
DERIVED EQUIVALENCES FOR ENDOMORPHISM RINGS

HIROKI ABE AND MITSUO HOSHINO

Abstract. We provide derived equivalences for endomorphism rings associated with a
certain exact sequences.

1. Notation

For a ring A, we denote by Mod-A the category of right A-modules, by mod-A the
full subcategory of Mod-A consisting of finitely presented modules and by PA the full
subcategory of Mod-A consisting of finitely generated projective modules. For M ∈
Mod-A, we denote by proj dim MA (resp., inj dim MA) the projective (resp., injective)
dimension of M , where we use the notation MA to stress that the module M considered
is a right A-module, and by ΩnM the nth syzygy of M . For a ring A, we denote by
gl dim A the global dimension of A. For an object X in an additive category B, we
denote by add(X) the full subcategory of B whose objects are direct summands of finite
direct sums of copies of X.

2. Main result

In [1], we have shown the following.

Theorem 1 ([1, Lemma 1.1]). Let 0 → Y
µ→ E

ε→ X → 0 be an exact sequence in
an abelian category A and P an object of A. Assume that E ∈ add(P ) and that both
HomA(P, ε) and HomA(µ, P ) are epic. Then EndA(X ⊕P ) and EndA(Y ⊕P ) are derived
equivalent to each other.

The next two propositions are direct consequences of Theorem 1.

Proposition 2. Let A be a right noetherian ring and M ∈ mod-A. If Exti
A(M,A) = 0

for 1 ≤ i ≤ n, then EndA(M ⊕ A) and EndA(ΩnM ⊕ A) are derived equivalent to each
other.

Proposition 3. Let A be an Artin algebra, P ∈ mod-A and 0 → Y → E → X → 0 an
almost split sequence in mod-A. If E ∈ add(P ) and X,Y /∈ add(P ), then EndA(X ⊕ P )
and EndA(Y ⊕ P ) are derived equivalent to each other.

The propositions above enable us to construct many derived equivalences between en-
domorphism rings. For example, we obtain the following.

Example 4. Let k be a field, R = k[X1, · · · , Xn]/〈X2
i − X2

j , XiXj | 1 ≤ i 6= j ≤ n〉 with
n ≥ 2 and S the simple R-module. Then the following hold.

The detailed version of this paper will be submitted for publication elsewhere.
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(1) EndR(Ω−i−1S ⊕ Ω−iS) and EndR(Ω−1S ⊕ S) are derived equivalent to each other
for all i ≥ 1, where the first algebra has global dimension three and the last algebra
has global dimension two.

(2) EndR(ΩiS ⊕ Ωi+1S) and EndR(S ⊕ ΩS) are derived equivalent to each other for
all i ≥ 1, where the first algebra has global dimension three and the last algebra
has global dimension two.

(3) EndR(ΩiS ⊕ Ωi+1S ⊕ R) and EndR(S ⊕ ΩS ⊕ R) are derived equivalent to each
other for all i ∈ Z, where these algebras have global dimension three.

(4) EndR(ΩiS⊕Ωi+1S) is isomorphic to a trivial extension of

(
k kn

0 k

)
for all i ∈ Z.

3. Auslander algebra

In this section, we apply the results of the previous section to Auslander algebras. We
start by recalling the definition of Auslander algebras (see e.g. [3] for details).

Definition 5. Let Λ be an Artin algebra and 0 → Λ → I0 → I1 → · · · a minimal
injective resolution in mod-Λ. Set dom dim Λ = sup{k ∈ Z | I i ∈ PΛ for 0 ≤ i ≤ k − 1},
which is called the dominant dimension of Λ. Then Λ is said to be an Auslander algebra
provided gl dim Λ ≤ 2 and dom dim Λ ≥ 2.

Let A be a representation-finite Artin algerba and assume that A is basic and connected.
Let M1, · · · ,Mm be a complete set of nonisomorphic indecomposable modules in mod-A
and set I = {1, · · · , m}. We assume that m ≥ 2, i.e., A is not simple. Then, setting
M =

⊕
i∈I Mi, we have an Auslander algebra Λ = EndA(M), which will be called the

Auslander algebra of A. For each indecomposable module X ∈ mod-A, since there exists
a unique iX ∈ I such that X ∼= MiX , we set I(X) = I \ {iX}, MX =

⊕
i∈I(X) Mi and

ΛX = EndA(MX). Then by Proposition 3 we have the following.

Proposition 6. The following hold.

(1) If X is not projective then ΛX is derived equivalent to ΛτX , where τ denotes the
Auslander-Reiten translation.

(2) If X is not injective then ΛX is derived equivalent to Λτ−1X .

We can calculate the global dimension and the dominant dimension of ΛX .

Lemma 7. Assume that X is not projective, not injective and τX ∼= X. Then A is a
local Nakayama algebra and the following hold.

(1) If m = 2, then ΛX
∼= A as algebras.

(2) If m > 2, then inj dim ΛX = 2.

Proposition 8. The following hold.

(1) If X is projective (resp., injective), then gl dim ΛX ≤ 2.
(2) If X is not projective, not injective and τX 6∼= X, then gl dim ΛX = 3.
(3) If X is not projective, not injective and τX ∼= X, then gl dim ΛX = ∞.

Proposition 9. The following hold.

(1) If X is projective (resp., injective), not injective (resp., not projective) and not
simple, then dom dim ΛX = 0.
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(2) If X is projective (resp., injective), not injective (resp., not projective) and simple,
then dom dim ΛX = 1.

(3) If X is projective and injective, then dom dim ΛX ≥ 2.
(4) If X is not projective and not injective, then dom dim ΛX ≥ 2.

It follows by the propositions above that ΛX is an Auslander algebra if and only if X
is projective and injective.

Consider next the case where X is a simple projective module with inj dim XA = 1.
Let P1, · · · , Pn = X be a complete set of nonisomorphic indecomposable modules in PA

and set T = (
⊕n−1

i=1 Pi)⊕ τ−1X. Then T is a classical tilting module, i.e., a tilting module
of projective dimension ≤ 1 (cf. [2]). Set B = EndA(T ) and Y = Ext1

A(T,X) ∈ mod-B.
Then Y is a simple injective module with proj dim YB = 1. We set NY = HomA(T,MX),
N = NY ⊕ Y , Γ = EndB(N) and ΓY = EndB(NY ). Note that Γ is the Auslander algebra
of B.

Proposition 10. We have ΓY
∼= ΛX as algebras and hence for any i, j ≥ 0, if τ iY, τ−jX

are nonzero, Γτ iY and Λτ−jX are derived equivalent to ΛX .

Remark 11. Set T̃ = HomA(M,MX) ⊕ Ext1
A(M,X) ∈ mod-Λ. Then the following hold.

(1) EndΛ(T̃ ) ∼= Γ as algebras.
(2) proj dim T̃Λ = 2.
(3) there exists an exact sequence 0 → Λ → T 0 → T 1 → T 2 → 0 in mod-Λ with the

T i ∈ add(T̃ ).
(4) Ext1

Λ(T̃ , T̃ ) = 0.

(5) Ext2
Λ(T̃ , T̃ ) = 0 if and only if A ∼=

(
D D
0 D

)
with D = EndA(X).

4. Tilting module

Finally, we point out that the exact sequence in Theorem 1 enables us to construct
another tilting module from a given tilting module by exchanging direct summands.

Proposition 12. Let A be a ring, P ∈ Mod-A and 0 → Y
µ→ E

ε→ X → 0 an exact
sequence in Mod-A. Assume that E ∈ add(P ) and that both HomA(P, ε) and HomA(µ, P )
are epic. Then X ⊕ P is a tilting module if and only if so is Y ⊕ P . In particular, if
X ⊕ P is a classical tilting module, then so is Y ⊕ P .

Corollary 13. Let A be a Noether algebra and X ∈ mod-A. Assume that there exists
T ∈ mod-A such that X ⊕ T is a tilting module. Then the following hold.

(1) If there exists an epimorphism of the form f : T (l) → X, then there exists an
epimorphism ε : T (r) → X such that Ker ε ⊕ T is a tilting module. In particular,
if X ⊕ T is a classical tilting module, then so is Ker ε ⊕ T .

(2) If there exists a monomorphism of the form g : X → T (l), then there exists a
monomorphism µ : X → T (r) such that Cok µ ⊕ T is a tilting module.
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