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Abstract. We will give an e±cient bimodule projective resolution of an order ¡ , where
¡ is an order of a simple component of the rational group ring QQ2r of the generalized
quaternion 2-group Q2r of order 2r+2. Moreover we will determine the ring structure
of the Hochschild cohomology HH¤(¡ ) by calculating the Yoneda products using this
bimodule projective resolution.

1. Introduction

The cohomology theory of associative algebras was initiated by Hochschild [6], Cartan
and Eilenberg [1] and MacLane [7]. Let R be a commutative ring with identity and ¤ an
R-algebra which is a ¯nitely generated projective R-module. If M is a ¤-bimodule (i.e., a
¤e = ¤R¤

op-module), then the nth Hochschild cohomology of ¤ with coe±cients inM is
de¯ned by Hn(¤;M) := Extn¤e(¤;M). We set HHn(¤) = Hn(¤;¤). The Yoneda product
gives HH¤(¤) :=

L
n¸0HH

n(¤) a graded ring structure with 1 2 Z¤ ' HH0(¤) where
Z¤ denotes the center of ¤. HH¤(¤) is called the Hochschild cohomology ring of ¤. The
Hochschild cohomology ring HH¤(¤) is graded-commutative, that is, for ® 2 HHp(¤)
and ¯ 2 HHq(¤) we have ®¯ = (¡1)pq¯®. The Hochschild cohomology is an important
invariant of algebras. However the Hochschild cohomology ring is di±cult to compute in
general.

Let G be a ¯nite group and e a centrally primitive idempotent of the rational group ring
QG. Then QGe is a central simple algebra over the centerK. We set ¡ = ZGe. Then ¡ is
an R-order of QGe, where R denotes the ring of integers of K. The author is interested in
the Hochschild cohomology ring HH¤(¡ ) of an R-algebra ¡ , which is an invariant of the
¯nite group G and the central idempotent e. On the other hand, a ring homomorphism
Á : ZG ! ¡ ; x 7! xe induces a ring homomorphism HH¤(¡ ) ! H¤(G; Ã¡ ), where Ã¡
denotes ¡ regarded as a G-module by conjugation and H¤(G; Ã¡ ) denotes the ordinary
cohomology ring of G with coe±cients in Ã¡ . In fact, we consider that the study of the
ring structure ofH¤(G; Ã¡) and the ring homomorphism gives us much helpful information
about HH¤(¡ ). So there are some examples of the ring structure of H¤(G; Ã¡ ) and the
ring homomorphism HH¤(¡ ) ! H¤(G; Ã¡ ) ([4], [5]). The Hochschild cohomology ring
HH¤(¡ ) is in general hard to compute, however it is theoretically possible to calculate if
an e±cient ¡ e-projective resolution is given. In this paper, as an example of it, we will
give the ring structure of the Hochschild cohomology HH¤(¡ ), where ¡ is an order of
a simple component of the rational group ring of the generalized quaternion 2-group of
order 2r+2.
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Let G be the generalized quaternion 2-group of order 2r+2 for r ¸ 1:

Q2r = hx; y j x2r+1

= 1; x2r = y2; yxy¡1 = x¡1i:

We set e = (1 ¡ x2r)=2 2 QG and denote xe by ³ , a primitive 2r+1-th root of e. Then e
is a centrally primitive idempotent of QG and QGe is the (ordinary) quaternion algebra
over the ¯eld K := Q(³ + ³¡1) with identity e, that is, QGe = K © Ki © Kj © Kij
where we set i = x2r¡1

e and j = ye (see [2, (7.40)]). Note that i2 = j2 = ¡e; ij = ¡ji
hold. In the following we set R = Z[³ + ³¡1], the ring of integers of K, and we set
¡ = ZGe = R © R³ © Rj © R³j. Note that R is a commuting parameter ring, because
y commutes with x + x¡1. Then ¡ is an R-order of QGe. In particular if r = 1,
¡ = Ze© Zi© Zj © Zij is just the (ordinary) quaternion algebra over Z with identity e.

We will give an e±cient bimodule projective resolution of ¡ , and we will determine the
ring structure of the Hochschild cohomology HH¤(¡ ) by calculating the Yoneda products
using this bimodule projective resolution. This paper is a summary of [3].

2. A bimodule projective resolution of ¡

In this section, we state a ¡ e-projective resolution of ¡ . For each q ¸ 0, let Yq be a
direct sum of q + 1 copies of ¡  ¡ . As elements of Yq, we set

csq =

8
<

:

(0; : : : ; 0; e e| {z }
s

; 0; : : : ; 0) (if 1 · s · q + 1);

0 (otherwise):

Then we have Yq =
Lq+1

k=1 ¡c
k
q¡ . Let t = 2r. De¯ne left ¡ e-homomorphisms ¼ : Y0 !

¡ ; c10 7! e and ±q : Yq ! Yq¡1 (q > 0) given by

±q(c
s
q) =

8
>>>>>>>>><

>>>>>>>>>:

¡³csq¡1 + csq¡1³ + (¡1)(q¡s)=2³jcs¡1
q¡1j³ ¡ cs¡1

q¡1 for q even; s even;
t¡1X

l=0

³t¡1¡lcsq¡1³
l + (¡1)(q¡s¡1)=2jcs¡1

q¡1j + cs¡1
q¡1 for q even; s odd;

¡
t¡1X

l=0

³t¡1¡lcsq¡1³
l + (¡1)(q¡s¡1)=2jcs¡1

q¡1j ¡ c
s¡1
q¡1 for q odd; s even;

³csq¡1 ¡ c
s
q¡1³ + (¡1)(q¡s)=2³jcs¡1

q¡1j³ + cs¡1
q¡1 for q odd; s odd:

Theorem 1. The above (Y; ¼; ±) is a ¡ e-projective resolution of ¡ .

Proof. By the direct calculations, we have ¼ ¢ ±1 = 0 and ±q ¢ ±q+1 = 0 (q ¸ 1).
To see that the complex (Y; ¼; ±) is acyclic, we state a contracting homotopy. In general,

it su±ces to de¯ne the homotopy as an abelian group homomorphism. However, we can
see that there exists a homotopy as a right ¡ -module, which permits us to cut down
the number of cases. We de¯ne right ¡ -homomorphisms T¡1 : ¡ ! Y0 and Tq : Yq !
Yq+1 (q ¸ 0) as follows:

T¡1(°) = c10° (for ° 2 ¡ ):
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If q(¸ 0) is even, then

Tq(³
kcsq) =

8
>>>>>><

>>>>>>:

0 (k = 0; s = 1);
k¡1X

l=0

³k¡1¡lc1q+1³
l (1 · k < t; s = 1);

0 (s(¸ 2) even);

¡³kcs+1
q+1 (s(¸ 3) odd);

Tq(³
kjcsq) =

8
>>>>>><

>>>>>>:

(¡1)q=2c2q+1j (k = 0; s = 1);

(¡1)q=2

Ã
k¡1X

l=0

³k¡1¡lc1q+1³
lj + ³kc2q+1j

!

(1 · k < t; s = 1);

³kjcs+1
q+1 (s(¸ 2) even);

0 (s(¸ 3) odd):

If q(¸ 1) is odd, then

Tq(³
kcsq) =

8
>>><

>>>:

0 (0 · k · t¡ 2; s = 1);

c1q+1 (k = t¡ 1; s = 1);

0 (s(¸ 2) even);

¡³kcs+1
q+1 (s(¸ 3) odd);

Tq(³
kjcsq) =

8
>>><

>>>:

(¡1)(q¡1)=2
¡
c1q+1j³ + ³ t¡1c2q+1j³

¢
(k = 0; s = 1);

(¡1)(q+1)=2³k¡1c2q+1j³ (1 · k < t; s = 1);

³kjcs+1
q+1 (s(¸ 2) even);

0 (s(¸ 3) odd):

Then by the direct calculations, we have

±q+1Tq + Tq¡1±q = idYq

for q ¸ 0. Hence (Y; ¼; ±) is a ¡ e-projective resolution of ¡ .

3. Hochschild cohomology HH¤(¡ )

In this section, we will determine the ring structure of the Hochschild cohomology
HH¤(¡ ). This is obtained by using the ¡ e-projective resolution (Y; ¼; ±) of ¡ stated in
Theorem 1. In the following we denote a direct sum of q copies of a module M by M q.

3.1. Module structure. In this subsection, we give the module structure of HH¤(¡ ).
As elements of ¡ q+1, we set

¶sq =

(
(0; : : : ; 0;

s

·e; 0; : : : ; 0) (if 1 · s · q + 1);

0 (otherwise):

Then we have ¡ q+1 =
Lq+1

k=1 ¡¶
k
q .
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Applying the functor Hom¡ e(¡; ¡ ) to the resolution (Y; ¼; ±), we have the following
complex, where we identify Hom¡ e(Yq; ¡ ) with ¡ q+1 using an isomorphism Hom¡ e(Yq; ¡ )

! ¡ q+1; f 7!
Pq+1

k=1 f(ckq )¶
k
q :

¡
Hom¡ e(Y; ¡ ); ±#

¢
: 0 ! ¡

±
#
1¡! ¡ 2 ±

#
2¡! ¡ 3 ±

#
3¡! ¡ 4 ±

#
4¡! ¡ 5 ! ¢ ¢ ¢ ;

±#
q+1(°¶

s
q) =

8
>>>>>>>>><

>>>>>>>>>:

¡
t¡1X

l=0

³t¡1¡l°³ l¶sq+1 + ((¡1)(q¡s)=2³j°j³ + °)¶s+1
q+1 for q even; s even;

(³° ¡ °³)¶sq+1 + ((¡1)(q¡s¡1)=2j°j ¡ °)¶s+1
q+1 for q even; s odd;

¡(³° ¡ °³)¶sq+1 + ((¡1)(q¡s¡1)=2j°j + °)¶s+1
q+1 for q odd; s even;

t¡1X

l=0

³t¡1¡l°³ l¶sq+1 + ((¡1)(q¡s)=2³j°j³ ¡ °)¶s+1
q+1 for q odd; s odd:

In the above, note that

°¶sq =

(
(0; : : : ; 0;

s
·°; 0; : : : ; 0) (if 1 · s · q + 1);

0 (otherwise);

for ° 2 ¡ , and so on. By the direct calculations, we have the following theorem:

Theorem 2. (1) If r = 1, then we have

HHn(¡ ) =

(
Z (n = 0);

(Z=2Z)2n+1 (n ¸ 1):

(2) If r ¸ 2, then we have

HHn(¡ ) =

8
><

>:

R (n = 0);

(R=(³ + ³¡1)R)2n+1 (n odd);

R=2rR© (R=(³ + ³¡1)R)2n (n(6= 0) even):

3.2. Ring structure. Recall the Yoneda product in HH¤(¡ ). Let ® 2 HHn(¡ ) and
¯ 2 HHm(¡ ), where ® and ¯ are represented by cocycles f® : Yn ! ¡ and f¯ : Ym ! ¡ ,
respectively. There exists the commutative diagram of ¡ e-modules:

¢ ¢ ¢
±n+m+1
¡¡¡¡! Yn+m

±n+m
¡¡¡! ¢ ¢ ¢

±m+2
¡¡¡! Ym+1

±m+1
¡¡¡! Ym

f¯
¡¡¡! ¡

¹n

?
?
y ¹1

?
?
y ¹0

?
?
y

°
°
°

¢ ¢ ¢ ¡¡¡¡!
±n+1

Yn ¡¡¡!
±n

¢ ¢ ¢ ¡¡¡!
±2

Y1 ¡¡¡!
±1

Y0 ¡¡¡!
¼

¡ ¡¡¡! 0;

where ¹l (0 · l · n) are liftings of f¯. We de¯ne the product ® ¢ ¯ 2 HHn+m(¡ ) by the
cohomology class of f®¹n. This product is independent of the choice of representatives
f® and f¯, and liftings ¹l (0 · l · n).

First, we consider the case r = 1. Note the Hochschild cohomology ring HH¤(¡ ) is
graded-commutative. From Theorem 2 (1), HH¤(¡ ) is a commutative ring in this case.
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We take generators of HH1(¡ ) as follows (see [3, Theorem 2 (1)]):

A = ³¶21; B = ³j¶11; C = j¶11 + ³j¶21:

Then we have 2A = 2B = 2C = 0. We calculate the Yoneda products. ThenHHn(¡ ) (n ¸
2) is multiplicatively generated by A;B and C, and the equation A2 +B2 +C2 = 0 holds.
Moreover the relations are enough. Thus we can determine the ring structure of HH¤(¡ )
in the case r = 1 (see [3, Section 3.1] for details).

Next, we consider the case r ¸ 2. The computation is similar to the case where r = 1,
however it is more complicated. By [3, Theorem 2 (2)], we take generators of HH1(¡ ) as
follows:

A = (e¡ ´³)¶21; B = (j ¡ ´³j)¶11; C = (³j ¡ ´j)¶11 + (j ¡ ´³j)¶21:

In the above ´ denotes 2e=(³ + ³¡1) 2 R (see also [3, Lemma 2.1]). Then we have
(³ + ³¡1)A = (³ + ³¡1)B = (³ + ³¡1)C = 0.

Note that products of A;B;C and X 2 HHn(¡ ) (n ¸ 0) are commutative, because
HH¤(¡ ) is graded-commutative and the equations 2A = 2B = 2C = 0 hold. We calculate
the Yoneda products. Then the following equations hold in HH2(¡ ):

A2 = ¶32; AB = j¶22; AC = ³j¶22 ¡ j¶32; B
2 = 2r¡1´³¶12 + ³¶22;

BC = 2r¡1´(e¡ ´³)¶12; C
2 = 2r¡1´³¶12 + ³¶22 + ¶32:

In particular, generators of HH2(¡ ) except (e ¡ ´³)¶12 are generated by the products of
A;B and C, and the equation A2 +B2 + C2 = 0 holds.

In the following, we put D = (e¡ ´³)¶12 which is a generator of HH2(¡ ), and then we
have 2rD = 0 and BC = 2r¡1´D. Similarly, we calculate the Yoneda products. Then
HHn(¡ ) (n ¸ 3) is multiplicatively generated by A;B;C and D, and the relations are
enough. Thus we can determine the ring structure of HH¤(¡ ) in the case r ¸ 2 (see [3,
Section 3.2] for details).

Finally we state the ring structure of the Hochschild cohomology ring HH¤(¡ ):

Theorem 3. (1) If r = 1, then the Hochschild cohomology ring HH¤(¡ ) is isomorphic
to

Z[A;B;C]=(2A; 2B; 2C;A2 +B2 + C2);

where degA = degB = degC = 1.

(2) If r ¸ 2, then the Hochschild cohomology ring HH¤(¡ ) is isomorphic to

R[A;B;C;D]=((³ + ³¡1)A; (³ + ³¡1)B; (³ + ³¡1)C; 2rD;

A2 +B2 + C2; BC ¡ 2r¡1´D);

where R = Z[³ + ³¡1]; degA = degB = degC = 1 and degD = 2.

Remark 4. In the case r = 1, this cohomology ring is already known by Sanada [8, Section
3.4]. In [8], he treats the Hochschild cohomology of crossed products over a commutative
ring and its product structure using a spectral sequence of a double complex. As a special
case, he determines the Hochschild cohomology ring of the quaternion algebra over Z.
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