DERIVED EQUIVALENCES FOR ENDOMORPHISM RINGS

HIROKI ABE AND MITSUO HOSHINO

ABSTRACT. We provide derived equivalences for endomorphism rings associated with a
certain exact sequences.

1. NOTATION

For a ring A, we denote by Mod-A the category of right A-modules, by mod-A the
full subcategory of Mod-A consisting of finitely presented modules and by P4 the full
subcategory of Mod-A consisting of finitely generated projective modules. For M €
Mod-A, we denote by proj dim M, (resp., inj dim M,) the projective (resp., injective)
dimension of M, where we use the notation M4 to stress that the module M considered
is a right A-module, and by Q"M the nth syzygy of M. For a ring A, we denote by
gl dim A the global dimension of A. For an object X in an additive category B, we
denote by add(X) the full subcategory of B whose objects are direct summands of finite
direct sums of copies of X.

2. MAIN RESULT

In [1], we have shown the following,.

Theorem 1 ([1, Lemma 1.1]). Let 0 — Y 5 E 5 X — 0 be an exact sequence in
an abelian category A and P an object of A. Assume that E € add(P) and that both
Hom4(P,e) and Homu(p, P) are epic. Then End4(X @ P) and End4(Y @ P) are derived

equivalent to each other.
The next two propositions are direct consequences of Theorem 1.

Proposition 2. Let A be a right noetherian ring and M € mod-A. If Ext'y(M,A) =0
for 1 < i <mn, then Enda(M & A) and Enda(Q2"M & A) are derived equivalent to each
other.

Proposition 3. Let A be an Artin algebra, P € mod-A and 0 - Y — E — X — 0 an
almost split sequence in mod-A. If E' € add(P) and X,Y ¢ add(P), then Enda(X & P)
and Ends (Y @& P) are derived equivalent to each other.

The propositions above enable us to construct many derived equivalences between en-
domorphism rings. For example, we obtain the following.

Example 4. Let k be a field, R = k[X1,---, X,]/(X? — X7, X;X; | 1 < i # j <n) with
n > 2 and S the simple R-module. Then the following hold.

The detailed version of this paper will be submitted for publication elsewhere.
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(1) Endg(Q 1S @ Q7°S) and Endg(Q271S @ S) are derived equivalent to each other
for all ¢ > 1, where the first algebra has global dimension three and the last algebra
has global dimension two.

(2) Endg(Q'S & Q1S) and Endg(S & Q9) are derived equivalent to each other for
all ¢ > 1, where the first algebra has global dimension three and the last algebra
has global dimension two.

(3) Endp(Q'S & Q1S @ R) and Endgr(S & QS @& R) are derived equivalent to each
other for all © € Z, where these algebras have global dimension three.

> for all 1 € Z.

(4) Endp(Q'S®QTLS) is isomorphic to a trivial extension of ( lg kk

3. AUSLANDER ALGEBRA

In this section, we apply the results of the previous section to Auslander algebras. We
start by recalling the definition of Auslander algebras (see e.g. [3] for details).

Definition 5. Let A be an Artin algebra and 0 — A — I° — I' — ... a minimal
injective resolution in mod-A. Set dom dim A = sup{k € Z | I' € Py for 0 <i < k — 1},
which is called the dominant dimension of A. Then A is said to be an Auslander algebra
provided gl dim A < 2 and dom dim A > 2.

Let A be a representation-finite Artin algerba and assume that A is basic and connected.
Let My,--- , M, be a complete set of nonisomorphic indecomposable modules in mod-A
and set I = {1,--- ,m}. We assume that m > 2, i.e., A is not simple. Then, setting
M = @,.; M;, we have an Auslander algebra A = End (M), which will be called the
Auslander algebra of A. For each indecomposable module X € mod-A, since there exists
a unique ix € I such that X = M;,, we set I[(X) = I\ {ix}, Mx = @,c;x)M: and
Ax = Ends(My). Then by Proposition 3 we have the following.

Proposition 6. The following hold.

(1) If X is not projective then Ax is derived equivalent to A,x, where T denotes the
Auslander-Reiten translation.
(2) If X is not injective then Ax is derived equivalent to A;-1x.

We can calculate the global dimension and the dominant dimension of Ax.
Lemma 7. Assume that X is not projective, not injective and 7X = X. Then A is a
local Nakayama algebra and the following hold.
(1) If m =2, then Ax = A as algebras.
(2) If m > 2, then inj dim Ax = 2.
Proposition 8. The following hold.
(1) If X is projective (resp., injective), then gl dim Ay < 2.
(2) If X is not projective, not injective and 7X % X, then gl dim Ax = 3.
(3) If X s not projective, not injective and X = X, then gl dim Ax = oco.
Proposition 9. The following hold.
(1) If X is projective (resp., injective), not injective (resp., not projective) and not
simple, then dom dim Ay = 0.



(2) If X is projective (resp., injective), not injective (resp., not projective) and simple,
then dom dim Ax = 1.

(3) If X s projective and injective, then dom dim Ay > 2.

(4) If X s not projective and not injective, then dom dim Ay > 2.

It follows by the propositions above that Ax is an Auslander algebra if and only if X
is projective and injective.

Consider next the case where X is a simple projective module with inj dim X4 = 1.
Let P, ---, P, = X be a complete set of nonisomorphic indecomposable modules in Py
and set T' = (@?;11 P)®771X. Then T is a classical tilting module, i.e., a tilting module
of projective dimension < 1 (cf. [2]). Set B = End4(T) and Y = Ext! (T, X) € mod-B.
Then Y is a simple injective module with proj dim Yz = 1. We set Ny = Homy(T, Mx),
N =Ny @Y, I'=Endg(N) and I'y = Endg(Ny). Note that I" is the Auslander algebra
of B.

Proposition 10. We have I'y = Ax as algebras and hence for any 1,5 >0, if 7Y, 777X
are nonzero, I'.iy and A-ix are derived equivalent to Ax.

Remark 11. Set T = Hom (M, My) @ Ext!,(M, X) € mod-A. Then the following hold.

(1) Endy(T) 2 T as algebras.

(2) proj dim T) = 2.

(3) there exists an exact sequence 0 — A — T° — 7! — T? — 0 in mod-A with the
T € add(T).

(4) Exti(T,T) = 0.

(5) Ext3(T,T) = 0 if and only if A = < b-D

0 D ) with D = End4(X).

4. TILTING MODULE

Finally, we point out that the exact sequence in Theorem 1 enables us to construct
another tilting module from a given tilting module by exchanging direct summands.

Proposition 12. Let A be a ring, P € Mod-A and 0 — Y 5 E 5 X — 0 an ezact
sequence in Mod-A. Assume that E € add(P) and that both Hom (P, ¢) and Homy4(u, P)
are epic. Then X @& P s a tilting module if and only if so is Y & P. In particular, if
X @ P is a classical tilting module, then so is Y & P.

Corollary 13. Let A be a Noether algebra and X € mod-A. Assume that there exists
T € mod-A such that X ® T is a tilting module. Then the following hold.

(1) If there exists an epimorphism of the form f : T — X, then there ewists an
epimorphism ¢ : T) — X such that Ker e ® T is a tilting module. In particular,
if X ®T is a classical tilting module, then so is Ker e ® T.

(2) If there exists a monomorphism of the form g : X — T, then there exists a
monomorphism p: X — T such that Cok u@® T is a tilting module.

—3—



REFERENCES

[1] H. Abe and M. Hoshino, Gorenstein orders associated with modules, Comm. Algebra, to appear.

[2] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math.
Soc., 250 (1979), 1-12.

[3] M. Auslander, I. Reiten and S. O. Smalg, Representation theory of artin algebras, Cambridge studies
in advanced mathematics., 36, Cambridge University Press, 1995.

INSTITUTE OF MATHEMATICS
UNIVERSITY OF TSUKUBA
IBARAKI 305-8571 JAPAN

E-mail address: abeh@math.tsukuba.ac.jp

INSTITUTE OF MATHEMATICS
UNIVERSITY OF TSUKUBA
IBARAKI 305-8571 JAPAN

E-mail address: hoshino@math.tsukuba.ac. jp



