REFLECTION FOR SELFINJECTIVE ALGEBRAS

HIROKI ABE

ABSTRACT. We introduce the notion of reflections for selfinjective algebras and determine the transformations of Brauer trees associated with reflections. In particular, we provide a way to transform every Brauer tree into a Brauer line.

Reflection functors introduced in [4] are induced by transformations of the quiver making a certain sink vertex changed into a source vertex. Let Λ be a finite dimensional algebra over a field K. In [3], it was shown that reflection functors are of the form $\operatorname{Hom}_{\Lambda}(T, -)$ with T a certain type of tilting modules. Let P_1, \dots, P_n be a complete set of nonisomorphic indecomposable projective modules in mod- Λ , the category of finitely generated right Λ -modules. Set $I = \{1, \dots, n\}$. Assume that there exists a simple projective module $S \in \operatorname{mod}-\Lambda$ which is not injective. Take $t \in I$ with $P_t \cong S$ and set

$$T = T_1 \oplus \tau^{-1}S$$
 with $T_1 = \bigoplus_{i \in I \setminus \{t\}} P_i$,

where τ denotes the Auslander-Reiten translation. Then T is a tilting module, called an APR-tilting module, and Hom_A(T, -) is a reflection functor.

In [5], APR-tilting modules were generalized as follows. Assume that there exists a simple module $S \in \text{mod-}\Lambda$ with $\text{Ext}^1_{\Lambda}(S,S) = 0$ and $\text{Hom}_{\Lambda}(D\Lambda,S) = 0$, where $D = \text{Hom}_K(-,K)$. Let P_t be the projective cover of S and let T be the same as above. Then T is a tilting module, called a BB-tilting module. We are interested in a minimal projective presentation of T, which is a two-term tilting complex. Take a minimal injective presentation $0 \to S \to E^0 \xrightarrow{f} E^1$ and define a complex E^{\bullet} as the mapping cone of $f: E^0 \to E^1$. Then $\text{Hom}^{\bullet}_{\Lambda}(D\Lambda, E^{\bullet})$ is a minimal projective presentation of $\tau^{-1}S$ and hence

$$T^{\bullet} = T_1 \oplus \operatorname{Hom}^{\bullet}_{\Lambda}(D\Lambda, E^{\bullet})$$

is a minimal projective presentation of T. In this note, we demonstrate that this type of tilting complexes play an important role in the theory of derived equivalences for selfinjective algebras.

Let K be a commutative artinian local ring and Λ an Artin K-algebra, i.e., Λ is a ring endowed with a ring homomorphism $K \to \Lambda$ whose image is contained in the center of Λ and Λ is finitely generated as a K-module. We always assume that Λ is connected, basic and not simple. We denote by mod- Λ the category of finitely generated right Λ -modules and by \mathcal{P}_{Λ} the full subcategory of mod- Λ consisting of projective modules. For a module $M \in \mod{\Lambda}$, we denote by P(M) (resp., E(M)) the projective cover (resp., injective

The detailed version of this note has been submitted for publication elsewhere.

envelope) of M. We denote by $\mathcal{K}(\text{mod}-\Lambda)$ the homotopy category of cochain complexes over mod- Λ and by $\mathcal{K}^{\mathrm{b}}(\mathcal{P}_{\Lambda})$ the full triangulated subcategory of $\mathcal{K}(\text{mod}-\Lambda)$ consisting of bounded complexes over \mathcal{P}_{Λ} . We consider modules as complexes concentrated in degree zero.

Throughout the rest of this note, we assume that Λ is selfinjective. Let $S \in \text{mod}-\Lambda$ be a simple module with $\text{Ext}^{1}_{\Lambda}(S,S) = 0$ and $E(S) \cong P(S)$. Note that $E(S) \cong P(S)$ if and only if $\text{Hom}_{\Lambda}(D\Lambda, S) \cong S$, where D denotes the Matlis dual over K. Take a minimal injective presentation $0 \to S \to E^0 \xrightarrow{f} E^1$ and define a complex $E^{\bullet} \in \mathcal{K}^{\mathsf{b}}(\mathcal{P}_{\Lambda})$ as the mapping cone of $f : E^0 \to E^1$. Note that E^1 is the 0th term of E^{\bullet} and E^0 is the (-1)th term of E^{\bullet} . Let P_1, \dots, P_n be a complete set of nonisomorphic indecomposable modules in \mathcal{P}_{Λ} and set $I = \{1, \dots, n\}$. We assume that n > 1. Take $t \in I$ with $P_t \cong P(S)$ and set

$$T^{\bullet} = T_1 \oplus E^{\bullet}$$
 with $T_1 = \bigoplus_{i \in I \setminus \{t\}} P_i.$

The following holds.

Theorem 1. The complex T^{\bullet} is a tilting complex for Λ and $\operatorname{End}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(T^{\bullet})$ is a selfinjective Artin K-algebra whose Nakayama permutation coincides with that of Λ .

Definition 2. The derived equivalence induced by the tilting complex T^{\bullet} is said to be the reflection for Λ at t. Sometimes, we also say that $\operatorname{End}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(T^{\bullet})$ is the reflection of Λ at t.

We will apply Theorem 1 to Brauer tree algebras and determine the transformations of Brauer tree algebras induced by reflections. We assume that K is an algebraically closed field. Recall that a Brauer tree (B, v, m) consists of a finite tree B, called the underlying tree, together with a distinguished vertex v, called the exceptional vertex and a positive integer m, called the multiplicity. In case m = 1, (B, v, m) is identified with the underlying tree B and is called a Brauer tree without exceptional vertex. The pair of the number of edges of B and the multiplicity m is said to be the numerical invariants of (B, v, m). Each Brauer tree determines a symmetric K-algebra Λ up to Morita equivalence (see [2] for details), called a Brauer tree algebra, which is given as the path algebra defined by some quiver with relations $(\Lambda_0, \Lambda_1, \rho)$, where Λ_0 is the set of vertices, Λ_1 is the set of arrows between vertices and ρ is the set of relations (see [6] for details). We have the following.

Remark 3. Let Λ be a Brauer tree algebra.

(1) Every ring Γ derived equivalent to Λ is a Brauer tree algebra having the same numerical invariants as Λ ([7, Theorem 4.2]).

(2) For any simple module $S \in \text{mod}-\Lambda$ we have $E(S) \cong P(S)$.

Throughout the rest of this note, we deal only with Brauer trees without exceptional vertex. Let Λ be a Brauer tree algebra, $(\Lambda_0, \Lambda_1, \rho)$ the quiver with relations of Λ and

 $t \in \Lambda_0$. We consider the following cycles in $(\Lambda_0, \Lambda_1, \rho)$:

with $p, q, r, s \ge 0$, where $a_{p,1} = a_p$ and $b_{r,1} = b_r$ in case $p, r \ge 1$. We denote by S_t the simple module corresponding to t and by P_t the projective cover of S_t .

Lemma 4. The following hold.

(1) We have a minimal injective presentation

$$0 \to S_t \to P_t \xrightarrow{f} P_{a_p} \oplus P_{b_r} \text{ with } f = \begin{pmatrix} f_{t,a} \\ f_{t,b} \end{pmatrix}.$$

(2) For any $t \in \Lambda_0$, we have $\operatorname{Ext}^1_{\Lambda}(S_t, S_t) = 0$.

Take a minimal injective presentation $0 \to S_t \to E_t^0 \xrightarrow{f} E_t^1$ and define a complex E_t^{\bullet} as the mapping cone of $f: E_t^0 \to E_t^1$. Set

$$T_t^{\bullet} = T_1 \oplus E_t^{\bullet}$$
 with $T_1 = \bigoplus_{i \in \Lambda_0 \setminus \{t\}} P_i.$

Then T_t^{\bullet} is a tilting complex and $\operatorname{End}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(T_t^{\bullet})$ is the reflection of Λ at t. Set $\Gamma = \operatorname{End}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(T_t^{\bullet})$ and let $(\Gamma_0, \Gamma_1, \sigma)$ be the quiver with relations of Γ . Note that $\Gamma_0 = (\Lambda_0 \setminus \{t\}) \cup \{t'\}$, where t' is the vertex corresponding to E_t^{\bullet} . Since Γ is a Brauer tree algebra, the relations σ is determined automatically by Γ_0 and Γ_1 . To determine Γ_1 , we need the next lemma.

Lemma 5. The following hold.

- (1) There exist $\zeta_{a_p} \in \operatorname{Hom}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(P_{a_p}, E_t^{\bullet})$ with $\zeta_{a_p} \in \operatorname{rad}(\Gamma) \setminus \operatorname{rad}^2(\Gamma)$ and $\zeta_{b_r} \in \operatorname{Hom}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(P_{b_r}, E_t^{\bullet})$ with $\zeta_{b_r} \in \operatorname{rad}(\Gamma) \setminus \operatorname{rad}^2(\Gamma)$.
- (2) There exist $\eta_{a_{p,q}} \in \operatorname{Hom}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(E_t^{\bullet}, P_{a_{p,q}})$ with $\eta_{a_{p,q}} \in \operatorname{rad}(\Gamma) \setminus \operatorname{rad}^2(\Gamma)$ and $\eta_{b_{r,s}} \in \operatorname{Hom}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(E_t^{\bullet}, P_{b_{r,s}})$ with $\eta_{b_{r,s}} \in \operatorname{rad}(\Gamma) \setminus \operatorname{rad}^2(\Gamma)$.
- (3) There exist $\theta_{a_p} \in \operatorname{Hom}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(P_{a_1}, P_{a_p})$ with $\theta_{a_p} \in \operatorname{rad}(\Gamma) \setminus \operatorname{rad}^2(\Gamma)$ and $\theta_{b_r} \in \operatorname{Hom}_{\mathcal{K}(\operatorname{mod}-\Lambda)}(P_{b_1}, P_{b_r})$ with $\theta_{b_r} \in \operatorname{rad}(\Gamma) \setminus \operatorname{rad}^2(\Gamma)$.

According to Lemma 5, we have the following new arrows in Γ_1 . We denote by \implies the arrows defined by ζ_* , by $\sim \sim \sim$ the arrows defined by η_* and by $- \rightarrow$ the arrows defined by θ_* . In the next theorem, the left hand side diagram denotes cycles in $(\Lambda_0, \Lambda_1, \rho)$ and the right hand side diagram denotes cycles in $(\Gamma_0, \Gamma_1, \sigma)$.

Theorem 6. The reflection for Λ at t gives rise to the following transformation:

Let Λ be determined by a Brauer tree B whose edges are identified with the vertices of $(\Lambda_0, \Lambda_1, \rho)$. We will describe a way to transform B into a Brauer tree B' determining Γ . Consider the tree

with $p, q, r, s \ge 0$, where $a_p = a_{p,1}, b_r = b_{r,1}$ in case $p, r \ge 1$. Turn the edge t anti-clockwise around the vertex x and select the edge a_p which t first meets. Then select the vertex z of the edge a_p different from x. Similarly, turn the edge t anti-clockwise around the vertex y and select the edge b_r which t first meets. Then select the vertex w of the edge b_r different from y. Add a new edge t' connecting the vertices z and w, and remove the

edge t. As a consequence, we get the following Brauer tree B':

Corollary 7. The Brauer tree B' determines Γ .

Corollary 8 (cf. [1, Theorem 3.7]). There exists a sequence of Brauer tree algebras $\Lambda = \Delta_0, \Delta_1, \dots, \Delta_l$ such that Δ_{i+1} is the reflection of Δ_i at a suitable vertex for $0 \leq i < l$ and Δ_l is a Brauer line algebra, i.e., the path algebra defined by the quiver

$$1 \stackrel{\alpha_1}{\underset{\beta_1}{\longleftarrow}} 2 \stackrel{\alpha_2}{\underset{\beta_2}{\longleftarrow}} \cdots \stackrel{\alpha_{n-2}}{\underset{\beta_{n-2}}{\longleftarrow}} n - 1 \stackrel{\alpha_{n-1}}{\underset{\beta_{n-1}}{\longleftarrow}} n$$

with relations

$$\alpha_{i+1}\alpha_i = \beta_i\beta_{i+1} = 0, \quad \alpha_i\beta_i = \beta_{i+1}\alpha_{i+1}$$

for $1 \leq i < n-1$, where n is the number of vertices of $(\Lambda_0, \Lambda_1, \rho)$.

References

- H. Abe and M. Hoshino, On derived equivalences for selfinjective algebras, Comm. Algebra 34 (2006), 4441–4452.
- [2] J. L. Alperin, Local Representation Theory, Cambridge Studies in Advanced Mathematics 11, Cambridge University Press, Cambridge, 1986.
- [3] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 (1979), 1–46.
- [4] I. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, Coxeter functors and Gabriel's theorem, Uspechi Mat. Nauk. 28 (1973), 19–38 = Russian Math. Surveys 28 (1973), 17–32.
- [5] S. Brenner and M. C. R. Butler, Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors, in: *Representation theory II*, 103–169, Lecture Notes in Math. 832, Springer, 1980.
- [6] P. Gabriel and C. Riedtmann, Group representations without groups, Comment. Math. Helv. 54 (1979), 240–287.
- [7] J. Rickard, Derived categories and stable equivalence, J. Pure Appl. Algebra 61 (1989), 303–317.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI 305-8571 JAPAN *E-mail address*: abeh@math.tsukuba.ac.jp