THE FIRST HILBERT COEFFICIENTS OF PARAMETERS

KAZUHO OZEKI

ABSTRACT. The conjecture of Wolmer Vasconcelos [13] on the vanishing of the first Hilbert coefficient $e_Q^1(A)$ is solved affirmatively, where Q is a parameter ideal in a commutative Noetherian local ring A. Basic properties of the rings for which $e_Q^1(A)$ vanishes are derived. The invariance of $e_Q^1(A)$ for parameter ideals Q and its relationship to Buchsbaum rings are studied.

 $Key\ Words:$ commutative algebra, Cohen-Macaulay local ring, Buchsbaum local ring, Hilbert coefficient.

2000 Mathematics Subject Classification: Primary 13D40; Secondary 13H15

1. INTRODUCTION

This is based on [1, 5] a joint work with L. Ghezzi, J. Hong, T. T. Phuong, and W. V. Vasconcelos.

Let A be a commutative Noetherian local ring with the maximal ideal \mathfrak{m} and the Krull dimension $d = \dim A > 0$. Let $\ell_A(M)$ denote, for an A-module M, the length of M. Then, for each \mathfrak{m} -primary ideal I in A, we have integers $\{\mathbf{e}_I^i(A)\}_{0 \le i \le d}$ such that the equality

$$\ell_A(A/I^{n+1}) = e_I^0(A) \binom{n+d}{d} - e_I^1(A) \binom{n+d-1}{d-1} + \dots + (-1)^d e_I^d(A)$$

holds true for all integers $n \gg 0$, which we call the Hilbert coefficients of A with respect to I. We say that A is unmixed, if dim $\widehat{A}/\mathfrak{p} = d$ for every $\mathfrak{p} \in Ass \widehat{A}$, where \widehat{A} denotes the \mathfrak{m} -adic completion of A.

With this notation Wolmer V. Vasconcelos posed, exploring the vanishing of the first Hilbert coefficient $e_Q^1(A)$ for parameter ideals Q, in his lecture at the conference in Yokohama of March, 2008 the following conjecture.

Conjecture 1 ([13]). Assume that A is unmixed. Then A is a Cohen-Macaulay local ring, once $e_Q^1(A) = 0$ for some parameter ideal Q of A.

In Section 2 of the present paper we shall settle Conjecture 1 affirmatively. Here we should note that Conjecture 1 is already solved partially by [2] and [7]. Let us call those local rings A with $e_Q^1(A) = 0$ for some parameter ideals Q Vasconcelos. In Section 3 we shall explore basic properties of Vasconcelos rings. In Section 4 we will study the problem of when $e_Q^1(A)$ is constant and independent of the choice of parameter ideals Q in A. We shall show that A is a Buchsbaum ring, if A is unmixed and $e_Q^1(A)$ is constant (Theorem 12).

The detailed version of this paper has been submitted for publication elsewhere.

In what follows, unless otherwise specified, let A denote a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A$. Let $\{\mathrm{H}^{i}_{\mathfrak{m}}(*)\}_{i \in \mathbb{Z}}$ be the local cohomology functors of A with respect to the maximal ideal \mathfrak{m} .

Let Assh $A = \{ \mathfrak{p} \in Ass A \mid \dim A/\mathfrak{p} = d \}$ and let $(0) = \bigcap_{\mathfrak{p} \in Ass A} I(\mathfrak{p})$ be a primary decomposition of (0) in A with \mathfrak{p} -primary ideals $I(\mathfrak{p})$ in A. We put

$$\mathbf{U}_A(0) = \bigcap_{\mathfrak{p} \in \operatorname{Assh} A} \mathbf{I}(\mathfrak{p})$$

and call it the unmixed component of (0) in A.

2. Proof of the conjecture of Vasconcelos

The purpose of this section is to prove the following, which settles Conjecture 1 affirmatively. One of the main results of this paper is the following.

Theorem 2. Let A be unmixed. Then the following four conditions are equivalent.

- (1) A is a Cohen-Macaulay local ring.
- (2) $e_I^1(A) \ge 0$ for every \mathfrak{m} -primary ideal I in A.
- (3) $e_Q^1(A) \ge 0$ for some parameter ideal Q in A.
- (4) $e_Q^{1}(A) = 0$ for some parameter ideal Q in A.

In our proof of Theorem 2 the following facts are the key. See [3, Section 3] for the proof.

Proposition 3 ([3]). Let (A, \mathfrak{m}) be a Noetherian local ring with $d = \dim A \ge 2$, possessing the canonical module K_A . Assume that $\dim A/\mathfrak{p} = d$ for every $\mathfrak{p} \in AssA \setminus {\mathfrak{m}}$. Then the following assertions hold true.

- (1) The local cohomology module $H^1_{\mathfrak{m}}(A)$ is finitely generated.
- (2) The set $\mathcal{F} = \{ \mathfrak{p} \in \operatorname{Spec} A \mid \dim A_{\mathfrak{p}} > \operatorname{depth} A_{\mathfrak{p}} = 1 \}$ is finite.
- (3) Suppose that the residue class field $k = A/\mathfrak{m}$ of A is infinite and let I be an \mathfrak{m} primary ideal in A. Then one can choose an element $a \in I \setminus \mathfrak{m}I$ so that a is
 superficial for I and dim $A/\mathfrak{p} = d 1$ for every $\mathfrak{p} \in \operatorname{Ass}_A A/aA \setminus \{\mathfrak{m}\}$.

Proof of Theorem 2. The implication $(1) \Rightarrow (2)$ is due to [8]. The implication $(1) \Rightarrow (4)$ is well known, and $(4) \Rightarrow (3)$ and $(2) \Rightarrow (3)$ are trivial. Thus we have only to check the implication $(3) \Rightarrow (1)$. Let $Q = (a_1, a_2, \dots, a_d)$ with a system a_1, a_2, \dots, a_d of parameters in A. Enlarging the residue class field A/\mathfrak{m} of A and passing to the \mathfrak{m} -adic completion of A, we may assume that the field A/\mathfrak{m} is infinite and that A is complete. The assertion is obvious in the case where $d \leq 2$. Recall that for any Noetherian local ring (A, \mathfrak{m}) of dimension one, we have $e_Q^1(A) = -\ell_A(\mathrm{H}^0_\mathfrak{m}(A))$; see [4, Lemma 2.4 (1)], and the two-dimensional case is readily deduced from this fact via the reduction modulo some superficial element $x = a_1$ of Q; see [4, Lemma 2.2] and notice that x is A-regular.

We may assume that $d \ge 3$ and that our assertion holds true for d-1. Then we are able to choose, thanks to Proposition 3 (3), the element $x = a_1$ so that x is a superficial element of the parameter ideal Q and (the ring A/xA is not necessarily unmixed but) the unmixed component $U = U_B(0)$ of (0) in B = A/xA has finite length, whence $U = H^0_{\mathfrak{m}}(B)$. Then the d-1 dimensional local ring B/U is Cohen-Macaulay by the hypothesis of induction on d, because

$$e^{1}_{Q \cdot (B/U)}(B/U) = e^{1}_{QB}(B) = e^{1}_{Q}(A) \ge 0$$

(cf. [4, Lemma 2.2]). Hence $\mathrm{H}^{i}_{\mathfrak{m}}(B) = (0)$ for all $i \neq 0, d-1$. We now look at the long exact sequence

$$\cdots \to \operatorname{H}^{1}_{\mathfrak{m}}(A) \xrightarrow{x} \operatorname{H}^{1}_{\mathfrak{m}}(A) \to \operatorname{H}^{1}_{\mathfrak{m}}(B) \to$$
$$\cdots \to \operatorname{H}^{i-1}_{\mathfrak{m}}(B) \to \operatorname{H}^{i}_{\mathfrak{m}}(A) \xrightarrow{x} \operatorname{H}^{i}_{\mathfrak{m}}(A) \to \cdots$$
$$\cdots \to \operatorname{H}^{d-2}_{\mathfrak{m}}(B) \to \operatorname{H}^{d-1}_{\mathfrak{m}}(A) \xrightarrow{x} \operatorname{H}^{d-1}_{\mathfrak{m}}(A) \to \cdots$$

of local cohomology modules, derived from the short exact sequence

 $0 \to A \xrightarrow{x} A \to B \to 0$

of A-modules. We then have $\mathrm{H}^{i}_{\mathfrak{m}}(A) = (0)$ for all $2 \leq i \leq d-1$, since $\mathrm{H}^{i}_{\mathfrak{m}}(B) = (0)$ for all $1 \leq i \leq d-2$, while $\mathrm{H}^{1}_{\mathfrak{m}}(A) = x\mathrm{H}^{1}_{\mathfrak{m}}(A)$, since $\mathrm{H}^{1}_{\mathfrak{m}}(B) = (0)$. Consequently $\mathrm{H}^{1}_{\mathfrak{m}}(A) = (0)$, because the A-module $\mathrm{H}^{1}_{\mathfrak{m}}(A)$ is finitely generated by Proposition 2 (1). Thus A is a Cohen-Macaulay ring.

Let us give one consequence of Theorem 2.

Corollary 4 ([7]). We have $e_Q^1(A) \leq 0$ for every parameter ideals Q in A.

3. VASCONCELOS RINGS

The purpose of this section is to develop a theory of Vasconcelos rings. Let us begin with the definition.

Definition 5. We say that A is a Vasconcelos ring, if either d = 0, or d > 0 and $e_Q^1(A) = 0$ for some parameter ideal Q in A.

Here is a basic characterization of Vasconcelos rings.

Theorem 6. Suppose that $d = \dim A > 0$. Then the following four conditions are equivalent.

- (1) A is a Vasconcelos ring.
- (2) $e_Q^1(A) = 0$ for every parameter ideal Q in A.
- (3) $\widehat{A}/\mathrm{U}_{\widehat{A}}(0)$ is a Cohen-Macaulay ring and $\dim_{\widehat{A}}\mathrm{U}_{\widehat{A}}(0) \leq d-2$, where $\mathrm{U}_{\widehat{A}}(0)$ denotes the unmixed component of (0) in the \mathfrak{m} -adic completion \widehat{A} of A.
- (4) The \mathfrak{m} -adic completion \widehat{A} of A contains an ideal $I \neq \widehat{A}$ such that \widehat{A}/I is a Cohen-Macaulay ring and $\dim_{\widehat{A}} I \leq d-2$.

When this is the case, \widehat{A} is a Vasconcelos ring, $\operatorname{H}^{d-1}_{\mathfrak{m}}(A) = (0)$, and the canonical module $\operatorname{K}_{\widehat{A}}$ of \widehat{A} is a Cohen-Macaulay \widehat{A} -module.

Proof. See [1, Theorem 3.3].

Notice that condition (3) of Theorem 6 is free from parameters. Therefore, since $e_Q^1(A) = 0$ for some parameter ideal, then $e_Q^1(A) = 0$ for every parameter ideals Q in A. This is what the theorem says.

In the rest of this section, let us give some consequences of Theorem 6.

Corollary 7. Let A be a Noetherian local ring with the maximal ideal \mathfrak{m} and $d = \dim A > 0$. Let Q be a parameter ideal in A. Assume that $e_Q^i(A) = 0$ for all $1 \le i \le d$. Then A is a Cohen-Macaulay ring.

Suppose that d > 0 and let Q be a parameter ideal in A. We denote by $R = \mathcal{R}(Q)$ (resp. G = G(Q)) the Rees algebra (resp. the associated graded ring) of Q. Hence

$$R = A[Qt]$$
 and $G = \mathcal{R}'(Q)/t^{-1}\mathcal{R}'(Q),$

where t is an indeterminate over A and $\mathcal{R}'(Q) = A[Qt, t^{-1}]$. Let $\mathfrak{M} = \mathfrak{m}R + R_+$ be the graded maximal ideal in R. With this notation we have the following.

Corollary 8. The following assertions hold true.

- (1) A is a Vasconcelos ring if and only if $G_{\mathfrak{M}}$ is a Vasconcelos ring.
- (2) Suppose that A is a homomorphic image of a Cohen-Macaulay ring. Then $R_{\mathfrak{M}}$ is a Vasconcelos ring, if A is a Vasconcelos ring.

Thus Vasconcelos rings enjoy very nice properties.

4. Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters

In this section we study the problem of when $e_Q^1(A)$ is constant and independent of the choice of parameter ideals Q in A.

Here let us briefly recall the definition of Buchsbaum local rings. The readers may consult the monumental book [11] of J. Stückrad and W. Vogel for a detailed theory, some of which we shall note here for the use in this paper.

We say that our local ring A is Buchsbaum, if the difference

$$\ell_A(A/Q) - e_Q^0(A)$$

is independent of the choice of parameter ideals Q in A and is an invariant of A, which we denote by $\mathbb{I}(A)$. As is well-known, A is a Buchsbaum ring if and only if every system a_1, a_2, \dots, a_d of parameters in A forms a d-sequence in the sense of C. Huneke ([6]). When A is a Buchsbaum local ring, one has

$$\mathfrak{m} \cdot \mathrm{H}^{i}_{\mathfrak{m}}(A) = (0)$$

for all $i \neq d$, whence the local cohomology modules $\{H^i_{\mathfrak{m}}(A)\}_{i\neq d}$ are finite-dimensional vector spaces over the field A/\mathfrak{m} , and the equality

$$\mathbb{I}(A) = \sum_{i=0}^{d-1} \binom{d-1}{i} \ell_A(\mathrm{H}^i_{\mathfrak{m}}(A))$$

holds true.

We say that A is a generalized Cohen-Macaulay local ring, if all the local cohomology modules $\{H^i_{\mathfrak{m}}(A)\}_{i\neq d}$ are finitely generated. Hence every Cohen-Macaulay local ring is Buchsbaum with $\mathbb{I}(A) = 0$ and Buchsbaum local rings are generalized Cohen-Macaulay. A given Noetherian local ring A with $d = \dim A > 0$ is a generalized Cohen-Macaulay local ring if and only if

$$\mathbb{I}(A) := \sup_{Q} \{\ell_A(A/Q) - e_Q^0(A)\} < \infty,$$

where Q runs through parameter ideals in A ([10]). When this is the case, one has

$$\mathbb{I}(A) = \sum_{i=0}^{d-1} \binom{d-1}{i} \ell_A(\mathrm{H}^i_{\mathfrak{m}}(A))$$

Suppose that A is a generalized Cohen-Macaulay local ring and let Q be a parameter ideal in A. Then Q is called standard, if

$$\mathbb{I}(A) = \ell_A(A/Q) - e_Q^0(A).$$

This condition is equivalent to saying that Q is generated by a system a_1, a_2, \cdots, a_d of parameters which forms a strong d-sequence in any order ([10]).

Let

$$\Lambda = \Lambda(A) = \{ e_Q^1(A) \mid Q \text{ be a parameter ideal in } A \}.$$

Then we can ask the following questions.

Question 9. When is Λ a finite set or a singleton?

For example, our characterization of Vasconcelos rings says that $0 \in \Lambda$ if and only if $\Lambda = \{0\}.$

Let us summarize what is known about the questions, where we put $h^i(A) = \ell_A(\mathrm{H}^i_{\mathfrak{m}}(A))$ for each $i \in \mathbb{Z}$.

Proposition 10 ([4, 9]). Suppose that A is a generalized Cohen-Macaulay local ring and $d \geq 2$. Let Q be a parameter ideal in A. Then we have the following.

- (1) $e_Q^1(A) \ge -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A).$ (2) We have $e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A)$, if Q is standard.

Thanks to Proposition 10 (1) and Corollary 4, if A is a generalized Cohen-Macaulay ring then we have

$$0 \ge e_Q^1(A) \ge -\sum_{i=1}^{d-1} \binom{d-2}{i-1} h^i(A)$$

for every parameter ideal Q in A. Hence Λ is finite. If A is a Buchsbaum ring then, since all parameter ideals in A are standard, we have

$$e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A)$$

for every parameter ideal Q in A. Thus, we have

$$\Lambda = \left\{ -\sum_{i=1}^{d-1} \binom{d-2}{i-1} h^i(A) \right\},\,$$

so that Λ is a singleton. It is natural to guess the converse is also true.

Our answer is the following.

Theorem 11. Suppose that $d \geq 2$ and A is unmixed. Assume that Λ is a finite set and put $\ell = -\min \Lambda$. Then $\mathfrak{m}^{\ell} \mathrm{H}^{i}_{\mathfrak{m}}(A) = (0)$ for every $i \neq d$. Hence $\mathrm{H}^{i}_{\mathfrak{m}}(A)$ is a finitely generated A-module for every $i \neq d$, so that A is a generalized Cohen-Macaulay local ring.

The main result of this section is stated as follows.

Theorem 12. Suppose that $d = \dim A \ge 2$ and A is unmixed. Then the following two conditions are equivalent.

- (1) A is a Buchsbaum local ring.
- (2) The first Hilbert coefficients $e_Q^1(A)$ of A are constant and independent of the choice of parameter ideals Q in A.

When this is the case, one has the equality

$$e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A)$$

for every parameter ideal Q in A.

Thus Buchsbaum rings are characterized in terms of consistency of the first Hilbert coefficients of parameters. This is a new characterization of Buchsbaum rings.

The following result is a key for the proof of Theorem 12.

Theorem 13. Suppose that A is a generalized Cohen-Macaulay local ring with $d = \dim A \ge 2$ and depth A > 0. Let Q be a parameter ideal in A. Then the following two conditions are equivalent.

(1) Q is a standard parameter ideal in A.

(2)
$$e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A).$$

In our proof of Theorem 13 we need the following result. Let

$$U(a) = \bigcup_{n \ge 0} \left[(a) :_A \mathfrak{m}^n \right]$$

for each $a \in A$.

Proposition 14. Suppose that A is a generalized Cohen-Macaulay local ring with $d = \dim A \geq 3$ and depth A > 0. Let $Q = (a_1, a_2, \dots, a_d)$ be a parameter ideal in A. Assume that $(a_1, a_d) \operatorname{H}^1_{\mathfrak{m}}(A) = (0)$ and that the parameter ideal $(a_1, a_2, \dots, a_{d-1}) \cdot [A/\operatorname{U}(a_d)]$ is standard in the generalized Cohen-Macaulay local ring $A/\operatorname{U}(a_d)$. Then

$$\mathrm{U}(a_1) \cap Q = (a_1).$$

Proof. Since $U(a_1) \cap Q = (a_1) + [U(a_1) \cap (a_2, a_3, \dots, a_d)]$, we have only to show $U(a_1) \cap (a_2, a_3, \dots, a_d) \subset (a_1)$.

Let $x \in U(a_1) \cap (a_2, a_3, \dots, a_d)$ and put $\overline{A} = A/U(a_d)$. Let \overline{x} and $\overline{a_i}$ respectively denote the images of x and a_i in \overline{A} . Then we have

$$\overline{x} \in \mathrm{U}(\overline{a_1}) \cap (\overline{a_2}, \overline{a_3}, \cdots, \overline{a_{d-1}}) \subseteq (\overline{a_1}),$$

because $U(\overline{a_1}) = (\overline{a_1}) :_{\overline{A}} \overline{a_2}$ and $\overline{a_2}, \overline{a_3}, \cdots, \overline{a_{d-1}}$ forms a *d*-sequence in \overline{A} (recall that by our assumption $(\overline{a_2}, \overline{a_3}, \cdots, \overline{a_{d-1}})$ is a standard parameter ideal in the generalized Cohen-Macaulay local ring \overline{A}). Hence

$$x \in [(a_1) + U(a_d)] \cap U(a_1) = (a_1) + [U(a_1) \cap U(a_d)]$$

Let x = y + z with $y \in (a_1)$ and $z \in U(a_1) \cap U(a_d)$. We will show that $z \in (a_1)$.

Since $a_1 H^1_{\mathfrak{m}}(A) = (0)$ and a_1 is A-regular, we have

$$\mathrm{H}^{1}_{\mathfrak{m}}(A) \cong \mathrm{H}^{0}_{\mathfrak{m}}(A/(a_{1})) = \mathrm{U}(a_{1})/(a_{1}),$$

whence $a_d U(a_1) \subseteq (a_1)$, because $a_d H^1_{\mathfrak{m}}(A) = (0)$ by our assumption. By the same argument applied to a_d we get $a_1 U(a_d) \subseteq (a_d)$. Hence $a_1 z \in (a_d)$ and $a_d z \in (a_1)$. Let us now write

$$a_1 z = a_d u$$
 and $a_d z = a_1 v$ with $u, v \in A$.

Then, since $a_1a_dz = a_d^2u = a_1^2v$, we have $u \in U(a_1^2)$. Notice that

$$\mathrm{H}^{1}_{\mathfrak{m}}(A) \cong \mathrm{H}^{0}_{\mathfrak{m}}(A/(a_{1}^{2})) = \mathrm{U}(a_{1}^{2})/(a_{1}^{2}),$$

since $a_1^2 H_{\mathfrak{m}}^1(A) = (0)$ and a_1^2 is A-regular. Therefore $a_d U(a_1^2) \subseteq (a_1^2)$, because $a_d H_{\mathfrak{m}}^1(A) = (0)$. Hence $a_1 a_d z = a_d \cdot a_d u \in (a_1^2 a_d)$, so that $z \in (a_1)$. Thus $x = y + z \in (a_1)$, as is claimed.

To prove Theorem 13 we also need the following lemma.

Lemma 15 ([1, Lemma 4.5]). Suppose that A is a generalized Cohen-Macaulay local ring with $d = \dim A \ge 2$ and depth A > 0. Let Q be a parameter ideal in A and assume that $e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A)$. Then $QH_{\mathfrak{m}}^i(A) = (0)$ for all $1 \le i \le d-1$.

We are now in a position to prove Theorem 13.

Proof of Theorem 13. Enlarging the residue class field A/\mathfrak{m} of A if necessary, we may assume that the field A/\mathfrak{m} is infinite. Let $Q = (a_1, a_2, \dots, a_d)$, where each a_j is superficial for the ideal Q. Recall that $QH^i_{\mathfrak{m}}(A) = (0)$ for all $1 \leq i \leq d-1$ by Lemma 15. Hence Q is standard, if d = 2 ([12, Corollary 3.7]).

Assume that $d \ge 3$ and that our assertion holds true for d-1. Let $B = A/(a_j)$ with $1 \le j \le d$ and put $\overline{A} = B/\operatorname{H}^0_{\mathfrak{m}}(B) (= A/\operatorname{U}(a_j))$. Then $\operatorname{H}^i_{\mathfrak{m}}(\overline{A}) \cong \operatorname{H}^i_{\mathfrak{m}}(B)$ for all $i \ge 1$. On the other hand, since $a_j \operatorname{H}^i_{\mathfrak{m}}(A) = (0)$ for $1 \le i \le d-1$ and a_j is A-regular, we get for each $0 \le i \le d-2$ the short exact sequence

$$0 \to \mathrm{H}^{i}_{\mathfrak{m}}(A) \to \mathrm{H}^{i}_{\mathfrak{m}}(B) \to \mathrm{H}^{i+1}_{\mathfrak{m}}(A) \to 0$$

of local cohomology modules. Consequently we get $\mathbb{I}(A) = \mathbb{I}(B)$ and

$$\begin{aligned} \mathbf{e}_{Q}^{1}(A) &= \mathbf{e}_{QB}^{1}(B) &= \mathbf{e}_{Q\overline{A}}^{1}(\overline{A}) \\ &\geq -\sum_{i=1}^{d-2} \binom{d-3}{i-1} h^{i}(\overline{A}) \\ &= -\sum_{i=1}^{d-2} \binom{d-3}{i-1} h^{i}(B) \\ &= -\sum_{i=1}^{d-2} \binom{d-3}{i-1} [h^{i}(A) + h^{i+1}(A)] \\ &= -\sum_{i=1}^{d-1} \binom{d-2}{i-1} h^{i}(A) \\ &= \mathbf{e}_{Q}^{1}(A). \end{aligned}$$

Hence the equality

$$\mathbf{e}_{Q\overline{A}}^{1}(\overline{A}) = -\sum_{i=1}^{d-2} \binom{d-3}{i-1} h^{i}(\overline{A})$$

holds true for the parameter ideal $Q\overline{A}$ in the generalized Cohen-Macaulay local ring \overline{A} . Thus the hypothesis of induction on d yields that $Q \cdot [A/U(a_j)]$ is a standard parameter ideal in $A/U(a_j)$ for every $1 \leq j \leq d$. Therefore $U(a_1) \cap Q = (a_1)$ by Proposition 14, so that $Q \cdot [A/(a_1)]$ is a standard parameter ideal in $A/(a_1)$ ([12, Corollary 2.3]), since $Q \cdot [A/U(a_1)]$ is a standard parameter ideal for the local ring $A/U(a_1)$. Thus Q is a standard parameter ideal in A ([12, Corollary 2.1]), since $\mathbb{I}(A) = \mathbb{I}(A/(a_1))$.

We are now ready to prove Theorem 12.

Proof of Theorem 12. We have only to show the implication $(2) \Rightarrow (1)$. Since $\sharp \Lambda = 1$, by Theorem 11, A is a generalized Cohen-Macaulay local ring, so that

$$\Lambda = \left\{ -\sum_{i=1}^{d-1} \binom{d-2}{i-1} h^i(A) \right\}$$

by Proposition 10 (2). Hence by Theorem 13 every parameter ideal Q is standard in A, because $e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(A)$, so that A is a Buchsbaum local ring.

Unless A is unmixed, Theorem 12 is no more true, even if $e_Q^1(A) = 0$ for every parameter ideal Q in A (cf. [1, Theorem 2.7]). Let us note one example.

Example 16. Let R be a regular local ring with the maximal ideal n and $d = \dim R \ge 3$. Let X_1, X_2, \dots, X_d be a regular system of parameters of R. We put $\mathfrak{p} = (X_1, X_2, \dots, X_{d-1})$ and $D = R/\mathfrak{p}$. Then D is a DVR. Let $A = R \ltimes D$ denote the idealization of D over R. Then A is a Noetherian local ring with the maximal ideal $\mathfrak{m} = \mathfrak{n} \times D$ and dim A = d. Let Q be a parameter ideal in A and put $\mathfrak{q} = \varphi(Q)$, where $\varphi : A \to R, \varphi(a, x) = a$ denotes the projection map. We then have

$$\ell_A(A/Q^{n+1}) = \ell_R(R/\mathfrak{q}^{n+1}) + \ell_D(D/\mathfrak{q}^{n+1}D)$$

= $\ell_R(R/\mathfrak{q}) \cdot \binom{n+d}{d} + \ell_D(D/\mathfrak{q}D) \cdot \binom{n+1}{1}$
= $e_{\mathfrak{q}}^0(R) \binom{n+d}{d} + e_{\mathfrak{q}D}^0(D) \binom{n+1}{1}$

for all integers $n \ge 0$, so that $e_Q^0(A) = e_q^0(R)$, $e_Q^{d-1}(A) = (-1)^{d-1}e_{qD}^0(D)$, and $e_Q^i(A) = 0$ if $i \ne 0, d-1$. Hence $e_Q^1(A)$ is constant but A is not even a generalized Cohen-Macaulay local ring, because $H^1_{\mathfrak{m}}(A) \cong H^1_{\mathfrak{m}}(D)$ is not a finitely generated A-module. The local ring A is not unmixed, although depth A = 1.

We close this paper with a characterization of Noetherian local rings A possessing $\sharp \Lambda = 1$. Let us note the following.

Proposition 17 ([1, Proposition 4.7]). Suppose that $d = \dim A \ge 2$ and let U be the unmixed component of the ideal (0) in A. Assume that there exists an integer $t \ge 0$

such that $e_Q^1(A) = -t$ for every parameter ideal Q in A. Then $\dim_A U \leq d-2$ and $e_{\mathfrak{q}}^1(A/U) = -t$ for every parameter ideal \mathfrak{q} in A/U.

The goal of this paper is the following.

Theorem 18. Suppose that $d = \dim A \ge 2$. Then the following two conditions are equivalent.

- (1) $\sharp \Lambda = 1.$
- (2) Let $U = U_{\widehat{A}}(0)$ be the unmixed component of the ideal (0) in the m-adic completion \widehat{A} of A. Then $\dim_{\widehat{A}} U \leq d-2$ and \widehat{A}/U is a Buchsbaum local ring.

When this is the case, one has the equality

$$e_Q^1(A) = -\sum_{i=1}^{d-1} {d-2 \choose i-1} h^i(\widehat{A}/U)$$

for every parameter ideal Q in A.

Proof. (1) \Rightarrow (2) For every parameter ideal \mathfrak{q} of \widehat{A} we have $\mathfrak{q} = (\mathfrak{q} \cap A)\widehat{A}$, so that $\mathfrak{q} \cap A$ is a parameter ideal in A. Hence $\Lambda(\widehat{A}) = \Lambda$ and so the implication follows from Theorem 12 and Proposition 17.

(2) \Rightarrow (1) Since dim_{\hat{A}} $U \leq d-2$ and \hat{A}/U is a Buchsbaum local ring, we get $\#\Lambda(\hat{A}) = 1$ by [1, Lemma 2.4 (c)], whence $\#\Lambda = 1$.

See Proposition 10(2) and 17 for the last assertion.

References

- L. Ghezzi, S. Goto, J. Hong, K. Ozeki, T. T. Phuong, and W. V. Vasconcelos, *Cohen-Macaulayness versus the vanishing of the first Hilbert coefficient of parameters*, J. London Math. Soc., 81 (2010), 679–695.
- [2] L. Ghezzi, J.-Y. Hong, W. V. Vasconcelos, The signature of the Chern coefficients of local rings, Math. Ress. Lett. 16 (2009), no. 2, 279–289.
- [3] S. Goto and Y. Nakamura, Multiplicities and Tight closures of parameters, J. Algebra, 244 (2001), 302–311.
- [4] S. Goto and K. Nishida, Hilbert coefficients and Buchsbaumness of associated graded rings, J. Pure and Appl. Algebra, Vol 181 (2003), 61–74.
- [5] S. Goto and K. Ozeki, Buchsbaumness in local rings possessing constant first Hilbert coefficients of parameters, Nagoya Math. J., 199 (2010), 95–105.
- [6] C. Huneke, On the Symmetric and Rees Algebra of an Ideal Generated by a d-sequence, J. Algebra., 62 (1980), 268–275.
- [7] M. Mandal and J. K. Verma, On the Chern number of an ideal, Proc. Amer. Math. Soc., 138 (2010), 1995–1999.
- [8] D. G. Northcott, A note on the coefficients of the abstract Hilbert function, J. London Math. Soc. 35 (1960) 209-214.
- [9] P. Schenzel, Multiplizitäten in verallgemeinerten Cohen-Macaulay-Moduln, Math. Nachr., 88 (1979), 295–306.
- [10] P. Schenzel, N. V. Trung, and N. T. Cuong, Verallgemeinerte Cohen-Macaulay-Moduln, Math. Nachr., 85 (1978), 57–73.
- [11] J. Stückrad and W. Vogel, Toward a theory of Buchsbaum singularities, Amer. J. Math., 100 (1978), no. 4, 727–746.
- [12] N. V. Trung, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math. J., 102, 1986, 1–49.

[13] W. V. Vasconcelos, The Chern coefficients of local rings, Michigan Math. J., 57 (2008), 725–743.

MEIJI INSTITUTE FOR ADVANCED STUDY OF MATHEMATICAL SCIENCES MEIJI UNIVERSITY 1-1-1 HIGASHI-MITA, TAMA-KU, KAWASAKI 214-8571, JAPAN *Email:* kozeki@math.meiji.ac.jp