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Abstract. Let H be a group, and let ' : H ¡! H be a monomorphism. The ascending
HNN extension corresponding to ' is the group H' = hH; tjt¡1ht = '(h)i. A ring is
(right) primitive if it has a faithful irreducible (right) module. Let F be a free group
and K a ¯eld. We give a necessary and su±cient condition for the group ring KF' to
be primitive.

1. Introduction

Let H be a group, and let ' : H ¡! H be a monomorphism. The ascending HNN
extension corresponding to ' is the group H' = hH; tjt¡1ht = '(h)i. A ring is right
primitive if it has a faithful irreducible right module. One can analogously de¯ne left
primitive and generally two propreties are not equivalent. For our purpose, the two
concepts are equivalent, for the group ring possesses a nice involution. Let F be a free
group and K a ¯eld. Our purpose of this paper is the study of primitivity of the group
ring KF'.

If H 6= 1 is a ¯nite group or an abelian group, then the group ring KH can never
be primitive. In fact, the only primitive commutative rings are ¯elds, and in the case of
¯nite H 6= 1, the density theorem would imply that primitive KH be simple, but the
augmentention ideal belies that. The ¯rst nontrivial example of primitive group ring was
o®ered by Formanek and Snider [7] in 1972. After that, many examples which include the
complete solution for primitivity of group rings of polycyclic groups settled by Domanov
[3], Farkas-Passman [4] and Roseblade [14] were constructed. Perhaps one of the most
interesting result is the one on free products obtained by Formanek:

Theorem 1. ([6, Theorem 5]) Let K be a ¯eld and G = A ¤B a free product non-trivial
groups (except G = Z2 £ Z2). Then KG is primitive.

As a special case of the theorem, says KF is primitive for every ¯eld K provided that F
is a nonabelian free group. Moreover, in the same paper, he remarks

Theorem 2. ([6]) Let G = hti£F be the direct product of a free group F and the in¯nite
cyclic group hti. Then KG is primitive if and only if jKj · jF j (the cardinality of K is
not larger than that of F ).

It is not di±cult to see the result applying to the case of the cyclic extension of F by hti
(see Theorem 3 (i) below).

Now, the ascending HNN extension H' of a group H, which is a generalization of the
cyclic extension of H by hti, is a well-studied class of groups. For example, Feighn and
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Handel [5] described all subgroups of ascending HNN extensions of free groups and showed
that ascending HNN extensions of free groups are coherent (that is, their f.g. subgroups
are ¯nitely presented). Hsu and Wise [9] have recently shown that ascending HNN exten-
sions of polycyclic-by-¯nite groups are residually ¯nite (that is, each nontrivial element
of those groups can be mapped to a non-identity element in some homomorphism onto
a ¯nite group). They also study on residual ¯niteness for ascending HNN extensions of
¯nitely generated free groups, which is conjectured in [8] (the condition '¯nitely generated'
cannot be dropped [1] ). More recently, Borisov and Sapir, in their paper [2], have shown
that the conjecture has a positive solution. That is, the ascending HNN extension F' of
a ¯nitely generated free group F is residually ¯nite [2, Theorem 1.2]. Then by reduction
method based on residual properties and on series in groups, we can see that KF' is
semiprimitive (that is, the Jacobson radical is trivial) if the characteristic of K is zero.
One might therefore hope that KF' is semiprimitive for any ¯eld K. In this paper, we
shall show that KF' is semiprimitive for all K even if the rank of F is countably in¯nite
(Corollary 10). In fact, KF' is often primitive, which is our main result:

Theorem 3. ([11, Theorem 1.1]) Let F be a nonabelian free group, and F' the ascending
HNN extension of F determined by '.
(i) In case '(F ) = F , the group ring KF' is primitive for a ¯eld K if and only if either
jKj · jF j or F' is not virtually the direct product F £ Z.
(ii) In case '(F ) 6= F , if the rank of F is at most countably in¯nite, then the group ring
KF' is primitive for any ¯eld K.

2. Ascending HNN Extensions of Free Groups

Throughout this paper, F denotes the nonabelian free group with the basis X, and
F' = hF; tjt¡1ft = '(f)i denotes the ascending HNN extension of F determined by '.
Let H be a group and N a subgroup of H. We denote by [H : N ] the index of N in H.
For a group N 0, H is said to be virtually N 0 if N 0 is isomorphic to N and [H : N ] <1.
If h is an element of H, we let CN(h) denote the centralizer of h in N . Let C(H) be the
center of H and 4(H) the FC center of H, that is 4(H) = fh 2 H j [H : CH(h)] <1g.

If f is a non-trivial element in F then CF (f) is in¯nite cyclic, and so 4(F ) = C(F )
is trivial. On the other hand, 4(F') is not trivial in general. However, if 4(F') is
non-trivial then 4(F') = C(F') and F' is virtually the direct product F £ Z:

Lemma 4. Let F be a nonabelian free group.
(i) 4(F') = C(F').
(ii) C(F') 6= 1 if and only if F' is virtually the direct product F£Z. When this is the case,
' is an automorphism of F and there exist n > 0 and f 2 F such that C(F') = htnfi.

Proof. Since 4(F') ¶ C(F'), we may assume 4(F') 6= 1. Let 1 6= g 2 4(F').
We shall show C(F') = hgi. Since [F' : CF'(g)] < 1, we have [F : CF (g)] < 1,
which implies g 62 F because of 4(F ) = 1. By the normal form theorem, there exist
n; l ¸ 0 and f 2 F such that g = tnft¡l, where f 62 '(F ) if n 6= 0 and l 6= 0. Then
replacing g by g¡1 if necessary, we may assume that n ¸ l ¸ 0, and then f 62 '(F )
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unless l = 0. Since [F' : CF'(g)] <1, there exists m ¸ 1 such that tmgt¡m = g, and so
tm+nft¡l¡m = tnft¡l; thus f = 'm(f) 2 '(F ). Hence we get l = 0, that is g = tnf with
n > 0. Then we may assume that n is minimal in fn0 > 0 j tn

0
f 0 2 4(F') with f 0 2 Fg.

Again by [F' : CF'(g)] < 1, there exists k > 0 such that for each x 2 F , xkgx¡k = g,
and so xkgx¡k = xktnfx¡k = tn'n(x)kfx¡k = tnf ; thus 'n(x)k = (fxf¡1)k. This implies
'n(x) = fxf¡1 because F is a free group (c.f. [10]). In particular, 'n(f) = f and also
x 2 CF'(g). Furthermore we see that 'n is an automorphism and so is '.

Now, if f = 1, then g = tn 2 C(F'), which completes the proof, and therefore we may
assume f 6= 1. Since F is free, as is well known, CF (f) is cyclic, and thus CF (f) = hhi
for some 1 6= h 2 F and f = hm for some m 6= 0. Then hm = f = 'n(f) = 'n(h)m,
and so 'n(h) = h. Moreover, '(h) = 'n('(h)) = f'(h)f¡1, which implies '(h) 2 CF (f)
and thus '(h) = hl for some l 6= 0. Since h = 'n(h) = hl

n
, we have that l = 1, that

is, '(h) = h. Hence we get that '(f) = f which means g 2 C(F'). We have thus seen
that the assertion of (i) holds and C(F') ¶ hgi. Conversely, C(F') µ hgi. In fact, if
g1 2 C(F'), then we may assume that g1 = tn1f1 for some n1 with n1 ¸ n and for some
f1 2 F . It is obvious that g1 2 C(F') if and only if '(f1) = f1 and 'n1(x) = f1xf

¡1
1

for every x 2 F . Let n1 = mn + k, where m > 0 and 0 · k < n. For each x 2 F ,
f1xf

¡1
1 = 'n1(x) = 'k('nm(x)) = 'k(fmxf¡m) = fm'k(x)f¡m, and therefore, if we put

f2 = f¡mf1, then '(f2) = f2 and 'k(x) = f2xf
¡1
2 for every x 2 F ; thus tkf2 2 C(F').

By the minimality of n, we get k = 0. That is, f2 2 C(F ) = 1, and so f1 = fm. Hence
we conclude that g1 = tmnfm = (tnf)m = gm 2 hgi.

Since FC(F') = F hgi ' F £ Z and [F' : FC(F')] = [F hti : F htni] < 1, we see that
F' is virtually F £ Z. Conversely, if F' is virtually F £ Z, then there exists 1 6= g 2 F'
such that g 2 4(F'), and so g 2 C(F') by (i); thus C(F') 6= 1. This completes the
proof. ¤

In what follows, for f 2 F and i ¸ 0, we denote by f [i] the element tift¡i of tiFt¡i.
The next assertions are elementary and some of them can be found in [5].

Lemma 5. Let N0 be a subgroup of F with '(N0) µ N0. For each non-negative integer
i, let Ni = tiN0t

¡i and N = [1i=0Ni.
(i) Ni ' N0 and Ni µ Ni+1, where the equality holds if and only if '(N0) = N0.
(ii) If N0 is a normal subgroup of F , then N is a normal subgroup of F'.
(iii) If [Ni;Ni] is the derived subgroup of Ni, then [N;N ] = [1i=0[Ni; Ni].
(vi) If the rank of N0 is ¯nite and '(N0) ½ N0, then '([N0; N0]) ½ [N0;N0].

3. Primitivity of Group Rings of F'

We will start this section with presenting the next two lemmas which are basic results
on group rings (c.f. [13]).

Lemma 6. Let K be a ¯eld, H a group and N a subgroup of H.
(i)([16, Theorem 1]) Suppose that N is normal. If 4(H) = 1 and 4(H=N) = H=N , then
KN is primitive implies KH is primitive.
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(ii)([15, Theorem 3]) If 4(H) is torsion free abelian and [H : N ] is ¯nite, then KN is
primitive implies KH is primitive.

Lemma 7. ([12, Theorem 2]) Let K be a ¯eld and H a group. If 4(H) = 1 and KH is
primitive, then for any ¯eld extension K 0 of K, K 0H is primitive.

In view of Lemma 4, 6 (ii) and Theorem 2, we have immediately

Corollary 8. ([11, Corollary 2.6]) Let K be a ¯eld, and suppose that C(F') 6= 1. Then
the group ring KF' is primitive if and only if K is any ¯eld with jKj · jF j.

In what follows, let F be a free group with a countably in¯nite basis X, and F' =
hF; tjt¡1ft = '(f)i the ascending HNN extension of F determined by '. For an element
w in F , R(w) denotes the reduced word equivalent to w on X, and we set L(w) = fx§1 2
X§1 j x is a letter contained in R(w)g. For a non-negative integer i, letGi be the subgroup
of F' generated by ftift¡i j f 2 Fg, and G = [1i=0Gi. Moreover, let K be a ¯eld with
jKj · jGj, and KG denotes the group ring of G over K.

Let N be the set of positive integers. Since jKGj = jNj, there exists bijection s from N

to the elements of KG except for the zero element. Let s(i) = si =
Pmi

j=1 ®ijf
[lij ]
ij , where

®ij 2 K, fij 2 F , mi > 0, lij ¸ 0 and f
[lij ]
ij = tlijfijt

¡lij 2 Gi satisfying

(3.1) f
[lij ]
ij 6= f

[lij0 ]

ij0 if j 6= j0; and fij 62 '(F ) if lij 6= 0:

For si above, we set q1 = maxfl1j j 1 · j · m1g, S1 = L('q1¡l1j (f1j) j 1 · j ·
m1), and for i > 1, inductively qi = maxfqi¡1 + 1; lij j 1 · j · mig and Si =
L('qi¡lij (fij); '

qi¡qi¡1(x) j 1 · j · mi; x 2 Si¡1). We choose three elements x11, x12 and

x13 in X n S1 which are di®erent from each other, and set B1 = cB1 = fx11; x12; x13g and
SB1 = L('q2¡q1(x) j x 2 B1). Moreover, for i > 1, we set inductively Bi = fxi1; xi2; xi3g,
cBi = dBi¡1 [ Bi, where xi1; xi2; xi3 2 X n (Si [ SBi¡1 [ dBi¡1) with xik 6= xik0 ( k 6=
k0 ), and SBi = L('qi+1¡qi(x) j x 2 SBi¡1 [ Bi). Because jXj is countably in¯nite,

X n (Si [ SBi¡1 [
dBi¡1) is non-empty for every i > 0, in fact, it is an in¯nite set, and

thereby the above argument is valid. Then we have that

(3.2) i 6= i0 =) Bi \Bi0 = ;;

(3.3) i0 ¸ i =) fxi01; xi02; xi03g \ L('qi0¡lij(fij) j 1 · j · mi) = ;;

(3.4) i0 > i =) fxi01; xi02; xi03g \ L('qi0¡qi(xik) j 1 · k · 3) = ;:

Here we de¯ne the element "(si) in KG for each si as follows;

(3.5) "(si) = z
[qi]
i siz

[qi]
i

¡1
+ x

[qi]
i1 z

[qi]
i siz

[qi]
i

¡1
+ ®i1x

[qi]
i2 z

[qi]
i f

[qi]
i1 z

[qi]
i

¡1
;

where zi = x¡1
i2 xi3 and fxi1; xi2; xi3g = Bi.

The next lemma plays an essential role in the proof of our main result Theorem 3.
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Lemma 9. ([11, Lemma 3.3]) Let "(si) be as de¯ned by (3.5) and let ½ =
P1

i=1 "(si)KG
be the right ideal of KG. Then ½ is a proper right ideal of KG.

The proof of the above lemma is not short and so we omit it. The reader should refer
to the paper [11]. By making use of the above lemma, we can prove Theorem 3:

Proof of Theorem 3 (i): If '(F ) = F then F'=F is isomorphic to hti, and so
4(F'=F ) = F'=F . In addition, if C(F') = 1 then 4(F') = 1 by Lemma 4 (i). By
[6, Theorem 2], KF is primitive for any ¯eld K, and therefore it follows from Lemma 6
(i) that KF' is primitive. By virtue of Lemma 4, C(F') 6= 1 if and only if F' is virtually
F £ Z, and hence the result follows from Corollary 8.

(ii): If '(F ) 6= F , then 4(F') = C(F') = 1 by Lemma 4. By virtue of Lemma 7, we
may assume that K is a prime ¯eld. For each non-negative integer i, let Gi = tiFt¡i,
and G = [1i=0Gi. Moreover, let Di = [Gi; Gi] = ti[F; F ]t¡i, the derived subgroup of Gi,
and D = [1i=0Di. If we put N0 = F in Lemma 5 (ii), then the lemma asserts that G
is a normal subgroup of F'. It is obvious that F'=G is isomorphic to hti, and thereby,
by virtue of Lemma 6 (i), it su±ces to show that KG is primitive. If the rank of F is
¯nite, then D0 = [F; F ] is a free group of countably in¯nite rank. If we put N0 = D0

in Lemma 5 (i), then the lemma asserts that Di is isomorphic to D0 and Di µ Di+1 (
in fact, '(D0) 6= D0; thus Di ½ Di+1 by (iv)) for every i ¸ 0. Since G is locally free
by lemma 5 (i), we see that the ¯nite conjugate center of G is trivial. Moreover, G=D is
abelian by Lemma 5 (iii), and therefore, again by Lemma 6 (i), it su±ces to show that
KD is primitive. In other words, we may further assume that the rank of F is countably
in¯nite. Then KG satis¯es all of the conditions supposed in Lemma 9.

Let "(si) be the element in KG de¯ned by (3.5), and let ½ =
P1

i=1 "(si)KG be the right
ideal of KG. By Lemma 9, ½ is a proper right ideal of KG, and therefore, ½ is extended
to a maximal right ideal ½m of KG. To complete the proof, we shall show that KG acts
faithfully on the irreducible module KG=½m. Let · be the kernel of the action of KG
on KG=½m so that, certainly, · µ ½m. Now, if · 6= 0, then · contains the element si for
some i 2 N, and therefore, by (3.5) the de¯nition of "(si), we see that "(si)¡gi 2 · µ ½m,

where gi = ®i1x
[qi]
i2 z

[qi]
i f

[qi]
i1 z

[qi]
i

¡1
is a trivial unit in KG. On the other hand, "(si) is also

contained in ½m; thus we conclude that gi 2 ½m, a contradiction. Hence the action is
faithful, and KG is primitive. ¤

As a corollary of Theorem 3, we ¯nally state the semiprimitivity of F'.

Corollary 10. ([11, Corollary 3.7]) Let F be a nonabelian free group of at most countably
in¯nite rank, and F' the ascending HNN extension of F determined by '. If K is any
¯eld then the group ring KF' is semiprimitive.

Proof. Let K0 be the prime ¯eld of K. Since jK0j · jF j, by virtue of Theorem 3,
K0F' is primitive and so semiprimitive. As is well known, semiprimitive group rings are
separable algebras, thus semiprimitivity of group rings close under extensions of coe±cient
¯elds, and therefore KF' is semiprimitive. ¤
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