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Abstract. For a pair of Krull domains (A,B) such that Q(B)/Q(A) is a field extension
of their quotient fields and Q(A) ∩ B = A, we study on the relation between the divisor
class groups Cl(A) and Cl(B) by A. Magid’s diagram showing finite generation of class
groups of rings of invariants (cf. [4]). We define the descent properties with the existence
of the canonical morphism of class groups in the sense of Magid and obtain a ladder
property of these descents. This can be applied to regular actions of algebraic tori on
affine normal varieties and characterizes freeness of monomials of prime relative invariants
on these varieties. Furthermore we define certain subgroups of class groups of normal
domains and their invariant subrings which determine a class of modules of relative
invariants to be free.
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1. Introduction

In this paper, we denote by (A, B) a pair of Krull domains such that the quotient field
Q(B) of B is an extension of Q(A) satisfying A = Q(A) ∩ B, which is called a generic
dominant Krull pair. This is related to invariant theory of normal varieties as follows:
Let (X, G) be a regular action of affine algebraic group G on an affine normal variety over
an algebraically closed field K. Then, putting A = O(X)G and B = O(X), we obtain
a generic dominant Krull pair (A, B), where O(X) denotes the affine algebra of regular
functions on X.

We now introduce the notations which are used throughout in this paper (cf. [1] for
a general reference). For a Krull domain R, let Ht1(R) := {P ∈ Spec R | ht(P) = 1},
Div(R) := the divisor group of R, Prin(R) := the group of principal divisors of R and
Cl(R) := the divisor class group of R. Let IR(D) denote the divisorial fractional ideal
of R defined by a divisor D ∈ Div(R). For a non-empty Y ⊆ Q(R) such that R · Y is
a fractional ideal of R, let (R · Y )∼ denote the divisorialization of R · Y in R and put
divR(Y ) := the divisor defined by (R · Y )∼. Let vR,� stand for the discrete valuation
defined by P ∈ Ht1(R).

At first we review A. Magid’s descent (cf. [4, 5]) of a generic dominant Krull pair (A, B).
Let X�(B) be the set {P ∈ Ht1(B) | P ∩ A = q} which is non-empty for q ∈ Ht1(A).

The detailed version of this paper will be submitted for publication elsewhere.
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Moreover put

x� :=
∑

�∈X�(B)

e(P, q) · divB(P) ∈ Div(B)

where e(P, q) denotes the reduced ramification index of P over q. Set Ht1(A, B) := {P ∈
Ht1(B) | P ∩ A ∈ Ht1(A)}. We define the subgroup

E∗(A, B) :=

⎛
⎝ ⊕
�∈Ht1(A)

Z · x�
⎞
⎠ ⊕

⎛
⎝ ⊕
�∈Ht1(B),ht(�∩A)�2

Z · divB(P)

⎞
⎠

of Div(B) and the homomorphism

Φ∗
A,B : E∗(A, B)

pr.−−−→
⊕

�∈Ht1(A)

Z · x�−→ Div(A)

induced by Φ∗
A,B(x�) = divA(q) ∈ Div(A). Moreover we set

F (A, B) := (Prin(B) ∩ E∗(A, B))/divB(U(Q(A))),

E(A, B) := E∗(A, B))/divB(U(Q(A))

respectively. Then one has the following commutative diagram with exact rows and
columns (e.g., [5]) which is called the Magid diagram of (A, B):

0 −−−→ F (A, B) −−−→ E(A, B) −−−→ Cl(B)⏐⏐	 ⏐⏐	ΦA,B

W (A, B) −−−→ Cl(A) −−−→ Y (A, B) −−−→ 0⏐⏐	 ⏐⏐	
0 0

where ΦA,B is the homomorphism induced by Φ∗
A,B and the groups W (A, B) and Y (A, B)

are naturally defined.

Definition 1.1. A generic dominant Krull pair (A, B) has the (MDP), if the Magid
diagram induces the following diagram with exact rows

E(A, B)
can.−−−→ Cl(B) −→ 0⏐⏐	=

⏐⏐	∼=

E(A, B)
ΦA,B−−−→ Cl(A) −→ 0

.

On the other hand, define φB,A : Div(B) −→ Div(A) by

φB,A(D) =
∑

�∈Ht1(A)

(
max

�∈X�(B)

(
−

[
− a�

e(P, q)

]))
· divA(q) ∈ Div(A)

where D =
∑
�∈Ht1(B) a� · divB(P) ∈ Div(B) and [ · ] denotes the Gauss symbol.

Put BU(A, B) :=
⊕

ht(�∩A)�2 Z · divB(P) and Div(A, B) :=
⊕

�∩A�={0} Z · divB(P).
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Definition 1.2. The following conditions are considered for the pair (A, B):

(1) BU(A, B) ⊆ ker(E∗(A, B)
can.−−−→Cl(B))

(2) For Div(A, B) � D0 � 0 s.t.

suppB(D0) := {P | vB,�(IB(D0)) �= 0} �� P: ∀ principal prime

and for E∗(A, B) � D � 0 s.t. D + D0 : principal, we require that φB,A(D + D0) is
principal.

(3) The canonical morphism E∗(A, B) −→ Cl(B) is surjective.

We say that a generic dominant Krull pair (A, B) has the (TDP), if these three conditions
hold for (A, B).

In the next section we summarize our results on the (MDP) and (TDP) for generic
dominant Krull pairs. In Sect. 3 we apply the results to the case where A is obtained as a
subring of invariants in B under the action of an algebraic torus and characterize freeness
of monomials of prime relative invariants. In Sect. 4 we study on the relation of certain
class groups and freeness of a class of modules of relative invariants. Consequently we
see a numerical criterion of obstructions of an algebraic torus of equidimensional actions.
The detailed account of this part can be found in [8].

2. Descent property in abstract case

At first we point out the elementary relation between (MDP) and (TDP) in a general
situation.

Proposition 2.1. For a generic dominant Krull pair (A, B), the (TDP) holds if and only
if the (MDP) and (2) of Definition 1.2 hold.

Then we must have the following criterion that (TDP) holds for (A, B) which is useful
in invariant theory of algebraic tori.

Theorem 2.2. For a generic dominant Krull pair (A, B), the following conditions (i) and
(ii) are equivalent:

(i) (A, B) has the (TDP).
(ii) The following three conditions hold:

(a) (A, B) has the (MDP).
(b) | {P ∈ X�(B) | divB(P) ∈ Prin(B)} | � |X�(B)| − 1 for any q ∈ Ht1(A).
(c) P ∈ X�(B) s.t. e(P, q) > 1 =⇒ divB(P) ∈ Prin(R), for any q ∈ Ht1(A).

The next result is another version of Theorem 2.2 which is useful in showing the ladder
type induction of descents of class groups of a sequence of generic dominant Krull pairs.

Theorem 2.3. The following conditions (i), (ii) are equivalent:

(i) (A, B) has the (TDP).
(ii) The following four conditions hold:

(a) E∗(A, B) −→ Cl(B) is surjective.
(b) BU(A, B) ⊆ ker(E∗(A, B) −→ Cl(B)).
(c) | {P ∈ X�(B) | divB(P) ∈ Prin(B)} | � |X�(B)| − 1 for any q ∈ Ht1(A).
(d) P ∈ X�(B) s.t. e(P, q) > 1 =⇒ divB(P) ∈ Prin(R), for any q ∈ Ht1(A).
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We now consider an intermediate subring M of the extension B/A of rings as follows.

Notation 2.4. Let M be a subring of B containing A as a subring such that M =
Q(M) ∩ B. Then there exist the Krull pairs as follows; i.e., (A, B), (M, B) and (A, M).

From now on to the end of this section, we use Notation 2.4 and describe how the
descent properties of (A, M) and (M, B) induce one of (A, B).

Proposition 2.5. Suppose Ht1(A, B) ⊆ Ht1(M, B). Then

φB,M (E∗(A, B)) ⊆ E∗(A, M)

and the following diagram is commutative:

E∗(A, B)
φB,M−−−→ E∗(A, M)⏐⏐	=

⏐⏐	Φ∗
A,M

E∗(A, B)
Φ∗

A,B−−−→ Div(A)

.

This proposition is only a technical assertion, however from this we deduce the next
two propositions.

Proposition 2.6. Suppose that Ht1(A, B) ⊆ Ht1(M, B). If (A, M) and (M, B) have the
(MDP), then the canonical morphism E∗(A, B) −→ Cl(B) is surjective.

Proposition 2.7. Suppose that Ht1(A, B) ⊆ Ht1(M, B). If (A, M) has the (MDP) and
(M, B) has the (TDP), then (A, B) has the (MDP).

Consequently we must have the following theorem which gives an inductive examination
on the descent properties of a sequence of generic dominant Krull pairs. In fact consider
a descending chain of normal series of subgroups

G = G0 � G1 � G2 � · · ·� Gn = {e}
and a homomorphism G → Aut(B). We have a chain of generic dominant Krull pairs
(BGn−1 , BGn), (BGn−2 , BGn−1), . . . , (BG0 , BG1) and the study on the descent property of
(BG, B) can be reduced to the one on the sequence.

Theorem 2.8. Suppose that Ht1(A, B) ⊆ Ht1(M, B). If both (A, M) and (M, B) have
the (TDP), then (A, B) has the (TDP).

We have studied on the implication concerning the descent property of (A, B) =⇒ ones
of (A, M) and (M, B) under some conditions which is the converse of the assertions in
the results as above, however we omit to state the results in this paper.

3. Free monomials of prime semi-invariants and descent property

Let R be a Krull domain on which a group G acts as automorphisms and let Z1(G, U(R))
denote the (additive) group of 1-cocycles of G on U(R). For any χ ∈ Z1(G, U(R)), put

Rχ := {a ∈ R | σ(a) = χ(σ) · a}
whose elements are known as invariants of G in R relative to χ and is regarded as an
RG-module.
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Since (RG, R) is a generic Krull pair, we immediately have its Magid diagram with P.
Samuel’s diagram (cf. [2]) in the Galois descent method

Prin(R)G −−−→ Div(R)G −−−→ Cl(R)�⏐⏐ �⏐⏐ �⏐⏐ =

Prin(R) ∩ E∗(RG, R) −−−→ E∗(RG, R) −−−→ Cl(R)⏐⏐	 ⏐⏐	 ⏐⏐	=

0 −−−→ F (RG, R) −−−→ E(RG, R) −−−→ Cl(R)⏐⏐	 ⏐⏐	Φ
RG,R

W (RG, R) −−−→ Cl(RG) −−−→ Y (RG, R) −−−→ 0⏐⏐	 ⏐⏐	
0 0

where F (RG, R) can be regarded as a subgroup of the first cohomology group H1(G, U(R)).
In this section we apply the results in Sect. 2 to the generic Krull pair induced by the

action of an algebraic torus defined over an algebraically closed field K of characteristic
zero. Let X(H) be the rational character (additive) group of an algebraic group H .

Notation 3.1. Let G be an affine algebraic group over K whose identity component G0

is an algebraic torus and let (X, G) be a faithful regular action of G on an affine normal
variety X over K. Put R := O(X) on which G acts naturally.

Recall that (X, G) is said to be stable, if X contains a non-empty open set consisting
of closed G-orbits.

Definition 3.2. For {f1, . . . , fn} ⊆ R such that fi are prime in R; the set {f1, . . . , fn} is
defined to be (R, G)-free, if there exist rational characters χk ∈ X(G) (1 ≤ k ≤ n) such
that

R�n
k=1 ik ·χk

= RG ·
n∏

k=1

f ik
k (∀ik ∈ Z0)

where Z0 denote the additive monoid of all nonnegative integers.

As in the statement preceding to the ladder property in Sect. 2, from Theorem 2.2,
Theorem 2.3 and Theorem 2.8 we deduce the following characterization of (R, G)-freeness
of prime relative invariants on X in the sense of the descent property defined in this paper:

Theorem 3.3. Under the circumstances as in Notation 3.1, suppose that ZG(G0) = G, H
is a closed normal subgroup such that the induced action (X//H, G/H) is stable. Suppose
that one can choose prime semi-invariants fi (1 � i � n) of G on R in such a way that
H = ∩n

i=1Gfi
. If rank(G/H) = n, then the following conditions are equivalent:

(i) The generic Krull pair (RG, RH) has the (TDP).
(ii) There exists a finite normal subgroup N of G generated by a part of the union of

inertia groups at principal ideals in Ht1(R
G, R) under the action of G such that

there exists an (R, G)-free prime set {g1, . . . , gn} contained in RN satisfying HN =
∩n

i=1Ggi
.
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Remark 3.4. The equivalence in Theorem 3.3 does not hold without assumption that
{f1, . . . , fn} consists of prime elements. There are counter-examples for a set {f1, . . . , fn}
containing a non-prime element. One might generalize this in the case where fi’s may not
be prime, although the conditions should be complicated.

4. Subgroups of class groups and modules of relative invariants

We now return to the general case where R is a Krull domain acted by a group G as
automorphisms which is treated in the former half in Sect. 3 and introduce some subsets
of the group of the 1-cocyles of G. From now on to the end of Proposition 4.12, without
specifying we suppose that the equality Q(RG) = Q(R)G holds.

Definition 4.1. Put Z1(G, U(R))R := {χ ∈ Z1(G, U(R)) | Rχ �= {0}} and

Z1
R(G, U(R))e := {χ ∈ Z1(G, U(R))R | ∃f� ∈ Rχ\{0} such that

vR,�(f�) ≡ 0 mod (e(P,P ∩ q)) (∀P ∈ Ht1(R
G, R))}.

Let Z1
R(G, U(R))(2) denote the set of all χ ∈ Z1(G, U(R)) such that {0} �= R−χ �⊆ P for

all P ∈ Ht1(R) satisfying ht(P ∩ RG) � 2 and put

Z̃1
R(G, U(R)) := Z1

R(G, U(R))(2) ∩ (−Z1
R(G, U(R))(2)).

Definition 4.2. An effective divisor D ∈ Div(R) is said to be minimal effective relative
to (RG, R), if D has a decomposition D = D1 + D2 for 0 � D1 ∈ E∗(RG, R) and
0 � D2 ∈ Div(R), then the divisor D1 must be equal to zero.

With each χ ∈ Z1
R(G, U(R))R we can associate the divisor D(χ) minimal effective

relative to (RG, R) as follows:

Lemma 4.3. Let χ be a cocycle in Z1
R(G, U(R))R. Then:

(i) There exists a unique minimal effective divisor D(χ) on R relative to (RG, R) such
that, for a nonzero element f ∈ Rχ,

E∗(RG, R) � divR(f) − D(χ) � 0.

Moreover D(χ) does not depend on the choice of a nonzero element f ∈ Rχ.
(ii) If χ ∈ Z1

R(G, U(R))e, then the divisor D(χ) and D(mχ) defined in (i) for χ and mχ
satisfy m · D(χ) = D(mχ) in Div(R) for any m ∈ N .

The next criterion for the individual RG-module Rχ to be RG-free can be easily shown
in [7].

Proposition 4.4 ([7]). Without the assumption that Q(RG) = Q(R)G, for any cocycle
χ ∈ Z1(G, U(R))R, Rχ is RG-free of rank one if and only if the following conditions are
satisfied:

(i) dimQ(RG) ⊗RG Rχ = 1.
(ii) There exists a nonzero element f ∈ Rχ satisfying

∀q ∈ Ht1(R
G) ⇒ ∃P ∈ XQ(R) such that vR,�(f) < e(P, q)(4.1)

If these equivalent conditions are satisfied, Rχ = RG · f for any nonzero element f ∈ Rχ

such that (4.1) holds.
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We apply Proposition 4.4 to some restricted χ and obtain the corollary which shall be
needed.

Corollary 4.5. Let χ be a cocycle in Z1(G, U(R))R. Then Rχ is RG-free if and only
if D(χ) + BU(RG, R) � divR(f) for some nonzero f ∈ Rχ. In the case where χ ∈
(−Z1

R(G, U(R))(2)), Rχ
∼= RG as RG-modules if and only if D(χ) = divR(f) for some

nonzero f ∈ Rχ.
Moreover the equality Rχ = RG · f holds, in both the cases where these equivalent

conditions are satisfied.

By the choice of χ, Lemma 4.3 and Corollary 4.5, we see

Proposition 4.6. Let χ ∈ Z1
R(G, U(R))e∩ (−Z1

R(G, U(R))(2)). Suppose that there exists
a nonzero element g ∈ Rχ satisfying the condition as follows; for any l ∈ N and G-
invariant principal ideal R · h in R containing gl such that divR(h) ∈ E∗(RG, R),

∃n ∈ N such that (hn · U(R)) ∩ RG �= ∅ ⇒ (h · U(R)) ∩ RG �= ∅.
Then the following conditions are equivalent:

(i) D(χ) is a principal divisor and there exists a number m ∈ N such that Rmχ
∼= RG

as RG-modules.
(ii) For any m ∈ N , Rmχ

∼= RG as RG-modules.
(iii) Rχ

∼= RG as RG-modules.

Corollary 4.7. Under the same circumstances as in Proposition 4.6, suppose that there
is a number m ∈ N satisfying Rmχ

∼= RG as RG-modules. Then the divisor class [D(χ)]
in Cl(R) has a finite order and the following equality holds;

ord([D(χ)]) = min{q ∈ N | Rqχ
∼= RG as RG-modules}.

Proof. Since p · [D(χ)] = [D(pχ)] in Cl(R) for any p ∈ N as in Proposition 4.6 and
n · [D(χ)] = 0 (cf. Corollary 4.5), the former assertion is obvious and the latter one
follows from Proposition 4.6.

Definition 4.8. For χ ∈ Z1(G, U(R))R, the RG-module Rχ is RG-isomorphic to a nonzero

integral ideal I of RG and the divisor class of the divisorialization Ĩ in Cl(RG) is denoted
to [Rχ].

Proposition 4.9. Let χ be a cocycle in Z1
R(G, U(R))e ∩ Z1

R(G, U(R))(2). Then, for a
number n ∈ N , Rnχ

∼= RG as RG-modules if and only if n · [Rχ] = 0 in Cl(RG).

Combining Corollary 4.7 with Proposition 4.9, we immediately have

Theorem 4.10. Let χ be a cocycle in Z1
R(G, U(R))e ∩ Z̃1

R(G, U(R)) and suppose that
there exists a nonzero element g ∈ Rχ satisfying the condition as follows; for any l ∈ N
and G-invariant principal ideal R · h in R containing gl such that divR(h) ∈ E∗(G, R),

∃n ∈ N such that (hn · U(R)) ∩ RG �= ∅ ⇒ (h · U(R)) ∩ RG �= ∅.
If [Rχ] ∈ tor(Cl(RG)), then

ord([Rχ]) in Cl(RG) = ord([D(χ)]) in Cl(R),

which is equal to min{q ∈ N | Rqχ
∼= RG as RG-modules}.
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Definition 4.11. Let UrCl(R,G) denote the subgroup of CL(R) generated by

{[D(χ)] | χ ∈ Z1
R(G, U(R))e ∩ Z̃1

R(G, U(R))},
where [D(χ)] denotes the divisor class of D(χ) ∈ Div(R). Define C̃l(R,G) to be the

subgroup
〈
{[Rχ] | χ ∈ Z1

R(G, U(R))e ∩ Z̃1
R(G, U(R))}

〉
of Cl(RG).

The next result follows easily from Theorem 4.10.

Proposition 4.12. Suppose that the canonical image of the semigroup Z1
R(G, U(R))e ∩

(−(Z1
R(G, U(R))(2)) in H1(G, U(R)) does not contain a non-trivial torsion element. Sup-

pose that C̃l(R,G) is a torsion group. If one of exp(UrCl(R,G)) and exp(C̃l(R,G)) is
finite, then

exp(UrCl(R,G)) = exp(C̃l(R,G)),

which are equal to

max
{

min{q ∈ N | Rqχ
∼= RG} ∣∣ χ ∈ Z1

R(G, U(R))e ∩ Z̃1
R(G, U(R))

}
.

Hereafter let (X, G) be a regular faithful stable action of an algebraic torus G on an
affine normal variety X defined over an algebraically closed field K of characteristic zero
whose coordinate ring O(X) denoted to R. We have the canonical pairing G × X(G) →
U(K).

Definition 4.13. Let R̃(R, G) be the subgroup of G generated by the set consisting of
I�(G)’s for all P ∈ Ht1(R

G, R) such that P are not principal which is called the maximal
non-principal pseudo-reflection subgroups of the action (X, G). Here I�(G) stands for
the inertia group of P under the action of G. Put R(R,G) :=

〈∪�∈Ht1(RG,R) I�(G)
〉
.

Clearly both R(R,G) and R̃(R, G) are finite (normal) subgroups of G. In the case where
exp(UrCl(R,G)) is finite, define

Obs(R,G) := {σ ∈ G | σexp(UrCl(R,G)) ∈ R̃(R,G)},
which is called the obstruction subgroup for cofreeness of (X, G).

Lemma 4.14. We have X(G)⊥�(R,G) = Z1
R(G, U(R))e.

With the aid of [10], the following proposition is shown in [6].

Proposition 4.15. Suppose that both X and (X, G) are conical. If the action (X, G) is

equidimensional, then C̃l(R,G) is a torsion group.

Applying Theorem 4.10 to this, we must have

Theorem 4.16. Suppose that both X and (X, G) are conical. Then the following con-
ditions are equivalent:

(i) The action (X, G) is equidimensional.
(ii) The exponent exp(UrCl(R,G)) is finite and the action (X//Obs(R,G), G/Obs(R,G))

induced naturally is cofree.
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Especially if R is factorial, the obstruction subgroup Obs(R,G) should be a trivial
group by its definition. It is not hard to formally generalize Theorem 4.16 to in the
case where (X, G) may not be stable. For linear representations of connected algebraic
groups with affine rings of invariants, V. G. Kac and V. L. Popov have conjectured that
equidimensionality of these actions implies cofreeness, which is known as the Russian
conjecture (cf. [3, 9]) and is partially related to this theorem.

References

[1] H. Bass, Algebraic K-Theory, W. A. Benjamin, Inc., New York 1968.
[2] R. M. Fossum, The Divisor Class Groups of a Krull Domain, Springer-Verlag, Berlin Heidelberg New

York 1973.
[3] V. G. Kac, Some remarks on nilpotent orbits, J. Algebra 64 (1980), 190–213.
[4] A. Magid, Finite generation of class groups of rings of invariants, Proc. of Amer. Math. Soc. 60

(1976), 45–48.
[5] H. Nakajima, Class groups of localities of rings of invariants of a reductive algebraic group, Math.

Zeit. 182 (1983), 1–15.
[6] , Equidimensional actions of algebraic tori, Annales de L’Institut Fourier 45, 681–705 (1995).
[7] , Divisorial free modules of relative invariants on Krull domains, J. Algebra 292 (2005),

540–565.
[8] , Reduced class groups grafting relative invariants. to appear.
[9] V. L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Mono-

graphs 100, Amer. Math. Soc., Providence 1993.
[10] D. H. Wehlau, Equidimensional varieties and associated cones, J. Algebra 159 (1993), 47–53.

Department of Mathematics
Faculty of Science
Josai University
Keyakidai 1-1, Sakado 350-0295 JAPAN

–54–


