xy − yx− z2, yz − zy, zx− xz).

All of the above algebras are regular graded algebras of GKdimension 3 and of global
dimension 3. Since the only commutative regular graded algebra is the polynomial algebra,
it may be reasonable to define a “quantum” projective space of dimension d as ProjA for
some regular graded algebra of gldimA = d + 1. It is easy to see that the only regular
graded algebra of gldimA = 0 is k. However, since the global dimension of a free algebra
k〈x1, . . . , xn〉 is 1, we must add some additional conditions on a regular graded algebra to
make the definition more reasonable. Although the conditions such as A is noetherian and
A is a domain are most reasonable, it turns out that these conditions are very difficult
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to check in practice. One of the ingenuous ideas of Artin and Schelter was to define
AS-regular algebras as below and classify them up to dimension 3.

Definition 16. [2] A graded algebra A is called a d-dimensional AS-regular algebra if

(1) gldimA = d <∞.
(2) GKdimA <∞.
(3) A satisfies Gorenstein condition, that is, dimk Ext

i
A(k, k) <∞ for all i, and ExtiA(k,A) ={

k if i = d,

0 if i �= d.

If A is a (d + 1)-dimensional quadratic AS-regular algebra, then we call ProjA a d-
dimensional quantum projective space. In particular, if A is a 3-dimensional quadratic
AS-regular algebra, then we call ProjA a quantum projective plane.
Let A be a graded algebra. The opposite graded algebra of A is denoted by Ao and

the enveloping graded algebra of A is denoted by Ae = Ao⊗k A. A graded left A-module
will be identified with the graded right Ao-module, and a graded A-A bimodule will be
identified with a graded right Ae-module. Then Gorenstein condition above is equivalent
to the following condition: if

0→ Fd → Fd−1 → · · ·→ F1 → F0 → k → 0

is the minimal free resolution of k ∈ GrModA, then Fi ∈ grmodA and
0→ F∨0 → F∨1 · · ·→ F∨d−1 → F∨d → k → 0

is the minimal free resolution of k ∈ GrModAo where F∨i := HomA(Fi, A) ∈ grmodAo.
Classifying AS-regular algebras up to dimension 2 is easy.

Lemma 17. Let A be an AS-regular algebra.

(1) gldimA = 1 if and only if A ∼= k[x].
(2) If gldimA = 2, then A ∼= k〈x, y〉/(αx2 + βxy + γyx+ δy2) where (α, β, γ, δ) ∈ P3.

Conversely, if A ∼= k〈x, y〉/(αx2 + βxy + γyx+ δy2), then:
αδ − βγ �= 0 αδ − βγ = 0 but β �= γ αδ − βγ = 0 and β = γ

gldimA 2 2 ∞
GKdimA 2 2 ∞
noetherian Yes No No
domain Yes No No

Gorenstein condition Yes No No

Question 18. Let A be a graded algebra such that gldimA < ∞ and GKdimA < ∞.
Then A is noetherian if and only if A is a domain if and only if A satisfies Gorenstein
condition?

2.2. Geometric Algebras. Artin, Tate and Van den Bergh [4] classified all 3-dimensional
AS-regular algebras using geometric techniques. Recall that every graded algebra gen-
erated in degree 1 is of the form A = T (V )/I. A homogeneous element f ∈ Ii ⊂ V ⊗i

defines a linear map f : (V ⊗i)∗ ∼= V ∗⊗i → k where V ∗ is the k-vector space dual of V , or
equivalently a multilinear form f : V ∗×i → k, so we may define a sequence of schemes

Γi := V(Ii) = {(p1, . . . , pi) ∈ P(V ∗)×i | f(p1, . . . , pi) = 0 for all f ∈ Ii}.
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If πi : Γi+1 → Γi is the projection map onto the first i coordinates, then (Γi, πi) is an
inverse system of schemes. We define the point scheme of A by taking the inverse limit
Γ := lim←−Γi.

Example 19. If A = T (V ) is the tensor algebra, then Γi = V(0) = P(V ∗)×i, so the point
scheme of A is Γ ∼= P(V ∗)×∞.

Example 20. On the other hand, if A = S(V ) = k[x1, . . . , xn] is the polynomial algebra,
then Γi = {(p, p, . . . , p) ∈ P(V ∗)×i | p ∈ P(V ∗)}, so the point scheme of A is Γ ∼= P(V ∗).

Example 21. In fact, if A = S(V )/I is a commutative graded algebra generated in
degree 1, then Γi = {(p, p, . . . , p) ∈ P(V ∗)×i | p ∈ ProjA} for all i � 0, so the point
scheme of A is Γ ∼= ProjA.

Example 22. If A is artinian, then Γi = ∅ for all i � 0, so the point scheme of A is
Γ = ∅.

Question 23. [4] If A is a noetherian finitely presented graded algebra, then does lim←−Γi
converge?

To simplify the story, we will focus on only quadratic algebras. A quadratic algebra is
of the form A = T (V )/(R) where R ⊂ V ⊗k V is a subspace and (R) is the two-sided
ideal of T (V ) generated by R.

Definition 24. A quadratic algebra A = T (V )/(R) is called geometric if there is a pair
(E, σ) where E ⊆ P(V ∗) is a scheme and σ ∈ AutE is an automorphism such that
G1 Γ2 = {(p, σ(p)) ∈ P(V ∗)× P(V ∗) | p ∈ E}.
G2 R = {f ∈ V ⊗k V | f(p, σ(p)) = 0 for all p ∈ E}.

If A satisfies the condition (G1), then A determines a geometric pair (E, σ), which is
written as P(A) = (E, σ). In this case, Γi = {(p, σ(p), . . . ,σi−1(p)) ∈ P(V ∗)×i | p ∈ E}
for all i ≥ 2, so the point scheme of A is Γ ∼= E. If A satisfies the condition (G2), then
A is determined by a geometric pair (E, σ), which is written as A = A(E, σ).
Classifying geometric algebras is equivalent to classifying geometric pairs in the follow-

ing sense.

Theorem 25. Let A = T (V )/(R) = A(E, σ), A′ = T (V ′)/(R′) = A(E′,σ′) be geometric
algebras. Then A ∼= A′ if and only if there is an isomorphism τ : E → E′ which extends
to an isomorphism τ̄ : P(V ∗)→ P(V ′∗) such that the diagram

E
τ−−−→ E′

σ




σ′

E
τ−−−→ E′

commutes.

Although the definition is technical, many noetherian quadratic algebras are geometric.

Example 26. If A is a commutative quadratic domain, then A = A(ProjA, Id) is geo-
metric.
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Example 27. Let A = k〈x, y〉/(f) where
f = αx2 + βxy + γyx+ δy2, (α, β, γ, δ) ∈ P3.

Then

(p, q) = ((a, b), (c, d)) ∈ Γ2 = V(f) ⊆ P1 × P1

⇐⇒ f(p, q) = αac+ βad+ γbc+ δbd = 0

⇐⇒ (βa+ δb)d = (−αa− γb)c

⇐⇒
(
c
d

)
=

(
βa+ δb
−αa− γb

)
=

(
β δ
−α −γ

)(
a
b

)
in P1

⇐⇒ q = σ(p) where p ∈ P1 and σ =
(
γ δ
−α −β

)
.

It follows that

A satisfies (G1)

⇐⇒ σ ∈ AutP1 = PGL(2, k) = GL(2, k)/ ∼
⇐⇒ det σ = αδ − βγ �= 0.

In fact, A = A(P1,σ) is geometric if and only if αδ − βγ �= 0. It follows that A is a
2-dimensional AS-regular algebra if and only if A = A(P1, σ) is a geometric algebra for
some σ ∈ AutP1.
Using geometric pairs, 3-dimensional AS-regular algebras were also classified by Artin,

Tate, and Van den Bergh. We state their theorem only in the quadratic case.

Theorem 28. [4] Let A be a quadratic algebra. Then A is a 3-dimensional AS-regular
algebra if and only if A ∼= A(E,σ) where
(1) E = P2 and σ ∈ AutP2, or
(2) E ⊆ P2 is a cubic divisor, that is, E = V(f) for some f ∈ S(V )3, and σ ∈ AutE

such that σ∗L �∼= L but (σ2)∗L ⊗E L ∼= σ∗L ⊗E σ∗L where L = OE(1) is the very
ample invertible sheaf on E.

Let A = A(E, σ) be a 3-dimensional quadratic AS-regular algebra. The following is a
list of possibilities for E: (1) P2. (2) triple lines. (2) union of a double line and a single
line. (3) three lines meeting at one point. (4) a triangle. (5) a line and a conic meeting
at one point. (6) a line and conic meeting at two points. (7) an elliptic curve.

Example 29. If A = k〈x, y, z〉/(zy − αyz, xz − βzx, yx − γxy) where α,β, γ ∈ k \ {0},
then A is a 3-dimensional quadratic AS-regular algebra such that

E =

{
P2 if αβγ = 1,

V(xyz) ⊂ P2 (a triangle) if αβγ �= 1.

Example 30. Let A = k〈x, y, z〉/(αyz + βzy + γx2,αzx+ βxz + γy2,αxy + βyx+ γz2).
For a generic choice of α, β, γ ∈ k\{0}, A is a 3-dimensional quadratic AS-regular algebra
such that

E = V(αβγ(x3 + y3 + z3)− (α3 + β3 + γ3)xyz) ⊂ P2
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is an elliptic curve, and σ is given by the translation by the point (α, β, γ) ∈ E in the
group law on E. In this case, A is called a 3-dimensional Sklyanin algebra.

Unfortunately, there exists a 4-dimensional quadratic AS-regular algebra which does not
satisfy (G2) (see [20]), however, almost all known examples of 4-dimensional quadratic
AS-regular algebras are geometric.
For geometric algebras, graded Morita equivalence can be characterized in terms of

their geometric pairs.

Theorem 31. [10] Let A = T (V )/(R) = A(E, σ), A′ = T (V ′)/(R′) = A(E′, σ′) be geo-
metric algebras. Then GrModA ∼= GrModA′ if and only if there is a sequence of iso-
morphisms τn : E → E′ which extend to isomorphisms τ̄n : P(V ∗)→ P(V ′∗) such that the
diagram

E
τn−−−→ E′

σ




σ′

E
τn+1−−−→ E′

commute for all n ∈ Z.

3. Frobenius Koszul Algebras

3.1. Koszul Algebras. So far, it seems that there is no connection between two research
fields, noncommutative algebraic geometry and representation theory of finite dimensional
algebras because the projective schemes associated to any graded algebra finite dimen-
sional over k is empty. However, we will see that some of the ideas and techniques of
noncommutative algebraic geometry can be transferred to the study of Frobenius Koszul
algebras via Koszul duality.

Definition 32. Let A be a graded algebra. A linear resolution ofM ∈ GrModA is a free
resolution of the form

· · ·
[v
(2)
ij ]·−−−→ ⊕A

[v
(1)
ij ]·−−−→ ⊕A

[v
(0)
ij ]·−−−→ ⊕A→M → 0

where v
(k)
ij ∈ V = A1 for all i, j, k. We say that A is Koszul if k := A/A≥1 has a linear

resolution.

It is known that if A is Koszul, then A = T (V )/(R) is quadratic, and its quadratic dual
A! = T (V ∗)/(R⊥) where

R⊥ := {λ ∈ V ∗ ⊗k V ∗ | λ(r) = 0 for all r ∈ R}
is also Koszul, which is called the Koszul dual of A.

Example 33. The following algebras are Koszul.

• A free algebra. For example,
A = k〈x, y〉 ⇐⇒ A! ∼= k〈x, y〉/(x2, xy, yx, y2).

• A skew polynomial algebra, and a skew exterior algebra. For example,
A = k〈x, y〉/(xy − αyx) ⇐⇒ A! ∼= k〈x, y〉/(x2,αxy + yx, y2).
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• A monomial quadratic algebra. For example,
A = k〈x, y〉/(x2, xy) ⇐⇒ A! ∼= k〈x, y〉/(yx, y2).

LetA be a graded algebra. The complexity ofA is defined by cA := GKdim(⊕ExtiA(k, k)).
This section was motivated by the following result due to Smith.

Theorem 34. [18] Let A be a graded algebra. Then A is Frobenius Koszul of cA <∞ if
and only if A! is AS-regular Koszul.

It follows that classifying all AS-regular Koszul algebras of GKdimension d is equivalent
to classifying all Frobenius Koszul algebras of complexity d. We will see below that there
are four levels of classification.
As in the commutative case, a dualizing complex defined below plays an essential role

in noncommutative algebraic geometry. We define the i-th local cohomology of M ∈
GrModA by

Him(M) = lim
n→∞

ExtiA(A/A≥n,M) ∈ GrModA.

For an abelian category C, we denote by Db(C) the category of bounded complexes in C.

Definition 35. [22] Let A be a graded algebra. A bounded complex D ∈ Db(GrModAe)
of graded A-A bimodules is called dualizing if it satisfies the following conditions:

(1) D has finite injective dimension over A and over Ao.
(2) D is a complex of modules finitely generated over A and over Ao.
(3) There are isomorphisms of graded A-A bimodules

ExtiA(D,D)
∼= ExtiAo(D,D) ∼=

{
A if i = 0

0 if i �= 0.

A dualizing complex D over A is called balanced if there are isomorphisms of graded A-A
bimodules

Him(D)
∼= Himo(D) ∼=

{
A∗ := Homk(A, k) ∈ GrModAe if i = 0

0 if i �= 0.

Almost all noetherian graded algebras we usually consider, typically, graded quotient
algebras of a noetherian AS-regular algebra, have balanced dualizing complexes.
Let grmodA be the stable category of grmodA modulo projectives. We can form a tri-

angulated category S(grmodA), called the stabilization of grmodA, by formally inverting
the syzygy functor Ω : grmodA → grmodA so that Ω−1 : S(grmodA) → S(grmodA) is
the translation functor.

Theorem 36. Let A,B be graded algebras.

(1) If A and B are quadratic, then

A ∼= B ⇐⇒ A! ∼= B!.
(2) [13] If A and B are Koszul, then

GrModA ∼= GrModB ⇐⇒ GrModA! ∼= GrModB!.
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(3) [8] If A and B are Koszul and A,B,A!, B! are noetherian and having balanced
dualizing complexes, then

Db(grmodA) ∼= Db(grmodB) ⇐⇒ Db(grmodA!) ∼= Db(grmodB!).

(4) [9] If A and B are Koszul and A,B,A!, B! are noetherian and having balanced
dualizing complexes, then

Db(projA) ∼= Db(projB) ⇐⇒ S(grmodA!) ∼= S(grmodB!).

Note that if A is a Frobenius algebra, then S(grmodA) ∼= grmodA as triangulated cat-
egories. If we accept the conjecture that every AS-regular (Koszul) algebra is noetherian,
then we have the following correspondences:

Classifying all Frobenius Koszul algebras of complexity d




up to isormophism

up to graded Morita equivalence

up to graded derived equivalence

up to graded stable equivalence

⇐⇒ Classifying all (noetherian) AS-regular Koszul algebras of GKdimension d




up to isormophism

up to graded Morita equivalence

up to graded derived equivalence

up to derived equivalence of the associated projective schemes.

Since classification of Frobenius algebras is an active project in representation theory
of finite dimensional algebras, there will be deep interactions between these two research
fields.

3.2. Co-point Modules. If A is a Koszul algebra, then we expect that some of the
techniques to study A can be used to study A!. In fact, by transferring techniques of
noncommutative algebraic geometry described in the previous section, we have already
obtained some results in representation theory of finite dimensional algebras (see [18],
[11]). We would like to make more progress in this direction.

Definition 37. A quadratic algebra A is called co-geometric if its quadratic dual A! =
A(E,σ) is geometric.

If A is co-geometric, then A determines a geometric pair by (E,σ) = P(A!), and A
is determined by a geometric pair (E, σ) by A ∼= A!(E,σ) := A(E,σ)!. The following
results are simple interpretations of the ones in the previous section.

Theorem 38. Let A = T (V )/(R) = A!(E,σ), A′ = T (V ′)/(R′) = A!(E′, σ′) be co-
geometric algebras.

—132—



(1) A ∼= A′ if and only if there is an isomorphism τ : E → E′ which extends to an
isomorphism τ̄ : P(V )→ P(V ′) such that the diagram

E
τ−−−→ E′

σ




σ′

E
τ−−−→ E′

commutes.
(2) Moreover, if A,A′ are Koszul algebras, then GrModA ∼= GrModA′ if and only if

there is a sequence of isomorphisms τn : E → E′ which extend to isomorphisms
τ̄n : P(V )→ P(V ′) such that the diagram

E
τn−−−→ E′

σ




σ′

E
τn+1−−−→ E′

commute for all n ∈ Z.
Since A is a Frobenius Koszul algebra of complexity 3 if and only if A! is a 3-dimensional

quadratic AS-regular algebra, Frobenius Koszul algebras of complexity 3 can be com-
pletely classified in term of geometric pairs up to isomorphism and up to graded Morita
equivalence. In this section, we will find the geometric pair (E,σ) directly from A without
passing through its Koszul dual.
Let A = T (V )/I be a graded algebra. For p ∈ P(V ), we define Np := A/vA ∈ GrModA

where v ∈ V = A1 such that p = [v] ∈ P(V ). This notation is useful because, for
p, q ∈ P(V ), Np ∼= Nq if and only if p = q.
Example 39. If A = k〈x, y, z〉/I and p = (a, b, c) ∈ P2, then

Np = A/(ax+ by + cz)A ∈ GrModA.
Definition 40. Let A = T (V )/I be a graded algebra. We say that N ∈ GrModA is a
co-point module if N has a minimal free resolution of the form

· · · v2·−−−→ A
v1·−−−→ A

v0·−−−→ A→ N → 0

where vi ∈ V = A1 for all i ∈ N.
We denote by clinA the full subcategory of GrModA consisting of co-point modules. If

N ∈ clinA is a co-point module having the resolution as above, then ΩiN ∼= Npi ∈ clinA
are co-point modules where pi = [vi] ∈ P(V ) for all i ∈ N. We define P !(A) = (E,σ)
where E := {p ∈ P(V ) | Np ∈ clinA}, and σ : E → E is a map defined by ΩNp ∼= Nσ(p),
so that

ΩiNp ∼= Nσi(p)
for all i ∈ N.
For the purpose below, we assume that the following technical condition. We say that

a Koszul algebra A satisfies (*) if

(1) GKdimA! <∞ (equivalently cA <∞),
(2) A! is noetherian, and

—133—



(3) A! satisfies Cohen-Macaulay property, that is, gradeM + GKdimM = GKdimA!

for all M ∈ grmodA! where gradeM := inf{i | ExtiA!(M,A!) �= 0}.
We expect that every Frobenius Koszul algebra of finite complexity satisfies (*).

Theorem 41. [11] If A = A!(E, σ) is a co-geometric Frobenius Koszul algebra satisfying
(*), then P !(A) = (E, σ).

Many important functors in representation theory of finite dimensional algebras pre-
serve co-point modules.

Lemma 42. [12] If A = A!(E, σ) is a Frobenius Koszul algebra satisfying (*), then there
are following functors:

Ω : clinA→ clinA
Tr : clinA→ clinAo

(−)∨ := HomA(−, A) : clinA→ clinAo

(−)∗ := Homk(−, k) : clinA→ clinAo

N (−) := ((−)∨)∗ : clinA→ clinA.

It follows that the Nakayama functor N : clinA → clinA induces an automorphism
ν ∈ AutE, which is called the Nakayama automorphism.

Conjecture 43. Let A = A!(E, σ), A′ = A!(E′, σ′) be co-geometric Frobenius Koszul al-
gebras of complexity d satisfying (*), and let ν ∈ AutE, ν ′ ∈ AutE′ be Nakayama

automorphisms. Then GrModA ∼= GrModA′ if and only if A!(E, νσd) ∼= A!(E′, ν ′σ′d).

It is easy to prove the above conjecture if cA ≤ 2. If cA = 3 and E is an elliptic curve,
then the above conjecture was proved in [10].
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