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Abstract. Let a monoid S act on a ring R by injective endomorphisms. A series of
results relating various algebraic properties of R and that of the S-Cohn-Jordan ring
extension A(R; S) of R are presented. For example: primeness, Goldie conditions and
other finiteness conditions are considered. Some problems and possible applications will
be also discussed.

1. Introduction

Let R be an associative unital ring and σ : R → R an injective endomorphism of R.
Jordan [2] constructed a minimal, in a sense that A =

∑∞
i=0 σ−i(R), over-ring A of R such

that σ extends to an automorphism of A. Then he began systematic studies of relations
between various algebraic properties of R and that of A. The motivation for such studies
was the observation that this knowledge can often be used for reducing the investigation of
a skew polynomial ring R[x; σ] of endomorphism type, to the case of the skew polynomial
ring A[x; σ] of automorphism type, which is much easier to handle. Examples of such
approach one can also find in [6] and [7].

Instead of looking at the action of a single endomorphism σ on R one can consider the
action of a monoid. Let S denote a monoid which acts on R by injective endomorphisms.
That is, a homomorphism φ : S → End(R) is given, such that φ(s) is a monomorphism,
for any s ∈ S. We say that an over-ring A(R; S) of R is an S-Cohn-Jordan extension of
R if it is a minimal over-ring of R such that the action of S on R extends to the action
of S on A(R; S) by automorphisms (Cf. Definition 1).

A classical result of Cohn (see Theorem 7.3.4 [1]) says that if the monoid S possesses a
group S−1S of left quotients, then A(R; S) exists, moreover it is uniquely determined up
to an R-isomorphism.

The above mentioned theorem of Cohn was originally formulated in much more general
context of Ω-algebras, not just rings. The construction of A(R; S) was given as a limit of
a suitable directed system.

The possibility of enlarging an object and replacing the action of endomorphisms by
the action of automorphisms is a powerful tool, similar to a localization. Perhaps this was
the reason that the theorem of Cohn was formulated and reproved in various algebraic
contexts (see for example [3], [9], [10], [11], [12]).

The aim of the paper is to present a series of results relating various algebraic properties
of R and that of the S-Cohn-Jordan extension A(R; S) of R. For example: primeness,
Goldie conditions and other finiteness conditions are considered. Most of the presented
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results can be found in full details in [7]. Some problems, questions and applications are
also discussed.

2. Properties of S-Cohn-Jordan Extensions

Henceforth R stands for an associative ring, φ : S → End(R) denotes the action of a
monoid S on R by injective endomorphisms. For any s ∈ S, the endomorphism φ(s) ∈
End(R) will be denoted by φs.

Definition 1. An over-ring A(R; S) of R is called an S-Cohn-Jordan extension of R if:

(1) the action of S on R extends to an action of S (also denoted by φ) on A(R; S) by
automorphisms, i.e. φs is an automorphism of A(R; S), for any s ∈ S.

(2) every element a ∈ A(R; S) is of the form a = φ−1
s (b), for some suitable b ∈ R and

s ∈ S.

Henceforth, as in the above definition, φs will also denote the automorphism φ(s) of
A(R; S), where s ∈ S.

As it was mentioned in the introduction, the extension A(R; S) exists provided the
monoid S possesses a group of left quotients. Recall that this is the case exactly when
the monoid S is left and right cancellative and satisfies the left Ore condition, that is, for
any s1, s2 ∈ S, there exist t1, t2 ∈ S such that t1s1 = t2s2.

In the case S = 〈σ〉 is a cyclic monoid, Jordan recognized A(R; S) as a subring of the
left localization of the Ore extension R[x; σ] with respect to the set of all powers of the
indeterminate x.

When the monoid S possesses a group of left quotients, then one can construct A(R; S)
in a similar way as Jordan did. Namely, let us consider the skew semigroup ring R#φS.
One can check that elements of S are regular in R#φS and S is a left Ore set in R#φS.
In particular, we can consider the left localization T = S−1(R#φS) of R#φS. For any
s ∈ S and r ∈ R, we have sr = φs(r)s in R#φS. Thus one can think of s−1Rs as the
preimage (φs)

−1(R) of R in T . The Goldie condition implies that A =
⋃

s∈S s−1Rs ⊆ T
is a subring of T . In fact it is easy to see that A = A(R; S) (Cf. Lemma 2.1 [7]), in this
case.

Suppose that A(R; S) exists and the action of S on R is faithful, in the sense that φ
is an injection. Then the action of S on A(R; S) is also faithful. This means that the
monoid S embeds in a group (the group of automorphisms of A(R; S)). However even in
this case, conditions for existence of A(R; S) seem to be not clear and we may formulate
the following:

Problem 2. Suppose that S acts faithfully on R.

(1) What are the necessary and sufficient conditions for the existence of A(R; S)?
(2) Assume that A(R; S) exists. What are the necessary and sufficient conditions for

uniqueness of A(R; S)?
(3) Let T be a submonoid of S. Suppose that A(R; S) exists. When does A(R; T )

exist? If so, is it naturally embedded in A(R; S)?

The Definition 1 reminds somehow the definition of a left localization of R with respect
to a multiplicatively closed set. In this way, the analogue of a common left denominator

–31–



for a finite set X of elements of A(R; S), should be an element φs, for some s ∈ S, such
that φs(X) ⊆ R. It is easy to see that, for any finite subset X of A(R; S), such element
φs do exists. This suggests that the relations between some algebraic properties of R
and its S-Cohn-Jordan extension A(R; S) should be similar to those between R and its
localization. This is indeed the case. In particular we have:

Proposition 3. (Cf. [7])

(1) Let T denote one of the following classes of rings: the class of all division, simple,
von Neumann regular, prime, semiprime rings, rings having finite block theory. If
R ∈ T then A(R; S) ∈ T .

(2) Let P denote one of the following classes of rings: the class of all domains, reduced
rings, n×n matrix rings, commutative or, more generally, rings satisfying a fixed
polynomial identity. Then A(R; S) ∈ P if and only if R ∈ P.

The properties listed in the statement (1) of the above proposition do not pass down
from A(R; S) to R. Indeed, the following easy example shows that A(R; S) can be a field
with R being not simple.

Example 4. Let A = K(xi | i ∈ Z) be the field of rational functions over a field K in
commuting indeterminates {xi}i∈Z and S = 〈σ〉, where σ is the K-automorphism of A
given by σ(xi) = xi+1, for i ∈ Z. Let us set R = K(xi | i ≥ 1)[x0] ⊆ A. Then S acts in
a natural way on R and for any a ∈ A, there exists n ≥ 1 such that σn(a) ∈ K(xi | i ≥
1) ⊆ R. This means that A = A(R; S).

Example 1.10 [7] offers a prime ring R such that A(R; S) is not semiprime. Example 1.15
[7] shows that there exists a ring R having infinitely many central orthogonal idempotents,
while A(R; S) has no nontrivial central idempotents, i.e. A(R; S) has a finite block theory
but R does not.

Theorem 5. (Cf. [7]) Suppose A(R; S) exists. Then:

(1) A(R; S) is semiprime if and only if for any nonzero left ideal I of R, there exists
s ∈ S such that (Rφs(I))2 6= 0.

(2) Suppose that R is left noetherian. Then R is prime (semiprime) if and only if
A(R; S) is prime (semiprime).

When R is one-sided noetherian, then there exists a finite common bound on the
cardinality of sets of orthogonal idempotents of R (as otherwise R would have infinite
left Goldie dimension). Thus Proposition 1.14 [7] yields immediately the following:

Theorem 6. Suppose that R is a one-sided noetherian ring and A(R; S) exists. Then R
has finite block theory if and only if A(R; S) has finite block theory. Moreover if

⊕n
i=1 eiR

is a decomposition of R into indecomposable blocks, then
⊕n

i=1 eiA(R; S) is a block de-
composition of A(R; S).

Much more can be said about the relations of R and that of A(R; S), provided the
monoid S has a group of left quotients. The idea, which goes back to Jordan [2], is to
compare left ideals I of A(R; S) with its orbits {φs(I)∩R | s ∈ S} in R. An important role
is also played by S-closed left ideals J of R, i.e. left ideals J such that A(R; S)J ∩R = J .
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The following theorem (Cf. Theorem 2.19 and Corollary 2.20 of [7]) offers complete
characterization of artinian property of A(R; S).

Theorem 7. Suppose that S possesses a group of left quotients. Then:

(1) The ring A(R; S) is left artinian if and only if there exists a finite bound on lengths
of chains of S-closed left ideals of R. Moreover, if one of the equivalent conditions
holds, then the length of A(R; S) as a left A(R; S)-module is equal to the length of
the longest chain of S-closed left ideals of R.

(2) If R is left artinian then so is A(R; S).

In the case S is a cyclic monoid, the above theorem was proved in [2]. Surprisingly, the
proof of the theorem in the general case seems to be easier than the arguments used in
the case S is a cyclic monoid.

Making use of Theorems 5, 6, 7 and some localizations technics one can prove the
following two results (Cf. [7]):

Theorem 8. Suppose S possesses a group of left quotients. If the ring R is left artinian,
then:

(1) R is a semisimple ring if and only if A(R; S) is a semisimple ring.

(2) If R =
⊕k

i=1 eiR, with eiR = Mni
(Bi), is a block decomposition of the semisimple

ring R, then A(R; S) =
⊕k

i=1 eiA(R; S) is a block decomposition of A(R; S) and
eiA(R; S) = Mni

(Di) for some division ring. Moreover, for 1 ≤ i ≤ k, the division
ring Di is an extension of Bi.

In the case S = 〈σ〉 being a cyclic monoid the above theorem was known in special
cases. Namely, the first statement was proved in [2], the second one appeared in [4].

From now on Q(R) will denote the classical left quotient ring of a semiprime left Goldie
ring R and udim R will stand for the left uniform dimension of R.

Theorem 9. Suppose S possesses a group of left quotients. Let R be a semiprime left
Goldie ring. Then A(R; S) is also a semiprime left Goldie ring. Moreover Q(A(R; S)) =
A(Q(R); S) and udim R = udim A(R; S).

Contrary to the artinian property, the situation with the noetherian property of A(R; S)
seems to be not clear at all. Even when S is a cyclic monoid, one can find examples of rings
R and A(R; S) showing that one of those rings is left noetherian but the other is not left
noetherian. Nevertheless Jordan [2] succeeded to give necessary and sufficient conditions
for A(R; S) to be left noetherian, in the case S is a cyclic monoid. The characterization
was given in terms of properties of the lattice of S-closed left ideals of R.

Problem 10. To characterize the left noetherian property of the S-Cohn-Jordan exten-
sion A(R; S) in terms of properties of R and the action of S.

If G = S−1S is the group of left quotients of S, then we have seen that A(R; S) can be
considered as a subring of the left localization S−1(R#φS) of R#φS. Using this approach,
one can see that there is a natural isomorphism between A(R; S)#φG and S−1(R#φS).
Since the left noetherian property of a ring is preserved under left localization with respect
to a left Ore set, we have:

–33–



Proposition 11. Suppose S possesses a group of left quotients. If the ring R#φS is left
noetherian, then A(R; S) is also left noetherian.

3. Examples of Applications

As it was briefly mentioned at the end of the previous section, when S has the group G
of left quotients, then R#φS ⊆ A(R; S)#φS ⊆ A(R; S)#φG = S−1(R#φS). This means
that problems concerning the skew semigroup rings R#φS can often be reduced to the
skew group ring A(R; S)#φS. The following theorem is an example of such application.

Theorem 12. (Cf. [7]) Let S be a monoid having a poly-infinite cyclic group of left
quotients. Suppose that S acts on a semiprime (prime) left Goldie ring R by injective
endomorphisms. Then the skew semigroup ring R#φS is a semiprime (prime) left Goldie
ring and udim (R#φS) = udim R.

The idea of the proof of the above theorem is as follows. By Theorem 9, A(R; S) is a
semiprime left Goldie ring and the assumption imposed on the group G = S−1S of left
quotients of the monoid S imply that A(R; S)#φG is a semiprime left Goldie ring. R#φS
is a subring of A(R; S)#φG such that S−1(R#φS) = A(R; S)#φG. Thus the localization
S−1(R#φS) is a semiprime left Goldie ring. Hence the ring R#φS is also semiprime left
Goldie.

It was proved in [5] that the property of being a semiprime left Goldie ring lifts from a
ring R to its Ore extension R[x; σ, δ], where σ is an automorphism and δ a σ-derivation
of R. This result was extended in [4] to the following theorem.

Theorem 13. Let R be a semiprime left Goldie ring, σ, δ an injective endomorphism
and a σ-derivation of R, respectively. Then R[x; σ, δ] is also a semiprime left Goldie ring
and udim R[x; σ, δ] = udim R = udim A(R; 〈σ〉).

One of the key ingredient in the proof of the above theorem was the use of the 〈σ〉-
Cohn-Jordan extension A(R; 〈σ〉) and Theorem 9.

Mushrub in [9] investigated the left uniform dimension of skew polynomial rings R[x; σ],
where σ denotes an injective endomorphism of the ring R. He proved, in particular, that
udim R[x; σ] = udim A(R; 〈σ〉) (for a short proof see Lemma 3.2 [4]). He also constructed
examples showing that:

1. For any n ∈ N, there is a commutative ring R (not semiprime) with an injective
endomorphism σ, such that udim R = n and udim R[x; σ] = 1.

2. There exists a domain R of infinite left uniform dimension and an injective endo-
morphism σ of R such that udim R[x; σ] = 1.

The following question comes from [9].

Question 14. (Mushrub) Let R be a semiprime ring of finite left Goldie dimension.
Suppose that σ is an injective endomorphism of R. Is udim R = udim R[x; σ]?

As we recorded earlier, udim R[x; σ] = udim A(R; 〈σ〉), for any injective endomorphism
σ of R. Thus the above question of Mushrub can be be read as a question: Is udim R =
udim A(R; 〈σ〉)? Therefore, the following question can be viewed as a generalization of
Question 14.
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Question 15. Suppose that R is a semiprime ring of finite left Goldie dimension acted
by a monoid S which has a group of left quotients. Is udim R = udim A(R; S)?

The left uniform dimension is preserved under left localizations with respect to Ore
sets of regular elements (Cf. Lemma 2.2.12 [8]). This implies that udim R#φS =
udim S−1(R#φS) = udim A(R; S)#φG. Thus Theorem 12 yields that Question 15 has a
positive answer if the group G = S−1S is poly-infinite cyclic and R satisfies the ACC on
left annihilators. This also means that Question 14 has a positive answer if one addition-
ally assume that R has the ACC on left annihilators. The last fact was observed earlier
in [4].
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