ON HOCHSCHILD COHOMOLOGY RING OF AN ORDER OF A QUATERNION ALGEBRA

TAKAO HAYAMI

ABSTRACT. We will give an efficient bimodule projective resolution of an order Γ , where Γ is an order of a simple component of the rational group ring $\mathbb{Q}Q_{2^r}$ of the generalized quaternion 2-group Q_{2^r} of order 2^{r+2} . Moreover we will determine the ring structure of the Hochschild cohomology $HH^*(\Gamma)$ by calculating the Yoneda products using this bimodule projective resolution.

1. INTRODUCTION

The cohomology theory of associative algebras was initiated by Hochschild [6], Cartan and Eilenberg [1] and MacLane [7]. Let R be a commutative ring with identity and Λ an R-algebra which is a finitely generated projective R-module. If M is a Λ -bimodule (i.e., a $\Lambda^{e} = \Lambda_{R} \Lambda^{op}$ -module), then the *n*th Hochschild cohomology of Λ with coefficients in M is defined by $H^{n}(\Lambda, M) := \operatorname{Ext}_{\Lambda^{e}}^{n}(\Lambda, M)$. We set $HH^{n}(\Lambda) = H^{n}(\Lambda, \Lambda)$. The Yoneda product gives $HH^{*}(\Lambda) := \bigoplus_{n\geq 0} HH^{n}(\Lambda)$ a graded ring structure with $1 \in Z\Lambda \simeq HH^{0}(\Lambda)$ where $Z\Lambda$ denotes the center of Λ . $HH^{*}(\Lambda)$ is called the Hochschild cohomology ring of Λ . The Hochschild cohomology ring $HH^{*}(\Lambda)$ is graded-commutative, that is, for $\alpha \in HH^{p}(\Lambda)$ and $\beta \in HH^{q}(\Lambda)$ we have $\alpha\beta = (-1)^{pq}\beta\alpha$. The Hochschild cohomology is an important invariant of algebras. However the Hochschild cohomology ring is difficult to compute in general.

Let G be a finite group and e a centrally primitive idempotent of the rational group ring $\mathbb{Q}G$. Then $\mathbb{Q}Ge$ is a central simple algebra over the center K. We set $\Gamma = \mathbb{Z}Ge$. Then Γ is an *R*-order of $\mathbb{Q}Ge$, where *R* denotes the ring of integers of *K*. The author is interested in the Hochschild cohomology ring $HH^*(\Gamma)$ of an R-algebra Γ , which is an invariant of the finite group G and the central idempotent e. On the other hand, a ring homomorphism $\phi: \mathbb{Z}G \to \Gamma; x \mapsto xe \text{ induces a ring homomorphism } HH^*(\Gamma) \to H^*(G, {}_{\psi}\Gamma), \text{ where } {}_{\psi}\Gamma$ denotes Γ regarded as a G-module by conjugation and $H^*(G, {}_{\psi}\Gamma)$ denotes the ordinary cohomology ring of G with coefficients in ${}_{\psi}\Gamma$. In fact, we consider that the study of the ring structure of $H^*(G, {}_{\psi}\Gamma)$ and the ring homomorphism gives us much helpful information about $HH^*(\Gamma)$. So there are some examples of the ring structure of $H^*(G, \psi\Gamma)$ and the ring homomorphism $HH^*(\Gamma) \to H^*(G, {}_{\psi}\Gamma)$ ([4], [5]). The Hochschild cohomology ring $HH^*(\Gamma)$ is in general hard to compute, however it is theoretically possible to calculate if an efficient Γ^{e} -projective resolution is given. In this paper, as an example of it, we will give the ring structure of the Hochschild cohomology $HH^*(\Gamma)$, where Γ is an order of a simple component of the rational group ring of the generalized quaternion 2-group of order 2^{r+2} .

The detailed version of this paper will be submitted for publication elsewhere.

Let G be the generalized quaternion 2-group of order 2^{r+2} for $r \ge 1$:

$$Q_{2^r} = \langle x, y \mid x^{2^{r+1}} = 1, x^{2^r} = y^2, yxy^{-1} = x^{-1} \rangle.$$

We set $e = (1 - x^{2^r})/2 \in \mathbb{Q}G$ and denote xe by ζ , a primitive 2^{r+1} -th root of e. Then e is a centrally primitive idempotent of $\mathbb{Q}G$ and $\mathbb{Q}Ge$ is the (ordinary) quaternion algebra over the field $K := \mathbb{Q}(\zeta + \zeta^{-1})$ with identity e, that is, $\mathbb{Q}Ge = K \oplus Ki \oplus Kj \oplus Kij$ where we set $i = x^{2^{r-1}}e$ and j = ye (see [2, (7.40)]). Note that $i^2 = j^2 = -e, ij = -ji$ hold. In the following we set $R = \mathbb{Z}[\zeta + \zeta^{-1}]$, the ring of integers of K, and we set $\Gamma = \mathbb{Z}Ge = R \oplus R\zeta \oplus Rj \oplus R\zeta j$. Note that R is a commuting parameter ring, because y commutes with $x + x^{-1}$. Then Γ is an R-order of $\mathbb{Q}Ge$. In particular if r = 1, $\Gamma = \mathbb{Z}e \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}ij$ is just the (ordinary) quaternion algebra over \mathbb{Z} with identity e.

We will give an efficient bimodule projective resolution of Γ , and we will determine the ring structure of the Hochschild cohomology $HH^*(\Gamma)$ by calculating the Yoneda products using this bimodule projective resolution. This paper is a summary of [3].

2. A bimodule projective resolution of Γ

In this section, we state a Γ^{e} -projective resolution of Γ . For each $q \geq 0$, let Y_q be a direct sum of q + 1 copies of $\Gamma - \Gamma$. As elements of Y_q , we set

$$c_q^s = \begin{cases} (0, \dots, 0, \underbrace{e_{-e}}_{s}, 0, \dots, 0) & \text{ (if } 1 \le s \le q+1), \\ 0 & \text{ (otherwise).} \end{cases}$$

Then we have $Y_q = \bigoplus_{k=1}^{q+1} \Gamma c_q^k \Gamma$. Let $t = 2^r$. Define left Γ^{e} -homomorphisms $\pi : Y_0 \to \Gamma; c_0^1 \mapsto e$ and $\delta_q : Y_q \to Y_{q-1}$ (q > 0) given by

$$\delta_{q}(c_{q}^{s}) = \begin{cases} -\zeta c_{q-1}^{s} + c_{q-1}^{s} \zeta + (-1)^{(q-s)/2} \zeta j c_{q-1}^{s-1} j \zeta - c_{q-1}^{s-1} & \text{for } q \text{ even, } s \text{ even,} \\ \sum_{l=0}^{t-1} \zeta^{t-1-l} c_{q-1}^{s} \zeta^{l} + (-1)^{(q-s-1)/2} j c_{q-1}^{s-1} j + c_{q-1}^{s-1} & \text{for } q \text{ even, } s \text{ odd,} \\ -\sum_{l=0}^{t-1} \zeta^{t-1-l} c_{q-1}^{s} \zeta^{l} + (-1)^{(q-s-1)/2} j c_{q-1}^{s-1} j - c_{q-1}^{s-1} & \text{for } q \text{ odd, } s \text{ even,} \\ \zeta c_{q-1}^{s} - c_{q-1}^{s} \zeta + (-1)^{(q-s)/2} \zeta j c_{q-1}^{s-1} j \zeta + c_{q-1}^{s-1} & \text{for } q \text{ odd, } s \text{ odd.} \end{cases}$$

Theorem 1. The above (Y, π, δ) is a Γ^{e} -projective resolution of Γ .

Proof. By the direct calculations, we have $\pi \cdot \delta_1 = 0$ and $\delta_q \cdot \delta_{q+1} = 0$ $(q \ge 1)$.

To see that the complex (Y, π, δ) is acyclic, we state a contracting homotopy. In general, it suffices to define the homotopy as an abelian group homomorphism. However, we can see that there exists a homotopy as a right Γ -module, which permits us to cut down the number of cases. We define right Γ -homomorphisms $T_{-1}: \Gamma \to Y_0$ and $T_q: Y_q \to$ Y_{q+1} $(q \ge 0)$ as follows:

$$T_{-1}(\gamma) = c_0^1 \gamma \quad \text{(for } \gamma \in \Gamma).$$

If $q(\geq 0)$ is even, then

$$\begin{split} T_q(\zeta^k c_q^s) &= \begin{cases} 0 & (k=0, \ s=1), \\ \sum_{l=0}^{k-1} \zeta^{k-1-l} c_{q+1}^1 \zeta^l & (1\leq k < t, \ s=1), \\ 0 & (s(\geq 2) \ \text{even}), \\ -\zeta^k c_{q+1}^{s+1} & (s(\geq 3) \ \text{odd}), \end{cases} \\ T_q(\zeta^k j c_q^s) &= \begin{cases} (-1)^{q/2} c_{q+1}^2 j & (k=0, \ s=1), \\ (-1)^{q/2} \left(\sum_{l=0}^{k-1} \zeta^{k-1-l} c_{q+1}^1 \zeta^l j + \zeta^k c_{q+1}^2 j \right) & (1\leq k < t, \ s=1), \\ \zeta^k j c_{q+1}^{s+1} & (s(\geq 3) \ \text{odd}). \end{cases} \end{split}$$

If $q(\geq 1)$ is odd, then

$$T_{q}(\zeta^{k}c_{q}^{s}) = \begin{cases} 0 & (0 \leq k \leq t-2, \ s=1), \\ c_{q+1}^{1} & (k=t-1, \ s=1), \\ 0 & (s(\geq 2) \ \text{even}), \\ -\zeta^{k}c_{q+1}^{s+1} & (s(\geq 3) \ \text{odd}), \end{cases}$$

$$T_{q}(\zeta^{k}jc_{q}^{s}) = \begin{cases} (-1)^{(q-1)/2} \left(c_{q+1}^{1}j\zeta + \zeta^{t-1}c_{q+1}^{2}j\zeta\right) & (k=0, \ s=1), \\ (-1)^{(q+1)/2}\zeta^{k-1}c_{q+1}^{2}j\zeta & (1 \leq k < t, \ s=1), \\ \zeta^{k}jc_{q+1}^{s+1} & (s(\geq 2) \ \text{even}), \\ 0 & (s(\geq 2) \ \text{even}), \\ 0 & (s(\geq 3) \ \text{odd}). \end{cases}$$

Then by the direct calculations, we have

$$\delta_{q+1}T_q + T_{q-1}\delta_q = \mathrm{id}_{Y_q}$$

for $q \geq 0$. Hence (Y, π, δ) is a Γ^{e} -projective resolution of Γ .

3. Hochschild cohomology $HH^*(\Gamma)$

In this section, we will determine the ring structure of the Hochschild cohomology $HH^*(\Gamma)$. This is obtained by using the Γ^{e} -projective resolution (Y, π, δ) of Γ stated in Theorem 1. In the following we denote a direct sum of q copies of a module M by M^q .

3.1. Module structure. In this subsection, we give the module structure of $HH^*(\Gamma)$. As elements of Γ^{q+1} , we set

$$\iota_q^s = \begin{cases} (0, \dots, 0, \overset{s}{\check{e}}, 0, \dots, 0) & \text{ (if } 1 \le s \le q+1), \\ 0 & \text{ (otherwise).} \end{cases}$$

Then we have $\Gamma^{q+1} = \bigoplus_{k=1}^{q+1} \Gamma \iota_q^k$.

Applying the functor $\operatorname{Hom}_{\Gamma^{e}}(-,\Gamma)$ to the resolution (Y,π,δ) , we have the following complex, where we identify $\operatorname{Hom}_{\Gamma^{e}}(Y_{q},\Gamma)$ with Γ^{q+1} using an isomorphism $\operatorname{Hom}_{\Gamma^{e}}(Y_{q},\Gamma)$ $\to \Gamma^{q+1}; f \mapsto \sum_{k=1}^{q+1} f(c_{q}^{k})\iota_{q}^{k}$:

$$\begin{split} \left(\operatorname{Hom}_{\Gamma^{e}}(Y,\Gamma), \delta^{\#} \right) &: \quad 0 \to \Gamma \xrightarrow{\delta_{1}^{\#}} \Gamma^{2} \xrightarrow{\delta_{2}^{\#}} \Gamma^{3} \xrightarrow{\delta_{3}^{\#}} \Gamma^{4} \xrightarrow{\delta_{4}^{\#}} \Gamma^{5} \to \cdots, \\ \\ \delta_{q+1}^{\#}(\gamma \iota_{q}^{s}) &= \begin{cases} -\sum_{l=0}^{t-1} \zeta^{t-1-l} \gamma \zeta^{l} \iota_{q+1}^{s} + ((-1)^{(q-s)/2} \zeta j \gamma j \zeta + \gamma) \iota_{q+1}^{s+1} & \text{for } q \text{ even, } s \text{ even,} \\ (\zeta \gamma - \gamma \zeta) \iota_{q+1}^{s} + ((-1)^{(q-s-1)/2} j \gamma j - \gamma) \iota_{q+1}^{s+1} & \text{for } q \text{ even, } s \text{ odd,} \\ -(\zeta \gamma - \gamma \zeta) \iota_{q+1}^{s} + ((-1)^{(q-s-1)/2} j \gamma j + \gamma) \iota_{q+1}^{s+1} & \text{for } q \text{ odd, } s \text{ even,} \\ \sum_{l=0}^{t-1} \zeta^{t-1-l} \gamma \zeta^{l} \iota_{q+1}^{s} + ((-1)^{(q-s)/2} \zeta j \gamma j \zeta - \gamma) \iota_{q+1}^{s+1} & \text{for } q \text{ odd, } s \text{ odd.} \end{cases} \end{split}$$

In the above, note that

$$\gamma \iota_q^s = \begin{cases} (0, \dots, 0, \overset{s}{\check{\gamma}}, 0, \dots, 0) & \text{ (if } 1 \le s \le q+1), \\ 0 & \text{ (otherwise)}, \end{cases}$$

for $\gamma \in \Gamma$, and so on. By the direct calculations, we have the following theorem: **Theorem 2.** (1) If r = 1, then we have

$$HH^{n}(\Gamma) = \begin{cases} \mathbb{Z} & (n=0), \\ (\mathbb{Z}/2\mathbb{Z})^{2n+1} & (n \ge 1). \end{cases}$$

(2) If $r \geq 2$, then we have

$$HH^{n}(\Gamma) = \begin{cases} R & (n = 0), \\ (R/(\zeta + \zeta^{-1})R)^{2n+1} & (n \text{ odd}), \\ R/2^{r}R \oplus (R/(\zeta + \zeta^{-1})R)^{2n} & (n(\neq 0) \text{ even}). \end{cases}$$

3.2. Ring structure. Recall the Yoneda product in $HH^*(\Gamma)$. Let $\alpha \in HH^n(\Gamma)$ and $\beta \in HH^m(\Gamma)$, where α and β are represented by cocycles $f_\alpha : Y_n \to \Gamma$ and $f_\beta : Y_m \to \Gamma$, respectively. There exists the commutative diagram of Γ^{e} -modules:

where μ_l $(0 \leq l \leq n)$ are liftings of f_{β} . We define the product $\alpha \cdot \beta \in HH^{n+m}(\Gamma)$ by the cohomology class of $f_{\alpha}\mu_n$. This product is independent of the choice of representatives f_{α} and f_{β} , and liftings μ_l $(0 \leq l \leq n)$.

First, we consider the case r = 1. Note the Hochschild cohomology ring $HH^*(\Gamma)$ is graded-commutative. From Theorem 2 (1), $HH^*(\Gamma)$ is a commutative ring in this case. -4We take generators of $HH^1(\Gamma)$ as follows (see [3, Theorem 2 (1)]):

$$A = \zeta \iota_1^2, \ B = \zeta j \iota_1^1, \ C = j \iota_1^1 + \zeta j \iota_1^2.$$

Then we have 2A = 2B = 2C = 0. We calculate the Yoneda products. Then $HH^n(\Gamma)$ $(n \ge 2)$ is multiplicatively generated by A, B and C, and the equation $A^2 + B^2 + C^2 = 0$ holds. Moreover the relations are enough. Thus we can determine the ring structure of $HH^*(\Gamma)$ in the case r = 1 (see [3, Section 3.1] for details).

Next, we consider the case $r \ge 2$. The computation is similar to the case where r = 1, however it is more complicated. By [3, Theorem 2 (2)], we take generators of $HH^1(\Gamma)$ as follows:

$$A = (e - \eta\zeta)\iota_1^2, \ B = (j - \eta\zeta j)\iota_1^1, \ C = (\zeta j - \eta j)\iota_1^1 + (j - \eta\zeta j)\iota_1^2$$

In the above η denotes $2e/(\zeta + \zeta^{-1}) \in R$ (see also [3, Lemma 2.1]). Then we have $(\zeta + \zeta^{-1})A = (\zeta + \zeta^{-1})B = (\zeta + \zeta^{-1})C = 0.$

Note that products of A, B, C and $X \in HH^n(\Gamma)$ $(n \ge 0)$ are commutative, because $HH^*(\Gamma)$ is graded-commutative and the equations 2A = 2B = 2C = 0 hold. We calculate the Yoneda products. Then the following equations hold in $HH^2(\Gamma)$:

$$\begin{split} A^2 &= \iota_2^3, \ AB = j\iota_2^2, \ AC = \zeta j\iota_2^2 - j\iota_2^3, \ B^2 = 2^{r-1}\eta\zeta\iota_2^1 + \zeta\iota_2^2, \\ BC &= 2^{r-1}\eta(e - \eta\zeta)\iota_2^1, \ C^2 = 2^{r-1}\eta\zeta\iota_2^1 + \zeta\iota_2^2 + \iota_2^3. \end{split}$$

In particular, generators of $HH^2(\Gamma)$ except $(e - \eta\zeta)\iota_2^1$ are generated by the products of A, B and C, and the equation $A^2 + B^2 + C^2 = 0$ holds.

In the following, we put $D = (e - \eta \zeta)\iota_2^1$ which is a generator of $HH^2(\Gamma)$, and then we have $2^r D = 0$ and $BC = 2^{r-1}\eta D$. Similarly, we calculate the Yoneda products. Then $HH^n(\Gamma)$ $(n \ge 3)$ is multiplicatively generated by A, B, C and D, and the relations are enough. Thus we can determine the ring structure of $HH^*(\Gamma)$ in the case $r \ge 2$ (see [3, Section 3.2] for details).

Finally we state the ring structure of the Hochschild cohomology ring $HH^*(\Gamma)$:

Theorem 3. (1) If r = 1, then the Hochschild cohomology ring $HH^*(\Gamma)$ is isomorphic to

 $\mathbb{Z}[A, B, C]/(2A, 2B, 2C, A^2 + B^2 + C^2),$

where $\deg A = \deg B = \deg C = 1$.

(2) If $r \geq 2$, then the Hochschild cohomology ring $HH^*(\Gamma)$ is isomorphic to

$$\begin{split} R[A,B,C,D]/((\zeta+\zeta^{-1})A,(\zeta+\zeta^{-1})B,(\zeta+\zeta^{-1})C,2^rD,\\ A^2+B^2+C^2,BC-2^{r-1}\eta D), \end{split}$$

where $R = \mathbb{Z}[\zeta + \zeta^{-1}]$, deg $A = \deg B = \deg C = 1$ and deg D = 2.

Remark 4. In the case r = 1, this cohomology ring is already known by Sanada [8, Section 3.4]. In [8], he treats the Hochschild cohomology of crossed products over a commutative ring and its product structure using a spectral sequence of a double complex. As a special case, he determines the Hochschild cohomology ring of the quaternion algebra over \mathbb{Z} .

References

- [1] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton NJ, 1956.
- [2] C.W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders, Wiley-Interscience, New York, 1981.
- [3] T. Hayami, Hochschild cohomology ring of an order of a simple component of the rational group ring of the generalized quaternion group, Comm. Algebra (to appear).
- [4] T. Hayami and K. Sanada, Cohomology ring of the generalized quaternion group with coefficients in an order, Comm. Algebra **30** (2002), 3611–3628.
- [5] T. Hayami and K. Sanada, On cohomology rings of a cyclic group and a ring of integers, SUT J. Math. 38 (2002), 185–199.
- [6] G. Hochschild, On the Cohomology Groups of an Associative Algebra, Ann. of Math. 46 (1945), 58-67.
- [7] S. MacLane, Homology, Springer-Verlag, New York, 1975.
- [8] K. Sanada, On the Hochschild cohomology of crossed products, Comm. Algebra 21 (1993), 2727–2748.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SCIENCE UNIVERSITY OF TOKYO WAKAMIYA-CHO 26, SHINJUKU-KU, TOKYO 162-0827, JAPAN *E-mail address*: hayami@ma.kagu.tus.ac.jp