ON FILTERED SEMI-DUALIZING BIMODULES

HIROKI MIYAHARA

ABSTRACT. In this paper, we study the homological property of Rees modules of finitely generated filtered modules. In particular we state on Gorenstein dimension (more generally G_C -dimension in the sense of T. Araya, R. Takahashi, and Y. Yoshino [1]) of Rees modules.

1. INTRODUCTION

Semi-dualizing bimodule was introduced by T. Araya, R. Takahashi and Y. Yoshino in [1], which is a generalization of semi-dualizing module in commutative ring theory. For a semi-dualizing bimodule C and a finitely generated module M, they also introduced G_{C} -dim M, which is a generalization of Gorenstein dimension of M, and extended the notion of Cohen-Macaulay dimension for modules over commutative Noetherian local rings to that for bounded complexes over non-commutative Noetherian rings. On the other hand, in [3] with K. Nishida, we showed the following:

Theorem A. Let Λ be a filtered ring, and M a finitely generated filtered Λ -module with qood filtration. Then the Gorenstein dimension of M is less than or equal to the Gorenstein dimension of associated graded module of M.

In Section 2, we study the filtered semi-dualizing bimodules and give a generalization of Theorem A without proof.

In Section 3, we state on Gorenstein-dimension of Rees modules. For a filtered (Λ, Λ') bimodule C, we show that if the associated graded bimodule grC of C is semi-dualizing, then Rees bimodule \widetilde{C} of C is semi-dualizing (proposition 23), and we compare $G_{\text{gr}C}$ -dim grM with $G_{\widetilde{C}}$ -dim \widetilde{M} for a finitely generated filtered Λ -module M.

In the rest of this section, we shall recall some definitions and properties on filtered ring theory.

Definition 1. Let Λ be a ring. A family $\mathcal{F}\Lambda = \{\mathcal{F}_p\Lambda \mid p \in \mathbb{Z}\}$ of additive subgroups of Λ is called a *(positive)* filtration of Λ , if

(1)
$$\mathcal{F}_p\Lambda \subset \mathcal{F}_{p+1}\Lambda$$
 for all $p \in \mathbb{Z}$,

(2)
$$\mathcal{F}_p \Lambda = 0$$
, if $p < 0$

(3)
$$1 \in \mathcal{F}_0 \Lambda$$
,

- (4) $(\mathcal{F}_p\Lambda)(\mathcal{F}_q\Lambda) \subset \mathcal{F}_{p+q}\Lambda$ for all $p, q \in \mathbb{Z}$, and (5) $\Lambda = \bigcup_{p \in \mathbb{Z}} \mathcal{F}_p\Lambda$.

The detailed version of this paper will be submitted for publication elsewhere.

A ring Λ is called a *(positive) filtered ring*, if it has a filtration. If a ring Λ has a filtration $\mathcal{F}\Lambda$, then $\bigoplus_{p\in\mathbb{Z}} \mathcal{F}_p\Lambda/\mathcal{F}_{p-1}\Lambda$ is a graded ring with multiplication $\sigma_p(a)\sigma_q(b) = \sigma_{p+q}(ab)$ where $\sigma_p: \mathcal{F}_p\Lambda \longrightarrow \mathcal{F}_p\Lambda/\mathcal{F}_{p-1}\Lambda$ is a canonical map, and $a \in \mathcal{F}_p\Lambda$, $b \in \mathcal{F}_q\Lambda$. We denote by gr Λ the above associated graded ring of Λ .

Definition 2. Let Λ be a filtered ring with a filtration $\mathcal{F}\Lambda$, and M a Λ -module. A family $\mathcal{F}M = \{\mathcal{F}_pM \mid p \in \mathbb{Z}\}$ of additive subgroups of M is called a *filtration* of M, if

- (1) $\mathcal{F}_p M \subset \mathcal{F}_{p+1} M$ for all $p \in \mathbb{Z}$,
- (2) $\dot{\mathcal{F}}_p M = 0$ for $p \ll 0$,
- (3) $(\mathcal{F}_p\Lambda)(\mathcal{F}_qM) \subset \mathcal{F}_{p+q}M$ for all $p, q \in \mathbb{Z}$, and
- (4) $M = \bigcup_{p \in \mathbb{Z}} \mathcal{F}_p M.$

A Λ -module M is called a *filtered* Λ -module if M has a filtration. If a left Λ -module M has a filtration $\mathcal{F}M$, then $\bigoplus_{p\in\mathbb{Z}} \mathcal{F}_pM/\mathcal{F}_{p-1}M$ is a graded left gr Λ -module with action $\sigma_p(a)\tau_q(x) = \tau_{p+q}(ax)$ where $a \in \mathcal{F}_p\Lambda$, $x \in \mathcal{F}_qM$, and $\tau_q : \mathcal{F}_qM \longrightarrow \mathcal{F}_qM/\mathcal{F}_{q-1}M$ is a canonical map. We denote by grM the above associated graded gr Λ -module of M.

Let Λ, Λ' be filtered rings. A (Λ, Λ') -bimodule M is called a *filtered bimodule* if there exists a family $\mathcal{F}M$ of subgroups of M such that $(\Lambda M, \mathcal{F}M)$ and $(M_{\Lambda'}, \mathcal{F}M)$ are filtered modules.

Definition 3. Let Λ be a filtered ring with a filtration $\mathcal{F}\Lambda$. Then the graded ring $\bigoplus_{p\in\mathbb{Z}}\mathcal{F}_p\Lambda$ is called the *Rees ring* of (Λ, \mathcal{F}) , and denoted by $\widetilde{\Lambda}$. Similarly, for a filtered left module $(M, \mathcal{F}M)$ over a filtered ring $(\Lambda, \mathcal{F}\Lambda)$, the graded left $\widetilde{\Lambda}$ -module $\bigoplus_{p\in\mathbb{Z}}\mathcal{F}_pM$ is called the *Rees module* of M, and denoted by \widetilde{M} .

Let Λ be a filtered ring. Then the Rees ring Λ has the canonical central regular element $X = (\delta_{1p})_{p \in \mathbb{Z}} \in \widetilde{\Lambda}$ where δ_{ij} is the Kronecker's delta. Suppose that $(M, \mathcal{F}M)$ is a filtered Λ -module. Then,

- (1) $\widetilde{\Lambda}/X\widetilde{\Lambda} \cong \operatorname{gr}\Lambda$ (as graded ring) and $\widetilde{M}/X\widetilde{M} \cong \operatorname{gr}_{\mathcal{F}}M$ (as graded module).
- (2) $\widetilde{M}/(1-X)\widetilde{M} \cong M$

Definition 4. Let $(\Lambda, \mathcal{F}\Lambda)$ be a filtered ring. A filtration $\mathcal{F}M$ of a Λ -module M is called *good*, if there exist $p_1, \dots, p_r \in \mathbb{Z}$ and $m_1, \dots, m_r \in M$ such that for all $p \in \mathbb{Z}$

$$\mathcal{F}_p M = \sum_{i=1}^r (\mathcal{F}_{p-p_i}\Lambda) m_i.$$

From the above definition, we can easily check the following:

- (1) For a filtered Λ -module $(M, \mathcal{F}M)$, $\mathcal{F}M$ is good if and only if $\operatorname{gr}_{\mathcal{F}}M$ is a finitely generated $\operatorname{gr}\Lambda$ -module if and only if \widetilde{M} is a finitely generated $\widetilde{\Lambda}$ -module.
- (2) Suppose that $(\Lambda, \mathcal{F}\Lambda)$ is a filtered ring. If M is a finitely generated Λ -module, then M has a good filtration.

Definition 5. Let $(M, \mathcal{F}M)$, $(N, \mathcal{F}N)$ be filtered Λ -modules. A Λ -homomorphism $f : M \longrightarrow N$ is called a *filtered homomorphism*, if $f(\mathcal{F}_pM) \subset \mathcal{F}_pN$ for all $p \in \mathbb{Z}$. Further, f is called *strict*, if $f(\mathcal{F}_pM) = \operatorname{Im} f \cap \mathcal{F}_pN$ for all $p \in \mathbb{Z}$. Remark 6. (1) The composition of two filtered homomorphisms is also a filtered homomorphism, but it need not be strict even if both of them are strict.

(2) Let $f: M \longrightarrow N$ be a filtered homomorphism, then f indeuces canonical additive maps $f_p: \mathcal{F}_p M/\mathcal{F}_{p-1}M \longrightarrow \mathcal{F}_p N/\mathcal{F}_{p-1}N$ given by $x + \mathcal{F}_{p-1}M \longmapsto f(x) + \mathcal{F}_{p-1}N$. It is clear that $\operatorname{gr} f = \bigoplus_{p \in \mathbb{Z}} f_p$ defines a graded homomorphism from $\operatorname{gr} M$ to $\operatorname{gr} N$. Note that $(\operatorname{gr} g)(\operatorname{gr} f) = \operatorname{gr}(gf)$ for any filtered homomorphisms $f: M \longrightarrow N, g: N \longrightarrow L$. Similarly, $\tilde{f} = \bigoplus_{p \in \mathbb{Z}} f|_{\mathcal{F}_p M}$ defines a graded homomorphism from \widetilde{M} to \widetilde{N} , and $\widetilde{g}\widetilde{f} = \widetilde{g}\widetilde{f}$ holds.

Lemma 7. Let (*) : $L \xrightarrow{f} M \xrightarrow{g} N$ be a sequence of filtered modules and filtered homomorphisms such that gf = 0. Then

- (1) The sequence
- $\operatorname{gr}(*)$: $\operatorname{gr} L \xrightarrow{\operatorname{gr} f} \operatorname{gr} M \xrightarrow{\operatorname{gr} g} \operatorname{gr} N$
- is exact if and only if (*) is exact and f, g are strict.
- (2) The sequence

$$(\widetilde{\ast}) : \widetilde{L} \xrightarrow{\widetilde{f}} \widetilde{M} \xrightarrow{\widetilde{g}} \widetilde{N}$$

is exact if and only if (*) is exact and f is strict.

Lemma 8. ([2] Chapter III Proposition 2.2.4) Let M and N be filtered Λ -modules. Then $\operatorname{gr}\operatorname{Ext}^{i}_{\Lambda}(M, N)$ is a subfactor of $\operatorname{Ext}^{i}_{\Lambda}(\operatorname{gr} M, \operatorname{gr} N)$ for each $i \geq 0$.

2. Semi-dualizing Filtered Modules

First, we recall the definition of semi-dualizing bimodules.

Definition 9. ([1] Definition 2.1) Let R, R' be Noetherian rings. An (R, R')-bimodule C is called a *semi-dualizing bimodule* if the following conditions hold:

- (1) The right homothety R'-bimodule morphism $R' \longrightarrow \operatorname{Hom}_R(C, C)$ is a bijection,
- (2) The left homothety *R*-bimodule morphism $R \longrightarrow \operatorname{Hom}_{R'}(C, C)$ is a bijection,
- (3) $\operatorname{Ext}_{R}^{i}(C, C) = 0$ for all i > 0, and
- (4) $\operatorname{Ext}_{R'}^{i}(C, C) = 0$ for all i > 0.

Definition 10. ([1] Definition 2.2) Let R, R' be Noetherian rings and C a semi-dualizing (R, R')-bimodule. An R-module M is called C-reflexive if the following conditions hold:

- (1) $\operatorname{Ext}_{R}^{i}(M, C) = 0$ for all i > 0,
- (2) $\operatorname{Ext}_{R'}^{i}(\operatorname{Hom}_{R}(M, C), C) = 0$ for all i > 0, and
- (3) The natural morphism

 $M \longrightarrow \operatorname{Hom}_{R'}(\operatorname{Hom}_R(M, C), C)$

is a bijection.

Definition 11. ([1] Definition 2.3) Let C be a semi-dualizing (R, R')-bimodule and M an R-module. If there exists an exact sequence

$$0 \longrightarrow X_n \longrightarrow X_{n-1} \longrightarrow \cdots \longrightarrow X_0 \longrightarrow M \longrightarrow 0$$

where each X_i is a *C*-reflexive *R*-module, *M* is called that G_C -dimension is less than or equal to *n* (denoted by G_C -dim $M \leq n$). If G_C -dim $M \leq n$ and G_C -dim $M \not\leq n-1$, then we say G_C -dimension of *M* is equal to *n* (denoted by G_C -dim M = n).

Remark 12. (1) In [1], a semi-dualizing bimodule was defined over a left Noetherian ring R and a right Noetherian ring R'. In this paper we assume that both R and R' are (left and right) Noetherian rings.

(2) The ring R itself is a semidualizing (R, R)-bimodule and the R-reflexive modules coincide with the modules whose Gorenstein dimension are equal to 0. Moreover, in the case of $C = {}_{R}R_{R}$, we have G_{C} -dim M = G-dim M.

The following lemma is indispensable for the study of filtered semi-dualizing bimodules.

Lemma 13. Let (C, \mathcal{F}) be a filtered (Λ, Λ') -bimodule such that ${}_{\mathrm{gr}\Lambda}\mathrm{gr}_{\mathcal{F}}C$ and $\mathrm{gr}_{\mathcal{F}}C_{\mathrm{gr}\Lambda}$ are finitely generated. If $\mathrm{gr}_{\mathcal{F}}C$ is a semi-dualizing $(\mathrm{gr}\Lambda, \mathrm{gr}\Lambda')$ -bimodule, then C is a semi-dualizing bimodule.

Proof. Assume that $f : \Lambda' \longrightarrow \operatorname{Hom}_{\Lambda}(C, C)$ is the right homothety Λ' -bimodule morphism, and $\varphi : \operatorname{gr} \Lambda' \longrightarrow \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C)$ is the right homothety $\operatorname{gr} \Lambda'$ -bimodule morphism. Since there is a natural graded monomorphism

$$\psi : \operatorname{gr} \operatorname{Hom}_{\Lambda}(C, C) \longrightarrow \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C),$$

we get the following commutative diagram:

$$\begin{array}{ccc} \operatorname{gr} \Lambda' & & \xrightarrow{\varphi} & \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C) \\ & & & & \\ \operatorname{gr} f \downarrow & & & \\ \operatorname{gr} \operatorname{Hom}_{\Lambda}(C, C) & \xrightarrow{\psi} & \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C) \end{array}$$

Since $\varphi = \psi \circ \operatorname{gr} f$ is an isomorphism from the assumption, ψ is an epimorphism. Thus f is a Λ' -isomorphism. It follows from the lemma 8 that $\operatorname{gr} \operatorname{Ext}^{i}_{\Lambda}(C, C)$ is a subfactor of $\operatorname{Ext}^{i}_{\Lambda}(\operatorname{gr} C, \operatorname{gr} C)$ for each $i \geq 0$. Therefore $\operatorname{Ext}^{i}_{\Lambda}(C, C) = 0$ for all i > 0. Similarly, we can prove that the left homothety morphhism $g : \Lambda \longrightarrow \operatorname{Hom}_{\Lambda'}(C, C)$ is a bijection and $\operatorname{Ext}^{i}_{\Lambda'}(C, C) = 0$ for all i > 0. Therefore C is a semi-dualizing bimodule. \Box

Definition 14. We say that a filtered (Λ, Λ') -bimodule *C* is a *semi-dualizing filtered* bimodule if gr *C* is a semi-dualizing (gr Λ , gr Λ')-bimodule.

All semi-dualizing filtered bimodules are semi-dualizing bimodules by lemma 13. In the rest of this section, C is a semi-dualizing filtered (Λ, Λ') -bimodule.

In [1], it is proved that G_C -dim $M \leq k$ if and only if G_C -dim $\Omega^k M = 0$, where $\Omega^k M$ is the k-th syzygy of M (Lemma 2.7). Applying this lemma, we can prove the following result in a completely similar way to the proof of Theorem A. So we give only the result without proof.

Proposition 15. Let M be a filtered Λ -module. Then the following inequality holds: G_C -dim $M \leq G_{grC}$ -dim grM

3. G_C -dimension for Rees Modules

Throughout this section, we denote by X (resp. X') the canonical central regular element $(\delta_{1p})_{p\in\mathbb{Z}} \in \widetilde{\Lambda}$ (resp. $(\delta_{1p})_{p\in\mathbb{Z}} \in \widetilde{\Lambda}'$) where δ_{ij} is the Kronecker's delta. First of all, we shall recall the Rees theorem, that is

Theorem 16 (Rees theorem). ([4] Theorem 9.37) Let R be a ring, $T \in R$ a central regular element, and M a T-torsionfree left R-module (T-torsionfree means that left multiplication by T is injectoin). Then

$$\operatorname{Ext}_{R/TR}^{n}(A, M/TM) \cong \operatorname{Ext}_{R}^{n+1}(A, M)$$

for any left R/TR-module A and $n \ge 0$.

Since $\widetilde{M}/X\widetilde{M} \cong \operatorname{gr} M$, \widetilde{M} is X-torsionfree for any $M \in \operatorname{filt}\Lambda$, and $\widetilde{\Lambda}/X\widetilde{\Lambda} \cong \operatorname{gr}_{\mathcal{F}}\Lambda$, we can get the following:

$$\operatorname{Ext}^{n}_{\operatorname{gr}\Lambda}(\operatorname{gr} M, \operatorname{gr} C) \cong \operatorname{Ext}^{n+1}_{\widetilde{\Lambda}}(\widetilde{M}/X\widetilde{M}, \widetilde{C})$$

In order to prove our main theorem, we give some easy lemmata without proofs.

Lemma 17. Assume that M, N are filtered Λ -modules. Then there exists a natural isomorphism $\operatorname{Hom}_{\Lambda}(\widetilde{M}, N) \cong \operatorname{Hom}_{\widetilde{\Lambda}}(\widetilde{M}, \widetilde{N})$

Lemma 18. Assume that $M \in \text{filt}\Lambda$ and

 $\mathrm{Ext}_{\mathrm{gr}\Lambda}^{i>0}(\mathrm{gr}M,\mathrm{gr}C)=\mathrm{Ext}_{\mathrm{gr}\Lambda'}^{i>0}(\mathrm{Hom}_{\mathrm{gr}\Lambda}(\mathrm{gr}M,\mathrm{gr}C),\mathrm{gr}C)=0.$

Then, the natural map $\varphi : M \longrightarrow \operatorname{Hom}_{\Lambda'}(\operatorname{Hom}_{\Lambda}(M,C),C)$ is bijective if and only if the natural map $\Phi : \operatorname{gr} M \longrightarrow \operatorname{Hom}_{\operatorname{gr}\Lambda'}(\operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} M,\operatorname{gr} C),\operatorname{gr} C)$ is bijective.

Lemma 19. Let $M \in \text{filt}\Lambda$. Then, the natural map

 $\varphi: M \longrightarrow \operatorname{Hom}_{\Lambda'}(\operatorname{Hom}_{\Lambda}(M, C), C)$

is strict isomorphism if and only if the natural map

$$\Phi: M \longrightarrow \operatorname{Hom}_{\widetilde{\Lambda'}}(\operatorname{Hom}_{\widetilde{\Lambda}}(M, \widetilde{C}), \widetilde{C})$$

is isomorphism.

Remark 20. Since X is an \widetilde{M} -regular element for all $M \in \text{filt}\Lambda$, there exists an exact sequence:

$$0 \longrightarrow \widetilde{M} \xrightarrow{\mu_X} \widetilde{M} \longrightarrow \widetilde{M} / X \widetilde{M} \longrightarrow 0$$

where μ_X is the left multiplication by X. Applying $\operatorname{Hom}_{\widetilde{\Lambda}}(-, \widetilde{C})$, we get a long exact sequence:

$$\begin{array}{ccc} (\dagger) & \cdots \longrightarrow \operatorname{Ext}^{i}_{\widetilde{\Lambda}}(\widetilde{M}/X\widetilde{M},\widetilde{C}) \longrightarrow \operatorname{Ext}^{i}_{\widetilde{\Lambda}}(\widetilde{M},\widetilde{C}) \xrightarrow{\overline{\mu_{X}}} \operatorname{Ext}^{i}_{\widetilde{\Lambda}}(\widetilde{M},\widetilde{C}) \\ & \longrightarrow \operatorname{Ext}^{i+1}_{\widetilde{\Lambda}}(\widetilde{M}/X\widetilde{M},\widetilde{C}) \longrightarrow \cdots \end{array}$$

Since $\overline{\mu_X}$ is a right multiplication by X and $\operatorname{Ext}^i_{\widetilde{\Lambda}}(\widetilde{M}, \widetilde{C})$ is graded $\widetilde{\Lambda'}$ -module such that $(\operatorname{Ext}^i_{\widetilde{\Lambda}}(\widetilde{M}, \widetilde{C}))_{(p)} = 0$ for $p \ll 0$, we get the following:

Lemma 21. With the same notations as above, if $\operatorname{Ext}_{\widetilde{\Lambda}}^{i}(\widetilde{M}, \widetilde{C}) \neq 0$, then

$$\operatorname{Ext}^{i}_{\widetilde{\Lambda}}(\widetilde{M},\widetilde{C}) \xrightarrow{\overline{\mu_{X}}} \operatorname{Ext}^{i}_{\widetilde{\Lambda}}(\widetilde{M},\widetilde{C})$$

is not surjective.

Form the lemma 21, we can immediately get the following:

Lemma 22. With the same notations as avobe, $\operatorname{Ext}_{\widetilde{\Lambda}}^{i>0}(\widetilde{M},\widetilde{C}) = 0$ if and only if $\operatorname{Ext}_{\operatorname{gr}{\Lambda}}^{i>0}(\operatorname{gr}{M},\operatorname{gr}{C}) = 0$.

Proposition 23. Let M be a filnitely generated filtered (Λ, Λ') -bimodule. If M is a semidualizing filtered bimodule then \widetilde{M} is a semi-dualizing $(\widetilde{\Lambda}, \widetilde{\Lambda'})$ -bimodule.

Proof. By the lemma 22, we have

$$\operatorname{Ext}_{\widetilde{\Lambda}}^{i>0}(\widetilde{C},\widetilde{C}) = 0 \quad \text{if and only if} \quad \operatorname{Ext}_{\operatorname{gr}\Lambda}^{i>0}(\operatorname{gr} C,\operatorname{gr} C) = 0, \text{ and} \\ \operatorname{Ext}_{\widetilde{\Lambda}'}^{i>0}(\widetilde{C},\widetilde{C}) = 0 \quad \text{if and only if} \quad \operatorname{Ext}_{\operatorname{gr}\Lambda'}^{i>0}(\operatorname{gr} C,\operatorname{gr} C) = 0.$$

Assume that $f : \Lambda' \longrightarrow \operatorname{Hom}_{\Lambda}(C, C)$ is the right homothety Λ' -bimodule morphism, $g : \operatorname{gr} \Lambda' \longrightarrow \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C)$ is the right homothety $\operatorname{gr} \Lambda'$ -bimodule morphism, and $h : \widetilde{\Lambda'} \longrightarrow \operatorname{Hom}_{\widetilde{\Lambda}}(\widetilde{C}, \widetilde{C})$ is the right homothety $\widetilde{\Lambda'}$ -bimodule morphism. Since there is a natural graded monomorphisms

$$\varphi : \operatorname{gr} \operatorname{Hom}_{\Lambda}(C, C) \longrightarrow \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C),$$

we get the following two commutative diagrams:

$$\begin{array}{ccc} \operatorname{gr} \Lambda' & & & \longrightarrow & \operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} C, \operatorname{gr} C) \\ & & & & & & & \\ \operatorname{gr} f \downarrow & & & & & \\ \operatorname{gr} \operatorname{Hom}_{\Lambda}(C, C) & & & & & \\ & & & & & \\ \widetilde{\Lambda'} & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ &$$

Note that f is a strict Λ' -isomorphism if g is a bijection as in the proof of the lemma 13. Hence \tilde{f} is an isomorphism. Since ψ is also an isomorphism from the remark 17, h is an isomorphism. Similarly, we can show that the left homothety $\tilde{\Lambda}$ -bimodule morphism is bijective. Therefore \tilde{C} is semi-dualizing.

Now we can show the main theorem of this paper.

Theorem 24. Let M be a filtered Λ -module. Then $G_{\widetilde{C}}$ -dim $\widetilde{M} = 0$ if and only if $G_{\text{gr}C}$ -dimgrM = 0.

Proof. Assume that $G_{\widetilde{C}}$ -dim $\widetilde{M} = 0$. Since $\operatorname{Ext}_{\widetilde{\Lambda}}^{i>0}(\widetilde{M}, \widetilde{C}) = 0$, we have $\operatorname{Ext}_{\operatorname{gr}\Lambda}^{i>0}(\operatorname{gr} M, \operatorname{gr} C) = 0$ from the lemma 22. Moreover we get the following short exact sequence from the (†) in the remark 20:

$$0 \longrightarrow (\widetilde{M})^* \longrightarrow (\widetilde{M})^* \longrightarrow \operatorname{Ext}^1_{\widetilde{\Lambda}}(\widetilde{M}/X\widetilde{M},\widetilde{C}) \longrightarrow 0$$

By the remark 17, we get the following commutative diagram:

Thus, $\operatorname{gr} M^* \cong \widetilde{M^*}/X\widetilde{M^*} \cong \operatorname{Ext}^1_{\widetilde{\Lambda}}(\widetilde{M}/X\widetilde{M},\widetilde{C}) \cong (\operatorname{gr} M)^*$ by Rees theorem. By taking the long exact sequence of $(\dagger)^*$, we get $\operatorname{Ext}^{i>0}_{\operatorname{gr}\Lambda'}((\operatorname{gr} M)^*, \operatorname{gr} \Lambda) = 0$. Hence it follows from the lemma 18 and 19 that the natural map

 $\Phi: \operatorname{gr} M \longrightarrow \operatorname{Hom}_{\operatorname{gr} \Lambda'}(\operatorname{Hom}_{\operatorname{gr} \Lambda}(\operatorname{gr} M, \operatorname{gr} C), \operatorname{gr} C)$

is an isomorphism. Therefore $G_{\text{gr}C}$ -dim grM = 0.

Conversely, assume that $G_{\text{gr}C}$ -dim grM = 0. By the remark 20, the lemma 22 and the Rees theorem, we can show

$$\operatorname{Ext}_{\widetilde{\Lambda}}^{i>0}(\widetilde{M},\widetilde{C}) = \operatorname{Ext}_{\widetilde{\Lambda}'}^{i>0}((\widetilde{M})^*,\widetilde{C}) = 0.$$

Therefore $G_{\tilde{C}}$ -dim $\tilde{M} = 0$. Since $G_{\mathrm{gr}C}$ -dim $\mathrm{gr}M = 0$,

$$\operatorname{Ext}_{\operatorname{gr}\Lambda}^{i>0}(\operatorname{gr} M, \operatorname{gr} C) = \operatorname{Ext}_{\operatorname{gr}\Lambda'}^{i>0}(\operatorname{Hom}_{\operatorname{gr}\Lambda}(\operatorname{gr} M, \operatorname{gr} C), \operatorname{gr} C) = 0$$

and the natural map $\Phi : \operatorname{gr} M \longrightarrow \operatorname{Hom}_{\operatorname{gr} \Lambda'}(\operatorname{Hom}_{\operatorname{gr} \Lambda}(\operatorname{gr} M, \operatorname{gr} C), \operatorname{gr} C)$ is an isomorphism. Therefore the natural map

$$\Psi: \widetilde{M} \longrightarrow \operatorname{Hom}_{\widetilde{\Lambda}'}(\operatorname{Hom}_{\widetilde{\Lambda}}(\widetilde{M}, \widetilde{C}), \widetilde{C})$$

is an isomorphism from the lemma 18 and 19. Hence, $G_{\widetilde{C}}$ -dim $\widetilde{M} = 0$.

We can show the following by induction on $G_{\text{gr}C}$ -dim grM.

Corollary 25. For any finitely generated filtered Λ -module M with good filtration,

$$G_{\mathrm{gr}C}$$
-dim gr $M = G_{\widetilde{C}}$ -dim M

holds.

In particular, in the case of $C = {}_{\Lambda}\Lambda_{\Lambda}$, we can get the following.

Corollary 26. G-dim grM = G-dim \widetilde{M} for all finitely generated filtered Λ -module M with good filtration.

References

- T. Araya, R. Takahashi and Y. Yoshino, Homological invariants associated to semi-dualizing bimodules, J. Math. Kyoto Univ.45, no. 2, (2005) 287–306
- [2] L. Huishi and F. Van Oystaeyen, Zariskian Filtrations, K-Monographs in Mathematics, 2, 1996.
- [3] H. Miyahara and K.Nishida, *Cohen-Macaulay modules and holonomic modules over filtered rings*, to appear in Communications in Algebra.
- [4] J. J. Rotman, An introduction to homological algebra, Academic Press, 1979.

INTERDISCIPLINARY GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY SHINSHU UNIVERSITY 3-1-1 ASAHI, MATSUMOTO, NAGANO 390-8621 JAPAN *E-mail address*: s06t214@shinshu-u.ac.jp