A TILED ORDER OF FINITE GLOBAL DIMENSION WITH NO NEAT PRIMITIVE IDEMPOTENT

HISAAKI FUJITA AND AKIRA OSHIMA

Let R be a discrete valuation ring with a unique maximal ideal πR and a quotient field K, and let $F = R/\pi R$ be the residue class field. Let $n \ge 2$ be an integer and $\{\lambda_{ij} \mid 1 \le i, j \le n\}$ a set of n^2 integers satisfying

$$\lambda_{ii} = 0, \quad \lambda_{ik} + \lambda_{kj} \ge \lambda_{ij}, \quad \lambda_{ij} + \lambda_{ji} > 0 \quad (\text{if } i \ne j)$$

for all $1 \leq i, j, k \leq n$. Then $\Lambda = (\pi^{\lambda_{ij}} R)$ is a basic semiperfect Noetherian *R*-subalgebra of the full $n \times n$ matrix algebra $M_n(K)$. We call such Λ a *tiled R-order* in $M_n(K)$.

Let S be a semiperfect Noetherian ring and e a primitive idempotent of S. Following Ágoston, Dlab and Wakamatsu [1], we call e a *neat* primitive idempotent if $\text{Ext}_S^i(V, V) = 0$ for all $i \ge 1$, where V is a simple right S-module with $Ve \ne 0$ (see [5], too).

It was proved by Jategaonkar [7] that for a fixed integer $n \geq 2$, there are, up to isomorphism, only finitely many tiled *R*-orders of finite global dimension in $M_n(K)$. The literature contains a number of papers concerned with determining tiled *R*-orders of finite global dimension. Tiled *R*-orders of global dimension two were studied by Roggenkamp and Wiedemann in connection with the interest of orders of finite lattice type (see [2], [11], [12], [20]). As for the problem to determine the maximum finite global dimension among tiled *R*-orders in $M_n(K)$ for a fixed *n*, some authors studied tiled *R*-orders having large global dimension, but it is not known what is the maximum (see [4], [5], [6], [7], [8], [9], [14], [17], [18]). In such examples, neat primitive idempotents play an essential role when we compute global dimension inductively. Then in [5], we posed a question "Does any tiled *R*-order of finite global dimension have a neat primitive idempotent?", which can be considered as an improved version of Jategaonkar's conjecture disproved by Kirkman and Kuzmanovich [9] and [4] for all $n \geq 6$.

We notice that in those studies, almost all known results hold if R is an arbitrary discrete valuation ring. However, among other things, Rump [14] proved that global dimension gl.dim Λ of a tiled R-order $\Lambda = (\pi^{\lambda_{ij}}R)$ is determined by the set $\{\lambda_{ij} \mid 1 \leq i, j \leq n\}$ and char F (characteristic of F), and that if gl.dim $\Lambda \leq 2$ then gl.dim Λ does not depend on char F, by using matroid theory (see Tutte [19]). Moreover, he provided an example of a tiled R-order Λ in $M_n(K)$ such that gl.dim $\Lambda = 3$ if char $F \neq 2$, and gl.dim $\Lambda = 4$ if char F = 2, where n = 14. In accordance with matroid theory, Rump calls a tiled R-order regular if its global dimension does not depend on char F, and he added the following sentence: "For the present, at least, we have demonstrated that the problem to determine the tiled orders of finite global dimension can hardly be solved without a careful inspection of regularity."

In this report, we announce a new example of non-regular tiled *R*-orders. Namely, for an arbitrary prime *p*, we construct a tiled *R*-order Λ in $M_n(K)$ such that gl.dim $\Lambda = 5$ if char $F \neq p$ and gl.dim $\Lambda = \infty$ if char F = p, where n = 4p + 5. Moreover, in the

The detailed version of this paper has been submitted for publication elsewhere.

computation of gl.dim Λ , we see that Λ has no neat primitive idempotent. Thus, if char $F \neq p$, Λ is a counterexample to the question mentioned above.

1. Example

Let (\mathcal{P}, \leq) be a finite poset. We can consider \mathcal{P} a finite quiver $\mathcal{P} = (\mathcal{P}_0, \mathcal{P}_1)$ as follows. \mathcal{P}_0 is the set of vertices in \mathcal{P} , that is, the set \mathcal{P} itself. \mathcal{P}_1 is the set of arrows of \mathcal{P} defined by $a \to b \in \mathcal{P}_1$ provided a < b and there is no $x \in \mathcal{P}_0$ with a < x < b. Note that the order of \mathcal{P} is generated by \mathcal{P}_1 . That is, for $a, b \in \Omega$, a < b if and only if there is a path from a to b in the quiver \mathcal{P} .

From a given finite poset \mathcal{P} with *n* vertices, we can construct a tiled *R*-order $\Lambda = (\pi^{\lambda_{xy}}R)$ in $M_n(K)$ by defining $\lambda_{xy} = 0$ if $x \leq y$, and $\lambda_{xy} = 1$ otherwise.

The following is the example of our tiled R-order.

EXAMPLE. Let p be an arbitrary prime, and put l := p + 1. Then we define a finite quiver $\mathcal{P} = (\mathcal{P}_0, \mathcal{P}_1)$ as follows. The set \mathcal{P}_0 has the following 4l + 1 (= 4p + 5) vertices.

$$\mathcal{P}_0 := \{a_i, \, b_i, \, c_i, \, d_i \mid 1 \le i \le l\} \cup \{d\}$$

The set \mathcal{P}_1 has the following $5l + l^2 (= p^2 + 7p + 6)$ arrows.

$$\begin{cases} b_i \to a_i & (1 \le i \le l) \qquad b_i \to a_{i+1} & (1 \le i \le l) \\ c_i \to a_i & (1 \le i \le l) \qquad c_i \to a_{i+1} & (1 \le i \le l) \\ d_i \to c_i & (1 \le i \le l) \qquad d_i \to b_{i+k} & (1 \le i \le l, \ 1 \le k \le p) \\ d \to c_i & (1 \le i \le l) \end{cases}$$

where we consider the indices i of a_i, b_i modulo l. Let Λ be the tiled R-order in $M_n(K)$ corresponding to \mathcal{P} , where n = 4p + 5. Then

gl.dim
$$\Lambda = \begin{cases} 5 & \text{if } \operatorname{char} F \neq p \\ \infty & \text{if } \operatorname{char} F = p. \end{cases}$$

Moreover, all primitive idempotents e_i $(1 \le i \le n)$ of Λ are not neat.

In the case of p = 2, the quiver \mathcal{P} and its tiled *R*-order Λ in $M_{13}(K)$ are as follows.

where $\boldsymbol{\pi} = \pi R$.

Let $J(\Lambda)$ be the Jacobson radical of Λ . We compute minimal projective resolutions of $J(\Lambda)e_i$ $(1 \le i \le n)$ by using Rump's theory [14], which is slightly modified in the detailed version of this paper.

The exponent matrix (λ_{ij}) of a tiled *R*-order $\Lambda = (\pi^{\lambda_{ij}}R)$ defines an infinite poset Ω_{Λ} (called σ -poset in [14] with an automorphism σ of Ω_{Λ}). If *R* is the formal power series ring F[[t]] in the indeterminate *t*, then there is a correspondence between left Λ -lattices and bounded finite dimensional Ω_{Λ} -representations over *F* (see Zavadskij and Kirichenko [21], [22], Roggenkamp and Wiedemann [13], de la Peña and Raggi-Cárdenas [3], and Simson [15]). Using this correspondence, in [14], Rump develops an axiomatic theory to compute global dimension of arbitrary tiled *R*-orders.

REMARK. In [14], Rump provided an example of a non-regular tiled *R*-order in $M_{14}(K)$ with char F = 2, which is constructed from a finite poset. A similar finite poset can be found in [16]. Oshima [10] extended Rump's example to the case of an arbitrary prime p, that is, he constructed a tiled *R*-order Λ in $M_n(K)$ such that gl.dim $\Lambda = 3$ if char $F \neq p$, and gl.dim $\Lambda = 4$ if char F = p, where n = 8p - 2.

As suggested in [14], it may be an interesting problem to find smaller size n which admits non-regular tiled R-orders. When p = 2, our example provides a non-regular tiled R-order in $M_n(K)$ such that n = 13 < 14, at present, that is the minimum among known examples.

References

- [1] I. Agoston, V. Dlab, T. Wakamatsu, Neat algebras, Comm. Algebra 19 (2) (1991), 433-442.
- [2] M. Auslander and K. W. Roggenkamp, A characterization of orders of finite lattice type, Invent. Math. 17 (1972), 79-84.
- [3] J. A. de la Peña, A. Raggi-Cárdenas, On the global dimension of algebras over regular local rings, Illinois J. Math. 32 (3) (1988), 520-533.
- [4] H. Fujita, Tiled orders of finite global dimension, Trans. Amer. Math. Soc. 322 (1990), 329-341; Erratum: Trans. Amer. Math. Soc. 327 (1991), 919-920.
- [5] H. Fujita, Neat idempotents and tiled orders having large global dimension, J. Algebra 256 (2002), 194-210.

- [6] W. S. Jansen, C. J. Odenthal, A tiled order having large global dimension, J. Algebra 192 (1997), 572-591.
- [7] V. A. Jategaonkar, Global dimension of triangular orders over a discrete valuation ring, Proc. Amer. Math. Soc. 38 (1973), 8-14.
- [8] V. A. Jategaonkar, Global dimension of tiled orders over a discrete valuation ring, Trans. Amer. Math. Soc. 196 (1974), 313-330.
- [9] E. Kirkman, J. Kuzmanovich, Global dimension of a class of tiled orders, J. Algebra 127 (1989), 57-72.
- [10] A. Oshima, Global dimension of tiled orders and characteristic of residue class field, Master thesis, University of Tsukuba, 2007 (in Japanese).
- [11] K.W. Roggenkamp, Some examples of orders of global dimension two, Math. Z. 154 (1977), 225-238.
- [12] K. W. Roggenkamp, Orders of global dimension two, Math. Z. 160 (1978), 63-67.
- [13] K. W. Roggenkamp, A. W. Wiedemann, Auslander-Reiten quivers of Schurian orders, Comm. Algebra 12 (1984), 2525-2578.
- [14] W. Rump, Discrete posets, cell complexes, and the global dimension of tiled orders, Comm. Algebra 24 (1996), 55-107.
- [15] D. Simson, Linear representations of partially ordered sets and vector space categories, Algebra, Logic and Applications, vol. 4, Gordon & Breach Science Publishers, 1992.
- [16] W.T. Spears, Global dimension in categories of diagrams, J. Algebra 22 (1972), 219-222.
- [17] R. B. Tarsy, Global dimension of orders, Trans. Amer. Math. Soc. 151 (1970), 335-340.
- [18] R. B. Tarsy, Global dimension of triangular orders, Proc. Amer. Math. Soc. 28(2) (1971), 423-426.
- [19] W. T. Tutte, Introduction to the theory of matroids, American Elsevier Publishing Company, Inc., New York 1971.
- [20] A. Wiedemann, K. W. Roggenkamp, Path orders of global dimension two, J. Algebra 80 (1983), 113-133.
- [21] A. G. Zavadskij, V. V. Kirichenko, Torsion-free modules over primary rings, Zap. Nauchn. Sem. LOMI im. V.A. Steklova AN SSSR 57 (1976), 100-116 = J. Soviet Math. (1979), 598-612.
- [22] A. G. Zavadskij, V. V. Kirichenko, Semimaximal rings of finite type, Mat. Sbornik, 103 (1977), 323-345.

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305-8571 JAPAN E-mail: fujita@math.tsukuba.ac.jp