AUSLANDER-GORENSTEIN RESOLUTION

MITSUO HOSHINO AND HIROTAKA KOGA

ABSTRACT. We introduce the notion of Auslander-Gorenstein resolution and show that a noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution over another Auslander-Gorenstein ring.

1. INTRODUCTION

1.1. Notation. Let A be a ring. We denote by Mod-A the category of right A-modules and by mod-A the full subcategory of Mod-A consisting of finitely presented modules. We denote by \mathcal{P}_A the full subcategory of mod-A consisting of projective modules. We denote by A^{op} the opposite ring of A and consider left A-modules as right A^{op} -modules. In particular, we denote by $\text{Hom}_A(-, -)$ (resp., $\text{Hom}_{A^{\text{op}}}(-, -)$) the set of homomorphisms in Mod-A (resp., Mod- A^{op}). Sometimes, we use the notation M_A (resp., $_AM$) to stress that the module M considered is a right (resp., left) A-module. We denote by $\text{Hom}^{\bullet}(-, -)$ the associated single complex of the double hom complex. As usual, we consider modules as complexes concentrated in degree zero. For an object X of an additive category A we denote by add(X) the full subcategory of A consisting of direct summands of finite direct sums of copies of X. For a commutative ring R, we denote by Spec(R) the set of prime ideals of R. For each $\mathfrak{p} \in \text{Spec}(R)$ we denote by $(-)_{\mathfrak{p}}$ the localization at \mathfrak{p} and for each $M \in \text{Mod-}R$ we denote by $\text{Supp}_R(M)$ the set of $\mathfrak{p} \in \text{Spec}(R)$ with $M_{\mathfrak{p}} \neq 0$.

1.2. Introduction. In this note, a noetherian ring A is a ring which is left and right noetherian, and a noetherian R-algebra A is a ring endowed with a ring homomorphism $R \to A$, with R a commutative noetherian ring, whose image is contained in the center of A and A is finitely generated as an R-module. Note that a noetherian algebra is a noetherian ring.

Let R be a commutative Gorenstein local ring and A a noetherian R-algebra with $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $i \neq 0$. Set $\Omega = \operatorname{Hom}_{R}(A, R)$. Then proj dim ${}_{A}\Omega < \infty$ and proj dim $\Omega_{A} < \infty$ if and only if Ω_{A} is a tilting module in the sense of [12] (see Remark 4). In Section 2, we will show that inj dim ${}_{A}A \leq \dim R + 1$ if and only if inj dim $A_{A} \leq \dim R + 1$ (Theorem 5). In case inj dim $A_{A} = \dim R$, such an algebra A is called a Gorenstein algebra and extensively studied in [10]. In particular, a Gorenstein algebra is an Auslander-Gorenstein ring (see Definition 9). On the other hand, even if A is an Auslander-Gorenstein ring, it may happen that inj dim $A_{A} \neq \dim R$. For instance, if $A = \operatorname{T}_{m}(R)$, the ring of $m \times m$ upper triangular matrices over R, for $m \geq 2$, then A is an Auslander-Gorenstein ring with inj dim $A_{A} = \dim R + 1$ (see Example 16). Also, consider the case where R is a complete Gorenstein local ring of dimension one

The detailed version of this paper will be submitted for publication elsewhere.

and Λ is a noetherian R-algebra with $\operatorname{Ext}_{R}^{i}(\Lambda, R) = 0$ for $i \neq 0$. Denote by \mathcal{L}_{Λ} the full subcategory of mod- Λ consisting of modules X with $\operatorname{Ext}_{R}^{i}(X, R) = 0$ for $i \neq 0$ and assume that $\mathcal{L}_{\Lambda} = \operatorname{add}(M)$ with $M \in \operatorname{mod}-\Lambda$ non-projective. Then we know from [3] that $A = \operatorname{End}_{\Lambda}(M)$ is an Auslander-Gorenstein ring of global dimension two (see Example 15). These examples can be formulated as follows. If Ω admits a projective resolution $0 \to P^{-1} \to P^{0} \to \Omega \to 0$ in mod- A^{op} with $P^{0} \in \operatorname{add}(\Omega)$, then A is an Auslander-Gorenstein ring with inj dim $A_{A} \leq \dim R + 1$ (see Example 14), the converse of which holds true if R is complete (see Proposition 7).

Consider the case where Ω_A is a tilting module of arbitrary finite projective dimension. Take a projective resolution $P^{\bullet} \to \Omega$ in mod- A^{op} . Then, setting $Q^{\bullet} = \text{Hom}_{R}^{\bullet}(P^{\bullet}, R)$, we have a right resolution $A \to Q^{\bullet}$ in mod-A such that every $Q^{i} \in \text{mod-}R$ is a reflexive module with $\operatorname{Ext}_{R}^{j}(\operatorname{Hom}_{R}(Q^{i}, R), R) = 0$ for $j \neq 0, \oplus_{i \geq 0} \operatorname{Hom}_{R}(Q^{i}, R) \in \operatorname{mod}_{A^{\operatorname{op}}}$ is a projective generator and proj dim $Q^i < \infty$ in mod-A for all $i \ge 0$ (Remark 6). We will show that A is an Auslander-Gorenstein ring if proj dim $Q^i \leq i$ in mod-A for all $i \geq 0$ and that the converse holds true if R is complete and $P^{\bullet} \to \Omega$ is a minimal projective resolution (Proposition 7). In Section 3, formulating these facts, we will introduce the notion of Auslander-Gorenstein resolution. Let R, A be noetherian rings. In this note, a right resolution $0 \to A \to Q^0 \to \cdots \to Q^m \to 0$ in Mod-A is said to be an Auslander-Gorenstein resolution of A over R if the following conditions are satisfied: (1) every Q^i is an R-A-bimodule; (2) every $Q^i \in \text{Mod-}R^{\text{op}}$ is a finitely generated reflexive module with $\operatorname{Ext}_{R}^{j}(\operatorname{Hom}_{R^{\operatorname{op}}}(Q^{i}, R), R) = 0 \text{ for } j \neq 0; (3) \oplus_{i \geq 0} \operatorname{Hom}_{R^{\operatorname{op}}}(Q^{i}, R) \in \operatorname{Mod}_{A^{\operatorname{op}}}$ is faithfully flat; and (4) flat dim $Q^i \leq i$ in Mod-A for all $i \geq 0$. We will show that A is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution over R and if R is an Auslander-Gorenstein ring (Theorem 13). In Section 4, we will provide several examples of Auslander-Gorenstein resolution.

We refer to [6], [7], [2], [9] and so on for information on Auslander-Gorenstein rings. Also, we refer to [8] for standard homological algebra, to [11] for standard commutative ring theory.

2. Auslander-Gorenstein Algebras

Throughout this section, R is a commutative noetherian ring with a minimal injective resolution $R \to I^{\bullet}$ and A is a noetherian R-algebra such that $R_{\mathfrak{p}}$ is Gorenstein for all $\mathfrak{p} \in \operatorname{Supp}_{R}(A)$ and $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $i \neq 0$. Set $\Omega = \operatorname{Hom}_{R}(A, R)$.

In this section, assuming R being a complete Gorenstein local ring, we will provide a necessary and sufficient condition for A to be an Auslander-Gorenstein ring (see Definition 9 below). We refer to [5] for commutative Gorenstein rings.

Definition 1 ([4]). A family of idempotents $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is said to be orthogonal if $e_{\lambda}e_{\mu} = 0$ unless $\lambda = \mu$. An idempotent $e \in A$ is said to be primitive if eA_A is indecomposable and to be local if $eAe \cong \operatorname{End}_A(eA)$ is local. A ring A is said to be semiperfect if $1 = e_1 + \cdots + e_n$ in A with the e_i orthogonal local idempotents.

Remark 2. Assume that R is a complete local ring. Then every noetherian R-algebra A is semiperfect.

Definition 3 ([12]). A module $T \in Mod-A$ is said to be a tilting module if for some integer $m \ge 0$ the following conditions are satisfied:

- (1) T admits a projective resolution $0 \to P^{-m} \to \cdots \to P^{-1} \to P^0 \to T \to 0$ in Mod-A with $P^{-i} \in \mathcal{P}_A$ for all $i \ge 0$.
- (2) $\operatorname{Ext}_{A}^{i}(T,T) = 0$ for $i \neq 0$.
- (3) A admits a right resolution $0 \to A \to T^0 \to T^1 \to \cdots \to T^m \to 0$ in Mod-A with $T^i \in \operatorname{add}(T)$ for all $i \ge 0$.

Remark 4. The following hold:

- (1) A has Gorenstein dimension zero as an *R*-module, i.e., $A \xrightarrow{\sim} \operatorname{Hom}_R(\Omega, R)$ and $\operatorname{Ext}^i_R(\Omega, R) = 0$ for $i \neq 0$.
- (2) $A \xrightarrow{\sim} \operatorname{End}_A(\Omega)$ and $A \xrightarrow{\sim} \operatorname{End}_{A^{\operatorname{op}}}(\Omega)^{\operatorname{op}}$ canonically.
- (3) $\operatorname{Ext}_{A}^{i}(\Omega, \Omega) = \operatorname{Ext}_{A^{\operatorname{op}}}^{i}(\Omega, \Omega) = 0 \text{ for } i \neq 0.$
- (4) The following are equivalent:
 - (i) proj dim $\Omega_A < \infty$ and proj dim $_A\Omega < \infty$;
 - (ii) Ω_A is a tilting module with proj dim $_A\Omega = \text{proj} \dim \Omega_A$;
 - (iii) inj dim $_{A}A =$ inj dim $A_{A} < \infty$.

Theorem 5. Assume that R is a Gorenstein local ring. Then the following are equivalent:

- (1) inj dim $A_A \leq \dim R + 1$.
- (2) inj dim $_AA \leq \dim R + 1.$

Throughout the rest of this section, we assume that R is a Gorenstein local ring and that proj dim ${}_{A}\Omega$ = proj dim $\Omega_{A} = m < \infty$. Take a projective resolution $P^{\bullet} \to \Omega$ in mod- A^{op} and set $Q^{\bullet} = \text{Hom}_{R}(P^{\bullet}, R)$. Then we have a right resolution $0 \to A \to Q^{0} \to$ $\cdots \to Q^{m} \to 0$ in mod-A with $Q^{i} = \text{Hom}_{R}(P^{-i}, R) \in \text{add}(\Omega)$ for all $i \ge 0$. Recall that a module $M \in \text{Mod-}A$ is said to be reflexive if the canonical homomorphism

$$M \to \operatorname{Hom}_{A^{\operatorname{op}}}(\operatorname{Hom}_A(M, A), A), x \mapsto (f \mapsto f(x))$$

is an isomorphism.

Remark 6. The following hold:

- (1) Every $Q^i \in \text{mod-}R$ is a reflexive module with $\text{Ext}_R^j(\text{Hom}_R(Q^i, R), R) = 0$ for $j \neq 0$.
- (2) $\oplus_{i\geq 0} \operatorname{Hom}_R(Q^i, R) \in \operatorname{mod} A^{\operatorname{op}}$ is a projective generator.
- (3) proj dim $Q^i < \infty$ in mod-A for all $i \ge 0$.

In the following, we assume further that R is complete and that $P^{\bullet} \to \Omega$ is a minimal projective resolution. Let $A \to E^{\bullet}$ be a minimal injective resolution in Mod-A.

In the next proposition, the implication $(1) \Rightarrow (2)$ holds true without the completeness of R.

Proposition 7. The following are equivalent:

- (1) proj dim $Q^i \leq i$ in mod-A for all $i \geq 0$.
- (2) flat dim $E^n \leq n$ in Mod-A for all $n \geq 0$.

3. Auslander-Gorenstein Resolution

In this section, formulating Remark 6 and Proposition 7, we will introduce the notion of Auslander-Gorenstein resolution and show that a noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution over another Auslander-Gorenstein ring.

We start by recalling the Auslander condition. In the following, Λ stands for an arbitrary noetherian ring.

Proposition 8 (Auslander). For any $n \ge 0$ the following are equivalent:

- (1) In a minimal injective resolution $\Lambda \to I^{\bullet}$ in Mod- Λ , flat dim $I^i \leq i$ for all $0 \leq i \leq n$.
- (2) In a minimal injective resolution $\Lambda \to J^{\bullet}$ in Mod- Λ^{op} , flat dim $J^i \leq i$ for all $0 \leq i \leq n$.
- (3) For any $1 \le i \le n+1$, any $M \in \text{mod}-\Lambda$ and any submodule X of $\text{Ext}^{i}_{\Lambda}(M,\Lambda) \in \text{mod}-\Lambda^{\text{op}}$ we have $\text{Ext}^{j}_{\Lambda^{\text{op}}}(X,\Lambda) = 0$ for all $0 \le j < i$.
- (4) For any $1 \le i \le n+1$, any $X \in \text{mod}-\Lambda^{\text{op}}$ and any submodule M of $\text{Ext}^{i}_{\Lambda^{\text{op}}}(X,\Lambda) \in \text{mod}-\Lambda$ we have $\text{Ext}^{j}_{\Lambda}(M,\Lambda) = 0$ for all $0 \le j < i$.

Definition 9 ([6]). We say that Λ satisfies the Auslander condition if it satisfies the equivalent conditions in Proposition 8 for all $n \geq 0$, and that Λ is an Auslander-Gorenstein ring if inj dim $_{\Lambda}\Lambda =$ inj dim $\Lambda_{\Lambda} < \infty$ and if it satisfies the Auslander condition.

Definition 10. We denote by \mathcal{G}_{Λ} the full subcategory of mod- Λ consisting of reflexive modules $M \in \text{mod-}\Lambda$ with $\text{Ext}^{i}_{\Lambda \text{op}}(\text{Hom}_{\Lambda}(M, \Lambda), \Lambda) = 0$ for $i \neq 0$.

Throughout the rest of this section, R and A are noetherian rings. We do not require the existence of a ring homomorphism $R \to A$. Also, even if we have a ring homomorphism $R \to A$ with R commutative, the image of which may fail to be contained in the center of A (cf. [1]).

Definition 11. A right resolution $0 \to A \to Q^0 \to \cdots \to Q^m \to 0$ in Mod-A is said to be a Gorenstein resolution of A over R if the following conditions are satisfied:

- (1) Every Q^i is an *R*-*A*-bimodule.
- (2) $Q^i \in \mathcal{G}_{R^{\mathrm{op}}}$ in Mod- R^{op} for all $i \geq 0$.
- (3) $\oplus_{i>0} \operatorname{Hom}_{R^{\operatorname{op}}}(Q^i, R) \in \operatorname{Mod}_{A^{\operatorname{op}}}$ is faithfully flat.
- (4) flat dim $Q^i < \infty$ in Mod-A for all $i \ge 0$.

Definition 12. A Gorenstein resolution $0 \to A \to Q^0 \to \cdots \to Q^m \to 0$ of A over R is said to be an Auslander-Gorenstein resolution if the following stronger condition is satisfied:

(4)' flat dim $Q^i \leq i$ in Mod-A for all $i \geq 0$.

Theorem 13. Assume that A admits a Gorenstein resolution

$$0 \to A \to Q^0 \to \dots \to Q^m \to 0$$

over R and that inj dim $_{R}R = inj$ dim $R_{R} = d < \infty$. Then the following hold:

(1) For an injective resolution $R \to I^{\bullet}$ in Mod-R we have an injective resolution $A \to E^{\bullet}$ in Mod-A such that

$$E^n = \bigoplus_{i+j=n} I^j \otimes_R Q^i$$

for all $n \ge 0$. In particular, inj dim ${}_{A}A = \text{inj dim } A_A \le m + d$ and flat dim $E^n \le \sup\{\text{flat dim } I^j + \text{flat dim } Q^i \mid i+j=n\}$

for all $n \geq 0$.

(2) If R is an Auslander-Gorenstein ring, and if $A \to Q^{\bullet}$ is an Auslander-Gorenstein resolution, then A is an Auslander-Gorenstein ring.

In case m = 0, a Gorenstein resolution of A over R is just an R-A-bimodule Q such that $Q \cong A$ in Mod-A, $Q \in \mathcal{G}_{R^{op}}$ in Mod- R^{op} and $\operatorname{Hom}_{R^{op}}(Q, R) \in \operatorname{Mod}_{A^{op}}$ is faithfully flat. In particular, if A is a Frobenius extension of R in the sense of [1], then both A itself and $\operatorname{Hom}_R(A, R)$ are Gorenstein resolutions of A over R, where $A \cong \operatorname{Hom}_R(A, R)$ in Mod-A but $A \ncong \operatorname{Hom}_R(A, R)$ as R-A bimodules in general.

4. Examples

In this section, we will provide several examples of Auslander-Gorenstein resolution.

Example 14. Let R be a commutative noetherian ring and A a noetherian R-algebra such that $R_{\mathfrak{p}}$ is Gorenstein for all $\mathfrak{p} \in \operatorname{Supp}_{R}(A)$ and $\operatorname{Ext}_{R}^{i}(A, R) = 0$ for $i \neq 0$. Set $\Omega = \operatorname{Hom}_{R}(A, R)$ and assume that Ω admits a projective resolution $0 \to P^{-1} \to P^{0} \to \Omega \to 0$ in mod- A^{op} with $P^{0} \in \operatorname{add}(\Omega)$. Then applying $\operatorname{Hom}_{R}(-, R)$ we have a right resolution $0 \to A \to Q^{0} \to Q^{1} \to 0$ in mod-A with $Q^{0} \in \operatorname{add}(\Omega)$, where $Q^{i} = \operatorname{Hom}_{R}(P^{-i}, R)$ for $0 \leq i \leq 1$, which must be an Auslander-Gorenstein resolution of A over R.

Example 15 (cf. [3]). Let R be a complete Gorenstein local ring of dimension one and Λ a noetherian R-algebra with $\operatorname{Ext}_{R}^{i}(\Lambda, R) = 0$ for $i \neq 0$. Denote by \mathcal{L}_{Λ} the full subcategory of mod- Λ consisting of modules X with $\operatorname{Ext}_{R}^{i}(X, R) = 0$ for $i \neq 0$. It should be noted that \mathcal{L}_{Λ} is closed under submodules. Assume that $\mathcal{L}_{\Lambda} = \operatorname{add}(M)$ with $M \in \operatorname{mod-}{\Lambda}$ non-projective and set $A = \operatorname{End}_{\Lambda}(M)$.

Set $F = \operatorname{Hom}_{\Lambda}(M, -) : \mathcal{L}_{\Lambda} \xrightarrow{\sim} \mathcal{P}_A$ and $D = \operatorname{Hom}_R(-, R)$. Take a minimal projective presentation $P^{-1} \to P^0 \to DM \to 0$ in mod- $\Lambda^{\operatorname{op}}$. Applying $F \circ D$, we have an exact sequence in mod-A

$$0 \to A \to F(DP^{-1}) \xrightarrow{f} F(DP^{0}).$$

Setting $Q^0 = F(DP^{-1})$ and $Q^1 = \text{Im } f$, we have an Auslander-Gorenstein resolution of A over R.

Example 16. Let $m \ge 2$ be an integer and $A = T_m(R)$, the ring of $m \times m$ upper triangular matrices over a noetherian ring R. Namely, A is a free right R-module with a basis $\mathfrak{B} = \{e_{ij} \mid 1 \le i \le j \le m\}$ and the multiplication in A is defined subject to the following axioms: (A1) $e_{ij}e_{kl} = 0$ unless j = k and $e_{ij}e_{jk} = e_{ik}$ for all $i \le j \le k$; and (A2) xv = vx for all $x \in R$ and $v \in \mathfrak{B}$. Set $e_i = e_{ii}$ for all i. Then A is a noetherian ring with $1 = e_1 + \cdots + e_m$, where the e_i are orthogonal idempotents. We consider R as a subring of A via the injective ring homomorphism $\varphi : R \to A, x \mapsto x1$. Denote by

 $\mathfrak{B}^* = \{e_{ij}^* \mid 1 \leq i \leq j \leq m\}$ the dual basis of \mathfrak{B} for the left *R*-module $\operatorname{Hom}_R(A, R)$, i.e., we have $a = \sum_{v \in \mathfrak{B}} vv^*(a)$ for all $a \in A$. It is not difficult to check the following:

- (1) $e_1 A \xrightarrow{\sim} \operatorname{Hom}_R(Ae_m, R), a \mapsto e_{1m}^* a$ as *R*-*A*-bimodules.
- (2) For each $2 \leq i \leq m$, setting $f : e_1A \to \operatorname{Hom}_{R^{\operatorname{op}}}(Ae_{i-1}, R), a \mapsto e_{1,i-1}^*a$ and $g : e_iA \to e_1A, a \mapsto e_{1i}a$, we have an exact sequence of *R*-*A*-bimodules

$$0 \to e_i A \xrightarrow{g} e_1 A \xrightarrow{f} \operatorname{Hom}_R(Ae_{i-1}, R) \to 0.$$

(3) $\operatorname{Hom}_{R^{\operatorname{op}}}(\operatorname{Hom}_{R}(Ae_{i}, R), R) \cong Ae_{i}$ as A-R-bimodules for all $1 \leq i \leq m$. Consequently, we have an exact sequence of R-A-bimodules

$$0 \to A \to \bigoplus^m e_1 A \to \bigoplus^m_{i=2} \operatorname{Hom}_R(Ae_{i-1}, R) \to 0,$$

which is an Auslander-Gorenstein resolution of A over R.

References

- H. Abe an M. Hoshino, Frobenius extensions and tilting complexes, Algebras and Representation Theory 11 (2008), no. 3, 215–232.
- [2] K. Ajitabh, S. P. Smith and J. J. Zhang, Auslander-Gorenstein rings, Comm. Algebra 26 (1998), no. 7, 2159–2180.
- [3] M. Auslander, Isolated singularities and existence of almost split sequences, *Representation theory*, II (Ottawa, Ont., 1984), 194–242, Lecture Notes in Math., 1178, Springer, Berlin, 1986.
- [4] H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488.
- [5] H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.
- [6] J. -E. Björk, The Auslander condition on noetherian rings, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 137–173, Lecture Notes in Math., 1404, Springer, Berlin, 1989.
- J. -E. Björk and E. K. Ekström, Filtered Auslander-Gorenstein rings, Progress in Math. 92, 425–447, Birkhäuser, Boston-Basel-Berlin, 1990.
- [8] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956.
- J. Clark, Auslander-Gorenstein rings for beginners, International Symposium on Ring Theory (Kyongju, 1999), 95–115, Trends Math., Birkhäuser Boston, Boston, MA, 2001.
- [10] S. Goto and K. Nishida, Towards a theory of Bass numbers with application to Gorenstein algebras, Colloquium Math. 91 (2002), 191–253.
- [11] H. Matsumura, *Commutative Ring Theory* (M. Reid, Trans.), Cambridge Univ. Press, Cambridge, 1986 (original work in Japanese).
- [12] Y. Miyashita, Tilting modules of finite projective dimension, Math. Z. 193 (1986), no. 1, 113–146.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305-8571, JAPAN *E-mail address*: hoshino@math.tsukuba.ac.jp

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305-8571, JAPAN *E-mail address*: koga@math.tsukuba.ac.jp