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Abstract. It is well known that any indecomposable module over a generalized uniserial
ring is uniserial, therefore it is local as well as uniform. This motivated Tachikawa
(1959) to study rings satisfying the following conditions. A ring R is said to satisfy
condition (*) if it is artinian and every finitely generated indecomposable right R-module
is local. A ring R is said to satisfy condition (**), if it is artinian and every finitely
generated indecomposable right R-module is uniform. He had given a characterisation
of condition (**). If a ring R satisfies (*), it admits a finitely generated injective co-
generator. Consider any artinian ring R such that mod-R admits a finitely generated
injective co-generator M , Let Q = End(M) acting on left. By Tachikawa, every finitely
generated indecomposable right R-module is local if and only if every finitely generated
indecomposable left Q-module is uniform. In the present note, we give a characterisation
of condition (**) in terms of the structure of the right ideals of the given ring. The
approach in the present paper is quite different from that followed by Tachikawa. Let
M be a uniform module of finte composition length, D = End(soc(M)) and D′ the
subdivision ring of D consisting of those σ ∈ D, which have some extensions in End(M).
Then the pair (D, D′) is called division ring pair associate (in short drpa) of M . An
outline of the proof the following result is given. A ring R with Jacobson radical J
satisfies (**) if and only if it satisfies the following conditions: (1) R is a both sided
artinian, right serial ring; (2) for any three indecomposable idempotents e, f , g ∈ R
with eJ , fJ , gJ non-zero the following hold: (i) If (D, D′) is the drpa of eR

eJ2 , then the
left dimension and the right dimensions of D over D′ both are less than or equal to 2;
(ii) if e, f are non-isomorphic and eJ

eJ2
∼= fJ

fJ2 , then eJ2 = 0 or fJ2 = 0; (iii) if e, f

are non-isomorphic and eJ
eJ2

∼= fJ
fJ2

∼= gJ
gJ2 , then g is isomorphic to e or f ; (iv) if eR

eJ2 is
not quasi-injective, then eJ2 = 0 and eJ

eJ2 � fJ
fJ2 , whenever e is not isomorphic to f .

First step in the proof is to develop some techniques of construction of indecomposable
modules which may be uniform or may not be uniform. There after a theorem involving
lifting of an isomorphisms between simple homomorphic images of two finitely generated
uniform modules is established, which is used to give the proof of the main theorem.

Key Words: Right serial rings, uniserial modules, quasi-injective, quasi-projective
modules.
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Introduction

We consider the following conditions on a ring R. (**) R is a both sided artinian ring
such that every finitely generated indecomposable right R-module is uniform. And its
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dual condition (*) R is both sided artinian such that every finitely generated indecom-
posable right module is local. These conditions have been studied by Tachikawa [7]. In
[7, Theorem 5.3], a characterization of a ring satisfying (**) on the left is given. Here
we discuss another approach to the study of rings satisfying these conditions and give a
characterization of rings satisfying (**) in terms of the structure of its right ideals. The
main purpose is to outline the proof of the main theorem, therefore. The main steps
in the proof of the main theorem are given detail, but are stated without proof. In the
process we also determine the structure of indecomposable modules over a ring satisfying
(**). Throughout R is an artinian ring. In Section 1, some concepts and results proved
in [5] are collected, in particular the concept of division ring pair associate of a uniform
module of finite composition length is given in Definition 1.2. In Section 2, the ring of
endomorphisms of a finite direct sum of uniform modules of finite composition lengths is
investigated. These results can be of independent interest. The study of condition (**)
is started in Section 3. To start with a lifting property of isomorphism between simple
homomorphic images of uniform modules over a ring R satisfying (**) is proved. If an
artinian ring R satisfies this lifting property, then R is said to satisfy condition weak
(**). In Proposition 3.6, it is proved that any ring satisfying weak (**) is right serial.
The concept of a critical uniserial submodule of a uniform module over an artinian ring
is given in Definition 3.3. In Proposition 3.4, it is proved that if a ring R satisfies weak
(**), then a uniform right R-module is either uniserial or its critical uniserial submodule
is simple. In Proposition 3.9 and Theorem 3.10, some properties and relations between
indecomposable summand of RR, where R satisfies weak (**) are proved, which form a
basis for giving a characterization of rings satisfying (**). In Section 4, a condition (***)
motivated by results in Section 3, is introduced, which is satisfied by any ring satisfying
(**). The structure of indecomposable modules over a ring R satisfying (**) is given
in Theorems 4.6 and 4.7. The main result is given in Theorem 4.12. The whole paper
depends on various constructions of indecomposable, non-uniform modules.

1. Preliminaries

All the modules considered here are unitary right modules, unless otherwise stated.
For any ring R, its Jacobson radical is denoted by J(R) (or simply by J). For any
module M , E(M), End(M), d(M), J(M) denote its injective hull, ring of endomorphisms,
composition length, radical of M respectively. By a summand of a module M , we shall
mean a summand other than 0, M . If a module M = A ⊕ B, the resulting projection of
M on A will be sometime denoted by πA. The symbols A 6 B (A < B) will mean that
A is a submodule of a module B ( A is a submodule of a module B, but A ̸= B ). A
non-zero element x of a module MR is called a local (uniform) element, if xR is a local
(uniform) module. A ring R is said to be artinian, if it is right artinian as well as left
artinian. Let S, T be two simple modules over a ring R. Then T is called a predecessor
of S and S is called a successor of T , if there exists a uniserial module AR such that d(A)
= 2, and for the maximal submodule B of A , S ∼= B, T ∼= A

B
. A module M is said to be

uniserial, if the family of its submodules is linearly ordered under inclusion. If a ring R
is such that RR is a finite direct sum of uniserial modules, then R is called a right serial
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ring. An artinian ring that is right and left serial is called a generalized uniserial ring.
For various concepts on rings and modules one may consult [1] or [8].

The following is a modification of [5, Lemma 2.1]. For this see also [7, Lemma 1.3,
Proposition 2.3].

Lemma 1.1. Let A, B be two uniform modules over a right artinian ring R, and S be the
simple submodule of A. Let there exist a monomorphism σ : S → B, L = {(a,−σ(a)) : a ∈
S} and M = A×B

L
. If (x, y)R is a simple submodule of M other than T = {(s, 0) : s ∈ S},

then f : xR → yR, f(xr) = yr, r ∈ R defines a homomorphism extending −σ. Further
M is uniform if and only if there is no module CR with S < C 6 A for which there exists
a homomorphism f : C → B extending σ.

Definition 1.2. Let AR be a uniform module of finite composition length, S = soc(A),
D = End(S), and D′ be the division subring of D consisting of those σ ∈ D that can be
extended to some endomorphisms of A. Then the pair (D, D′) is called the division ring
pair associate (in short the drpa) of A.

For any subdivision ring D′ of a division ring D, [D,D′]l ( [D, D′]r) will denote the
dimesion of D as a left (right) vector space over D′.

Lemma 1.3. Let AR be a uniserial quasi-projective module with d(A) = 2 and S = soc(A).
Let (D,D′) be the drpa of A.

(i) [5, Lemma 2.2]. Let ω1 (= I), ω2, ....., ωn any n non-zero members of the D. Then

M = A(n)

L
, where L = {(ω1x1, ω2x2, .., ωnxn) : xi ∈ S, Σixi = 0} is uniform if and only if

ω−1
1 , ω−1

2 , ...., ω−1
n are right linearly independent over D′.

(ii) [5, Lemmas 2.3, 2.4]. Let E = E(A), λi be automorphisms of E for 1 ≤ i ≤ n,
with λ1 = I, where n is some positive integer. Let K = A1 + A2 + .... + An , where
each Ai = λi(A), and let ωi = λi | S. Then Aj * Σi ̸=jAi for any j if and only if
ω1, ω2, ...., ωn are right linearly independent over D′. Further, if Aj * Σi̸=jAi for every

j, for A = A1,
A(n)

L
∼= K, where L = {(ω−1

1 x1, ω
−1
2 x2, ...., ω

−1
n xn) : xi ∈ S, Σixi = 0},

and this isomorphism is induced by the epimorphism λ : A(n) → K, λ(a1, a2, ..., an) =
λ1(a1) + λ2(a2) + ... + λn(an).

Lemma 1.4. Let AR be a uniserial module with d(A) = 2, S = soc(A) and E = E(A).
(i) If λ is an automorphism of E such that λ | S is identity on S, then λ(A) = A.
(ii) If two automorphisms σ, η of E are equal on S, then σ(A) = η(A).

Proof. (i) Suppose A ̸= λ(A). Then S = A∩λ(A). Let (D,D′) be the drpa of A. Consider
the mapping µ : A × A → A + λ(A), µ(a, b) = a + λ(b) . Here a + λ(b) = 0 gives a ∈ S,
therefore ker µ is L = {(a,−λ−1(a)):a ∈ S}. Therefore M = A×A

L
is uniform, and by

(1.3), I , ω (= λ | S) are right linearly independent over D′, which is a contradiction.
Hence λ(A) = A.

(ii) is immediate from (i). ¤
The following is from Lemmas 2.6 and 2.7 in [5]

Lemma 1.5. Let KR be a non-simple uniform module of finite composition length, S =
soc(K) and (D, D′) drpa of K. Let ω1 (= I), ω2, ..., ωn be any n non-zero members of D,
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and L = {(ω1x, ω2x, ...., ωnx) : x ∈ S}. Then L is not contained in a summand of K(n)

if and only if ω1, ω2, ..., ωn are left linearly independent over D′. If L is not contained

in a summand of K(n)and K is quasi-projective then M = K(n)

L
is indecomposable; if in

addition n > 2, then M is not uniform.

2. Endomorphism rings

Theorem 2.1. Let A1, A2, ...., An be any finitely many uniform right modules of finite
composition lengths, over a ring R, M = A1⊕ A2 ⊕ ... ⊕ An and K = End(M). Then
J(K) is the set of all those n×n-matrices [σij], where no σij : Aj → Ai is an isomorphism.

Proof. Let A, B, C be any three non-zero uniform right modules of finite composition
lengths, over R. Let σ, η : A → B be two homomorphisms, which are not isomorphisms.
If one of σ, η is a monomorphism, then d(A) < d(B), therefore σ+η is not an isomorphism.
If neither of σ, η is a monomorphism, then both of them are zero on the soc(A), therefore
again σ+η is not an isomorphism. After this it can be seen that the set N of all [σij] ∈ K,
in which no entry is an isomorphism, is an ideal of K.

Now suppose that d(A) ≤ d(B). Let λ : B → C be a homomorphism which is not
an isomorphism, but d(C) ≤ d(B). As λ is not a monomorphism, it is zero on soc(B).
Let 0 ̸= L 6 A and σ : A → B be a homomorphism. If σ(L) ̸= 0, then soc(B) 6 σ(L),
d(λσ(L)) < d(σ(L)). Therefore d(λσ(L)) < d(L). Let µ : C → A be an homomorphism
which is not an isomorphism, and d(C) ≥ d(A). Then µ is zero on soc(C). Therefore
for any non-zero submodule L of C, d(µ(L)) < d(L), d(σµ(L)) < d(L). If we take an
admissible product of a sequence of up to n + 1 entries of [σij] ∈ N , it results in some
homomorphisms ηji : Ai → Aj, ηkj : Aj → Ak where the situation is similar to the one
discussed above in the sense that either d(Ai) ≤ d(Aj) ≥ d(Ak) or d(Ai) ≥ d(Aj) ≤
d(Ak). Using this we find that each member of N is nilpotent. Hence N ⊆ J(K). If a
[σij] ∈ J(K), it can be easily seen that no entry in [σij] is an isomorphism. Hence N =
J(K). ¤
Theorem 2.2. Let A1, A2, ...., An be any finitely many uniform right modules of finite
composition lengths, over a ring R, such that they have isomorphic socles. Let C1, C2, ...,
Ct be the isomorphism classes of A1, A2, ...., An. arranged in such a way that for any i <
t, if some Ak ∈ Ci and Al ∈ Ci+1, then d(Ak) ≤ d(Al). Let A1, A2, ...., An be re-indexed
such that if an Ak ∈ Ci and an Al ∈ Ci+1, then k < l. Let S = soc(Ai) for 1 ≤ i ≤ n,
ω1(= I), ω2, ...., ωn be any n non-zero members of D = End(SR). Let 0 ̸= x1 ∈ S and
xi = ωix1 for 1 ≤ i ≤ n. Then x = (x1, x2, ..., xn) ∈ M = A1 ×A2 × ....×An is contained
in a summand of M if and only if for some 1 < j ≤ n, there exist homomorphisms
ηjk : Ak → Aj for 1 ≤ k < j such that ωj = µj1ω1 + µj2ω2 + .... + µjj−1ωj−1, where each
µjk = ηjk | S.

Proof. For 1 ≤ j ≤ t, let Bj be the direct sum of those Ai’s that are in Cj. Suppose the
cardinality of Cj is kj. Now M = B1 ⊕ B2 ⊕ .... ⊕ Bt. Any σ ∈ T = End(M) can be
represented as a block matrix [Hij], where each Hij is a ki × kj-matrix representing an
R-homomorphism from Bj → Bi. Now x is contained in a summand of M if and only
if there exists a non-zero idempotent σ ∈ T , satisfying σy = 0, where y is the transpose
of the row matrix [x1, x2, ...., xn]. Consider any j > i. For any Ak ∈ Ci, Al ∈ Cj, as
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d(Ak) ≤ d(Al), any homomorphism θkl : Al → Ak is zero on soc(Al). That means that
the effect of Hij on the corresponding block in y is zero. Thus the lower triangular block
matrix η = [Gij] such that Gij = Hij for i ≥ j, and Gij = 0 for j > i has same effect on y
as of σ on y. But η ≡ σ (mod J(T )). Suppose no entry of any Gii is an isomorphism, then
the matrix of the diagonal block of η is in J(T ), from which it follows that η is nilpotent.
Consequently σ is nilpotent, which is a contradiction. Hence there exists smallest positive
integer k such that some entry of Gkk is an isomorphism. Write x = [z1, z2, ..., zt], where

each zi is a block with ki entries and let ui be the transpose of zi . As σy = 0,
k

Σ
i=1

Hkizi

= 0. Now Hkk has an entry, say σrs which is an isomorphism. For this, we choose s
to be largest with respect to the fixed r. At the same time write σ = [σij] where each
σij : Aj → Ai . Let σ−1

rs esr be the n × n matrix whose (s, r)-th entry is σ−1
rs and its other

entries are zero. Then (σ−1
rs esr)σy = 0. This gives

s

Σ
i=1

λsixi = 0, for some λsi : Ai → As,

λss = I, the identity map on As. As xi = ωix1, we get ωs =
s−1

Σ
i=1

µsiωi, where each µsi =

−λsi | S.

Conversely, let ωs =
s−1

Σ
i=1

µsiωi for some s > 1, such that each −µsi is the restriction to

S of some homomorphism ηsi : Ai → As. Let ψ = [ψij], where ψij = 0 for i ̸= s, ψsi =
−µsi for 1 ≤ i ≤ s− 1, ψss = I, ψsj = 0 for j > s. Then ψ is a non-zero idempotent such
that ψy = 0. ¤

3. Condition weak (**)

We start with the following condition. (**) R is an artinian ring such that every finitely
generated indecomposable right R-module is uniform.

Following is a lifting property for condition (**).

Theorem 3.1. Let R be a ring satisfying (**). Let M , N be two finitely generated
uniform right R-modules. If for some maximal submodules M ′, N ′ of M , N respectively,
there exists an isomorphism σ : M

M ′ → N
N ′ , then σ or σ−1 can be lifted to a homomorphism

η from M to N or from N to M respectively.

Proof. Let T = {(a, b): a ∈ M , b ∈ N , σ(a) = b}. Then T is a submodule of M × N
containing M ′ × N ′ such that if an (a, b) ∈ T with a /∈ M ′, then T = (a, b)R + M ′ × N ′.
Therefore M ′ × N ′ is maximal in T and T is maximal in M × N . For the projections
π1 : M × N → M , π2 : M × N → N , π1(T ) = M , π2(T ) = N . As d(soc(T )) = 2, T =
C ⊕ D for some uniform submodules C, D. Let 0 ̸= s ∈ soc(M). Then (s, 0) = c + u,
c ∈ soc(C), u ∈ soc(D).

We take d(M) > d(N), c = (s1, s2), u = (u1, u2) for some s1, u1 ∈ M , u2, s2 ∈ N .
Now c ̸= 0 or u ̸= 0. Suppose c ̸= 0. Then M ′ embeds in C under πC . therefore d(C)
= d(M) or d(C) = d(M) − 1. Suppose d(C) = d(M). Then d(D) = d(N) − 1 < d(C).
Now Suppose s1 = 0, then C embeds in N under π2, therefore d(C) = d(N), π2(C) = N .
Thus there exists (a′, b′) ∈ C with b′ /∈ N ′. Now σ−1(b′) = a′. Let y ∈ N . As π2 | C is
an isomorphism, there exists unique (x, y) ∈ C, with x ∈ M. We get a homomorphism
η : N → M for which η(y) = x, this homomorphism lifts σ−1. Suppose s1 ̸= 0. Then
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C is isomorphic to M under π1. Let x ∈ M. Then there exists unique y ∈ N such that
(x, y) ∈ C. This gives a homomorphism η : M → N for which η(x) = y, which lifts σ. We
shall be using similar arguments for some other situations.

Now suppose d(C) = d(M) − 1. Then d(D) = d(N). Suppose u = 0, then soc(C)
= soc(M), soc(D) ̸= soc(M), and D ∼= π2(D) = N ; as before, we get a homomorphism
η : N → M lifting σ−1. Now suppose u ̸= 0. Suppose u2 ̸= 0. Then D ∼= π2(D) = N . We
get a lifting of σ−1. Suppose u2 = 0. Then s2 = 0, u1 ̸= 0 as (s, 0) = c + u. Then C ∩ D
= 0, gives c = 0, C ∼= π2(C) = N . This gives a lifting of σ−1. ¤

The above result is a partial dual of [6, Proposition 2.2]. It is not known, whether the
converse of the above result holds

The above theorem motivates the following condition.

Definition 3.2. A ring R is said to satisfy condition weak (**) if it is artinian and it
has the following property: Let M , N be any two finitely generated, uniform right R-
modules and M ′, N ′ be any maximal submodules of M , N respectively. If there exists an
isomorphism σ : M

M ′ → N
N ′ , then there exists a homomorphism η from M to N or from N

to M , lifting σ or σ−1 respectively.

Suppose A, B are two non-simple uniserial modules over a ring R satisfying weak (**),
such that d(A) = d(B), and there exists an isomorphism σ : A

AJ
→ B

BJ
. By the definition,

we can fix σ such that it has a lifting η : A → B. Then η(A) * BJ , therefore η is an
isomorphism. Thus A, B are isomorphic.

Similar arguments shows that if AR, BR are two uniform modules such that d(A) =
d(B), A

soc(A)
, B

soc(B)
are semi-simple and some simple module embeds in both A

soc(A)
, B

soc(B)
.

Then A ∼= B. Using this result, one can easily prove the following. Let MR be a uniform
module, and M

soc(M)
be semi-simple, then either M

soc(M)
is homogeneous or it has only two

homogeneous component, and each of them is simple, in other words, either M
soc(M)

is

homogeneous or d(M) = 3.

Let R be any right artinian ring, AR a uniform modules. If k is a positive integer and
sock(A) is uniserial, then for any x ∈ A\sock(M). sock(M) < xR. If k is maximal such

that sock−1(M) < sock(M) ̸= sock+1(M), then sock+1(M)
sock(M)

is not simple. This motivates the

following.

Definition 3.3. Let R be any right artinian ring, and KR a non-zero uniform module.
Then a uniserial submodule N of K is called the critical uniserial submodule of K, if for

some k > 0, N = sock(K), but sock+1(K)
sock(K)

is not simple, whenever it is non-zero.

The critical uniserial submodule of a uniform module over a right artinian ring is
uniquely determined.

Proposition 3.4. Let R be a ring satisfying weak (**), KR a uniform module. and N

its critical uniserial submodule . If N = sock(K) and sock+1(K)
N

is non-zero , then k = 1.
The module K is either uniserial or the critical uniserial submodule of K is simple.
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Proof. Suppose k > 2. As sock+1(K)
N

is not simple, we get two uniserial submodules U , V
of E such that U ∩ V = N , d(V ) = k + 1 = d(U) . Let M = U + V . Let S be the
simple submodule of N and B = V

S
, Clearly, B is uniserial. Now M

U
∼= B

N
, where N =

N
S
.Therefore there exists a homomorphism σ : M → B such that σ(U) ⊆ N and σ(V )+N

= B, or σ : B → M such that σ(N) ⊆ U , σ(B) * U.
Suppose σ : M → B. Let L = ker σ. Then M

L
is uniserial. But M

N
is not uniform and

d(M
N

) = 2. Thus L * N , therefore N < L and d(M
L

) = 1. Thus d(σ(M)) = 1. But

σ(V ) * N , gives d(σ(M)) > 2, which is a contradiction. Thus σ : B → M . Then
σ(B) * U gives N < σ(B), d(σ(B)) ≥ k + 1. But d(σ(B)) 6 d(B) = k, which gives a
contradiction. Hence k = 1. Now the last part is immediate. ¤
Lemma 3.5. Let R be a ring satisfying weak (**) and AR, BR be two uniserial modules
with d(B) 6 d(A). Then A is B-projective. Any uniserial right R-module is quasi-
projective. If A is quasi-injective, then any homomorphic image of A is quasi-projective.

Proof. Let σ : A → B
C

be a non-zero homomorphism. Without loss of generality, we take

σ an epimorphism. Let d(B
C

) = n. We apply induction on n. Let ker σ = L. If n = 1, then
L is maximal in A. As R satisfies weak (**), there exists an epimorphism η : A → B,
lifting σ : A

L
→ B

C
. Then η lifts σ. Hence the result holds for n = 1.

For some k > 1, let the result hold for n = k. Suppose n = k + 1. We get C < C ′ < B
with d(C′

C
) = 1. Let π : B

C
→ B

C′ be the natural mapping. Then σ′ = πσ : A → B
C′ is

an epimorphism. Then L = ker σ, L′ = ker σ′ are such that d(A
L
) = k + 1, d( A

L′ ) = k,

therefore d(L′

L
) = 1. By the induction hypothesis, σ′ lifts to a homomorphism β : A → B.

If β lifts σ, we finish. Otherwise we get induced non-zero mapping σ − β : A → B
C

with

Im(σ−β) = C′

C
, where β : A → B

C
is induced by β. As the result holds for n = 1, we get a

homomorphism µ : A → B lifting σ − β.Then η = β + µ lifts σ. Hence A is B-projective.
It also follows that A is quasi-projective, After this the second part is obvious. ¤
Proposition 3.6. Let R be a ring satisfying weak (**), then R is right serial and any
local right R-module is uniserial.

Proof. Let e be an indecomposable idempotent in R. It is enough to show that eR
eJ2 is

uniserial. Therefore we take J2 = 0. Suppose eJ ̸= 0, then eJ = A ⊕ B, where A, B
are right ideals with A a minimal right ideal. Now M = eR

B
is uniserial, and by (3.4) it

is quasi-projective. Let T = ann(M). Any quasi-projective module H over an artinian
ring Q is projective as a Q

ann(H)
-module [3]. Thus M is a projective R

T
-module. Now eR

embeds in a finite direct sum of uniserial modules , each of composition length two and a
homomorphic image of eR, by (3.3), these uniserial modules are isomorphic, therefore T
= ann(eR), eT = 0. Consequently M ∼= eR, eR is uniserial. Hence R is right serial. The
last part is obvious. ¤

Let e, f , g be three non-isomorphic, indecomposable idempotents in a ring R satisfying
(**), such that eJ , fJ , gJ are non-zero and eJ

eJ2
∼= fJ

fJ2
∼= gJ

gJ2 . Then for the simple module

S = eJ
eJ2 , E = E(S), soc2(E)

S
has more than two homogeneous components, which is a

contradiction.
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The following result will lead us to the structure of indecomposable modules over rings
satisfying (**). This is also a dual of [6, Lemma 2.7].

Proposition 3.7. Let R be a ring satisfying weak (**), MR a uniform R-module of finite
composition length and S = soc(M). Then M

S
has no uniform submodule which is not

uniserial. If R satisfies (**), then M
S

is a direct sum of uniserial modules.

Proof. Let L 6 M be such that L
S

is a non-zero uniform module. Let T
S

= soc(L
S
). Then

T in uniserial and d(T ) = 2. Let K be a submodule of L not contained in T . Then
T < K. Thus the critical uniserial submodule of L is not simple. By (3.6), L is uniserial.
The second part is immediate from the definition of condition (**). ¤
Theorem 3.8. (i) Let R be a local ring satisfying (**) and J = J(R). Then either J2 = 0
or R is both sided serial.

(ii) Let R be an indecomposable ring satisfying (**), for which there exists a simple

module SR as its own successor. If E = E(S) is such that soc2(E)
S

is non-zero and homo-
geneous, then J2 = 0 and R is a full matrix ring over a local ring.

(iii) Let R be a ring satisfying (**). If e ∈ R is an indecomposable idempotent such
that eR

eJ2 is not quasi-injective, then eJ2 = 0.

Proof. R is both sided serial iff R
J2 is right self-injective. Suppose R

J2 is not right self-

injective and J2 ̸= 0. We take J3 = 0. Now AR = R
J2 is not quasi-injective, therefore

its injective hull over R
J2 is not uniserial. Let E = E(RR). Set S = J2, E = E

S
. Let

σ : J
J2 → E be a non-zero homomorphism. It induces homomorphism σ′ : J → E . Then

(range σ′) = L
S

with d(L) = 2. As J is a projective R
J2 -module, σ′ lifts a homomorphism

η : J → E. However, E is injective, therefore η extends to a homomorphism λ : R → E.
We get induced map λ : R

J2 → E. This proves that E is an injective R
J2 -module. Hence E

is a direct sum of uniform modules, none of which is uniserial. This contradicts (3.7).
(ii) The hypothesis gives that S is its only predecessor. Now S ∼= eR

eJ
, then all composi-

tion factors of eR are isomorphic and fRe = 0 for any indecomposable idempotent f not
isomorphic to e. Therefore R is a matrix ring over a local ring R′, which by (i) is such
that J(R′)2 = 0.

(iii) Suppose eJ2 ̸= 0. Set M = eR
eJ3 , and S = eJ

eJ2 As A is not quasi-injective, there

exists an ω ∈ End(S) which cannot be extended in End(A). As eJ
eJ3 is quasi-projective,

ω lifts to a µ ∈ End( eJ
eJ3 ). Set σ = µ | eJ2

eJ3 , N = M×M
L

, where L = {(x,−σx) : x ∈ eJ2

eJ3}.
As µ is an extension of σ, N is not uniform, so it has a summand. Therefore there exists
an extension λ ∈ End(M) of σ. Then λ is not an extension of µ for otherwise, we get an

extension of ω in End( eR
eJ2 ). Set λ1 = λ | eJ

eJ3 . Then (λ1 − µ) eJ
eJ3 = eJ2

eJ3 , which proves that
the successor of S is also S. By (ii) J2 = 0. This proves the result. ¤
Proposition 3.9. Let R be a ring satisfying weak (**), e, f two non-isomorphic inde-
composable idempotents such that eJ2 ̸= 0 ̸= fJ2 and eJ

eJ2
∼= fJ

fJ2 . Then there exists an

indecomposable right R-module of finite composition length, that is neither uniform nor
local. If R satisfies (**), then eJ2 = 0 or fJ2 = 0.

Proof. Let S = eJ2

eJ3 , E = E(S). The hypothesis gives two submodules A, B of E such

that A ∼= eR
eJ3 , B ∼= fR

fJ3 , d(A∩B) = 2. As the critical uniserial submodule of E is S, there
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exists a uniserial submodule L of E such that d(L) = 2, L ∩ K = S, where K = A ∩ B.
Set M = L ⊕ A ⊕ B.

Case 1. L
S

� K
S

. Then there is no monomorphism from any of L, A, B into the other.
Let 0 ̸= u ∈ S. Then T = (u, u, u)R is a simple submodule of M , which by (2.2) is not
contained in any summand of M . We prove that M = M

T
is indecomposable. Suppose

otherwise, then M = C + N for some C, N < M such that T < C, T < N and T =
C ∩N . As d(M) = 7, we take d(C) ≤ 4. No summand of C contains T , and no summand
of C is contained in MJ .

Subcase 1. d(C) = 2. Then C is uniserial, thus C ⊆ L ⊕ AJ ⊕ BJ . Then πL(C) = L,
for otherwise, C ⊂ MJ . Thus C is a summand of M , which is a contradiction.

Subcase 2. d(C) = 3. If C is uniform, then πA(C) = A or πB(C) = B , therefore
C is a summand of M , which is a contradiction. It follows that C is not uniform, C ⊆
L ⊕ AJ ⊕ BJ and πL(C) = L. However, R is right serial, therefore L is a projective
R
J2 -module. As L ⊕ AJ ⊕ BJ is an R

J2 -module, we get that C has a simple summand,
which is a contradiction.

Subcase 3. d(C) = 4. As M is an R
J3 -module, A, B are projective R

J3 -module, C cannot
project on A or B, for otherwise C will have a simple summand. Thus C ⊆ L⊕AJ ⊕BJ .
Then C = C1 ⊕C2 with d(C1) = 2, πL(C1) = L, C2 = C ∩ (AL⊕BL) ⊆ MJ , which is a
contradiction.

Case 2. L
S
∼= K

S
. Then L and K are not quasi-injective, but they are isomorphic. So

there exists an ω ∈ End(S) that cannot be extended to a homomorphism from L into
K. For a fixed 0 ̸= u ∈ S, T = (u, ωu, ωu)R is a simple submodule of M , which is not
contained in any summand of M . Now follow the arguments as in Case 1.

This proves that M is indecomposable. Clearly M is neither uniform nor local. After
this the last part is obvious. ¤

Theorem 3.10. Let R be a ring satisfying weak (**).
(i) If there exists a uniserial module AR such that d(A) = 2, and its drpa (D, D′)

satisfies [D : D′]r > 2, then there exists an indecomposable, non-uniform, non-local right
R-module of finite composition length.

(ii) If R satisfies (**), the drpa (D, D′) of a uniserial module AR with d(A) = 2 satisfies
[D : D′]r ≤ 2.

Proof. (i) Let E = E(A), S = soc(A). We get ω1 (= I), ω2, ω3 ∈ D, which are right
linearly independent over D′. Let λ1(= I), λ2, λ3 be extensions of ω1, ω2, ω3 respectively
in End(E) Let Ai = λi(A). Set B1 = A1, B2 = B1, B3 = A1 + A2. Then B1, B2, B3 are
of composition lengths 2, 2, 3 respectively. Fix an x1 ̸= 0 in S. Let M = B1 ⊕ B2 ⊕ B3

and πi : M → Bi be the associated projections. Let xi = ωix1, then T = (x1, x2, x3)R
is a simple submodule of M . Suppose T is contained in a summand of M . By (2.2),
we have following possibilities. (1) ω2 = η21ω1 for some homomorphism η21 : B1 → B2.
Then η21 is an automorphism of A. If λ ∈ End(E) is an extension of η21, Then µ =
λλ1 is an extension of ω2, therefore by (1.5), µ(A1) = A2. But λλ1(A1) = A1, which
is a contradiction. (2) ω3 = η31ω1 + η32ω2 for some homomorphisms η31 : B1 → B3,
η32 : B2 → B3. Let λ, µ ∈ End(E) be extensions of η31, η32 respectively. Then ρ =
λλ1 +µλ2 is an extension of ω3, therefore ρ(A) = A3. However (λλ1 +µλ2)(A) ⊆ B3 and
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by (1.3)(ii) A3 * B3, which is a contradiction. Hence T is not contained in any summand
of M.

We now prove that M = M
T

is indecomposable. Now d(M) = 6. Suppose M has

a summand. We get a summand C with d(C) ≤ 3. Now C = C
T

for some C < M
containing T . For some N < M , M = C + N , T = C ∩ N . As soc(M) is small in M ,
C has no semi-simple summand. In particular, T is not a summand of C. Indeed no
summand of C contains T. As soc2(E) is a module over R

J2 , we take J2 = 0. In that case
every uniserial module of composition length 2 is projective. Let x = (x1, x2, x3)

Case 1. d(C) = 1. Then d(C) = 2, and C is uniserial, x ∈ C has projection x1 ̸= 0 in
B1. Therefore C projects onto B1. Thus C is a summand of M , which is a contradiction.

Case 2. d(C) = 2. Then d(C) = 3. The projection of C in B3 is non-zero, as x
has non-zero projection in B3. If C projects onto B3, then C ∼= B3, therefore C is a
summand of M , which is a contradiction. If the image of C in B3 has composition length
2, then this image being projective, gives that C has a simple summand, which is also a
contradiction. Suppose Image of C in B3 is simple, then C = T ⊕ (C ∩ (B1 + B2)), which
is also a contradiction.

Case 3. d(C) = 3. Then d(C) = 4. If C projects onto B1 ⊕ B2, then C is a summand
of M , which is a contradiction. So C ∩B3 ̸= 0. We are left with the situation in which we
also have N ∩B3 ̸= 0. In this case C ∩N contains T + soc(B3), which is a contradiction.

Hence M is indecomposable. Clearly M is neither uniform nor local.
Now (ii) is immediate from (i). ¤

4. Condition (***)

Definition 4.1. A ring R is said to satisfy condition (***) if R is artinian, right serial,
and for any three indecomposable idempotents e, f , g ∈ R with eJ , fJ , gJ non-zero, the
following hold.

(i) The drpa (D, D′) of A = eR
eJ2 is such that [D : D′]r ≤ 2, [D : D′]l ≤ 2.

(ii) If e, f are non-isomorphic and eJ
eJ2

∼= fJ
fJ2 , then eJ2 = 0 or fJ2 = 0.

(iii) If e, f are non-isomorphic and eJ
eJ2

∼= fJ
fJ2

∼= gJ
eJ2 , then g is isomorphic to e or f .

(iv) If A = eR
eJ2 is not quasi-injective, then eJ2 = 0 and eJ

eJ2 � fJ
fJ2 whenever e is not

isomorphic to f .

Suppose R is a ring satisfying (**). By (3.6) R is right serial. By (1.5) and (3.10)
condition (i) in (4.1) is satisfied by R. By (3.9) condition (ii) in (4.1) holds. Condition
(iii) in (4’1) follows from remarks following (3.6). Condition (iv) from remarks after (3.2).
We are going to prove that conditions (**) and (***) are equivalent.

Suppose R is a ring satisfying (***). Let SR be a simple module, E = E(S) and M any
submodule of E. Suppose M is not uniserial and N is its critical uniserial submodule.

Then for some k > 0, N = sock(M), d( sock+1(M)
N

) > 1. Let G = sock+1(M)
NJ

is uniform,
G

soc(G)
∼= sock+1(M)

N
. By using conditions (iii) and (iv) in (4.1), we see that d( G

soc(G)
) = 2, G

= C + H for some uniserial submodules C, H such that d(C) = 2 = d(H) and C or H
is projective. Let A, B in sock+1(M) of C, H respectively, then they are uniserial, d(A)
= d(B) = k + 1. Now A ∼= C or B ∼= H, therefore k = 1. Thus any uniform R-module is
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either uniserial or its critical uniserial submodule is simple. In the later case soc2(M) =
A+B = soc2(E), where A, B are uniserial submodules such that d(A) = 2 = d(B) and A

or B is projective; in case soc2(M)
soc(M)

is not homogeneous, A, B are uniquely determined and

both are quasi-injective. In case soc2(M)
soc(M)

is homogeneous, A ∼= B and they are projective.

Proposition 4.2. Let R be a ring satisfying (***), SR a simple module, and E = E(S)
be such that it is not uniserial and soc2(E) = A+B, where A, B are uniserial submodules
with S = A ∩ B and d(A) = d(B).

(a) Let H, K are two uniserial submodules of E such that H * K, K * H, A * H∩K
and S < H ∩ K. Then A is not projective, B is projective, B ⊆ H ∩ K, uniserial
submodules of E containing A is linearly ordered under inclusion and there exists a unique
uniserial submodule of E of maximum composition length that contains A. Let H ′ 6 H
such that H ′J = H∩K, then there exists a homomorphism from H ′ onto A. If a uniserial
submodule G of E is such that d(G) = 2, S = C ∩ G, for some projective uniserial
submodule C with d(C) = 2, then the family of those uniserial submodules of E that
contain G is linearly ordered under inclusion.

(b) If E is not uniserial and every uniserial submodule of E of composition length 2 is
projective, then E is a sum of two uniserial modules whose intersection is S; in particular

this holds if soc2(E)
S

is homogeneous. In addition, if soc2(E)
S

is homogeneous, then E is a
sum of two isomorphic uniserial submodules whose intersection is S.

Proof. Now soc2(E) = A + B for uniserial submodules A,B such that d(A) = 2 = d(B),
S = A ∩ B .

(a) Suppose S < H ∩ K and A * H ∩ K. Then soc2(H + K) = soc2(E). We consider
any uniserial submodule xR ≤ soc2(M) such that xR * H ∩ K. There exist H ′ 6 H,
K ′ 6 K such that H ′J = H ∩ K = K ′J . For some indecomposable idempotent e ∈ R,
we can take x = xe. For some u ∈ H ′, v ∈ K ′, ue = u /∈ H ∩ K, ve = v /∈ H ∩ K, we
have x = u + v. We get epimorphism σ : H ′ → xR. If xR is projective, we get d(H ′)
= 2, which is a contradiction. Hence xR is not projective, so xR is quasi-injective. In
particular, A is not projective. Then B is projective, therefore B ⊆ H ∩ K. The second
part is now obvious.

(b) Suppose every uniserial submodule of soc2(E) of composition length 2 is projective,
this property holds in case E

S
is homogeneous. Now soc2(E) = A + B for some uniserial

submodules A, B with d(A) = d(B), S = A∩B. By using (a), we get uniquely determined
uniserial submodules H, K of E of maximum composition lengths such that A ⊆ H,
B ⊆ K.

Case 1. soc2(E)
S

is homogeneous. Then there exists a λ ∈ End(E) such that λ(A) = B.
Then B ⊆ K ∩ λ(H), therefore λ(H) ⊆ K , and d(H) ≤ d(K). We get d(H) = d(K) and
H ∼= K. Set M = H + K. Suppose E ̸= M . Then there exists a uniserial submodule L
of E such that L * M . Then for C = soc2(E) ∩ L, d(C) = 2. For the drpa (D, D′) of
A, [D : D′]r = 2. There exists a σ ∈ D which has extension µ ∈ End(E) such that µ(A)
= C. By considering µ−1,we get d(L) ≤ d(H). Let ω = λ | S and ω′ = µ | S. Then ω′

= α + ωβ for some α, β ∈ D′. Let η1, η2 be extensions in End(E) of α, β respectively.
Then µ′ = η1 + λη2 ∈ End(E) is an extension of ω′. By using (1.5), we get L ⊆ µ(H) =
µ′(H) ⊆ H + K, which is a contradiction. Hence E = H + K.
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Case 2. soc2(E)
S

is not homogeneous, Then any uniserial submodule L of E with d(L) ≥ 2
contains A or B, therefore by (a) L ⊆ H or L ⊆ K. Hence E = H + K. ¤
Lemma 4.3. Let R be a ring satisfying (***), and SR a simple module such that E =
E(S) is not uniserial, but E

S
is homogeneous. If S is its own predecessor, then R is matrix

ring over a local ring and J2 = 0.

Its proof is similar to that of (3.8). ¤
If R is an artinian ring which is right serial ring, and AR is a uniserial, projective

module, then any uniserial module BR containing A is projective.

Lemma 4.4. Let a ring R satisfy (***). If uniserial module AR is not quasi-injective,
then it is projective.

Proof. Set B = soc2(A) and E = E(A). Suppose A is not projective, then B is not

projective, therefor B is quasi-injective. Thus soc2(E)
S

is not homogeneous and soc2(E) =
B + C for some uniserial submodule C with d(C) = 2. Then C is projective. Now there
exists a σ ∈ End(E) for which σ(A) * A. If B ⊆ σ(A), then by (4.2), C is not projective,
which is a contradiction. Thus C ⊆ σ(A), σ(A) is projective. This gives B ∼= σ(B) = C,
therefore B is projective. Hence A is projective. ¤
Theorem 4.5. Let R be a ring satisfying (***) and ER an indecomposable injective
module that is not uniserial. Let soc2(E) = A + B, where A, B are uniserial submodules
of E with d(A) = 2 = d(B), soc(E) = A ∩ B. If P , Q are uniserial submodules of E of
maximum composition lengths containing A, B respectively, then E = P + Q.

Proof. Set S = soc(E). If soc2(E)
S

is homogeneous, the result follows from (4.2)(b). Suppose
soc2(E)

S
is not homogeneous. Then A, B are uniquely determined, and one of them say

A is projective. Then Q is uniquely determined and it is quasi-injective. Let K be any
uniserial submodule of E with d(K) > 2. If B ⊆ K, then K ⊆ Q. Suppose B * K. Then
A ⊂ K. Every submodule of P containing A is projective. Therefore no two composition
factors of P

S
are isomorphic. Also, by (4.4) P

S
is quasi-injective. Suppose K * P , then set

F = K∩P . Let K ′, P ′ be the submodules of K, P respectively, such that K ′J = F = Q′J .
We have epimorphism σ : K ′ → B, which extends to a homomorphism η : K → Q with
ker η = FJ . Thus K

FJ
embeds in Q. Similarly P

FJ
also embeds in Q. But d( K

FJ
) ≤ d( P

FJ
).

Hence P
FJ

is K
FJ

-injective. We have a monomorphism λ : K
FJ

→ P
FJ

, which is identity on
F

FJ
. As K is projective, we get a monomorphism µ : K → P lifting λ. If µ is identity

on F , then P + K = P ⊕ W for some W 6 P + K, which is a contradiction. Thus µ is
not identity on F . Let µ1 = µ | F . As every submodule of K containing A is projective,
no two composition factors of K

S
are isomorphic, therefore (µ1 − I)F = S, µ : K

S
→ P

S
is

identity on F
S
, which gives P

S
+ K

S
= P

S
⊕ V

S
for some uniserial submodule V containing S.

As soc(V
S
) ∼= B

S
, we get V ⊆ Q. Hence K ⊆ P + Q, which proves that E = P + Q. ¤

By using (4.2) and (4.5), one can prove the following.

Theorem 4.6. Let R be a ring satisfying (***), SR a simple module and E = E(S) not
a uniserial module. Let A, B be any two uniserial submodule of E such that d(A) = d(B)
= 2 and soc(E) = A + B.
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(i) If P is a uniserial submodule of E maximal with respect to containing A, then it is
of maximum composition length among the uniserial submodules containing A.

(ii) If P , Q are any two uniserial submodules of E which are maximal with respect to
containing A, B respectively, then E = P + Q.

The above theorem gives the following.

Theorem 4.7. Let R be a ring satisfying (***) and MR a uniform module which is not
uniserial and E = E(M). Then M

soc(M)
is a direct sum of two uniserial submodules, there

exist uniserial submodules P , Q of E such that soc(M) = P ∩ Q, E = P + Q and M
= G + H, where G = P ∩ M , H = Q ∩ M . If k = min{d(G), d(H)}, then soci(M) =
soci(E) for 1 ≤ i ≤ k.

Lemma 4.8. (i) Let R be a right artinian ring, KR a quasi-projective uniserial mod-
ule such that d(K) = 3, K is not homogeneous, KJ is homogeneous and K

KJ2 , KJ are
quasi-injective. Then any endomorphism σ of soc(K) is uniquely extendable to an endo-
morphism of K.

(ii) Let R be a ring satisfying (***), SR a simple module and E = E(S) not a uniserial
module. Let A, B be any two uniserial submodule of E such that d(A) = d(B) = 2 and
soc(E) = A + B. Let H be a uniserial submodule of E such that d(H) ≥ 3. Then any
endomorphism σ of soc(H) can be extended to an endomorphism of H.

Proof. (i) Let 0 ̸= σ ∈ D = End(soc(K)). As KJ is quasi-injective, there exists a
σ′ ∈ End(KJ) extending σ. As K

KJ2 is quasi-injective, and K is quasi-projective, there

exists η ∈ End(K) such that η ∈ End( K
KJ2 ) induced by η is an extension of σ′ ∈ End( KJ

KJ2 )

induced by σ′. Let λ = η | KJ . Then λ− σ′ = 0 gives (λ− σ′)KJ ⊆ soc(K). Hence λ is
an extension of σ. That λ is uniquely determined by σ follows from the hypothesis that
K is not homogeneous, but KJ is homogeneous.

(ii) Let L, M be uniserial submodules of maximum composition lengths containing A,
B respectively. Then E = L + M .

We take A = soc2(E) ∩ H and by using (4.6), we also take H ⊆ L. Let σ ̸= 0. If B is
projective, then L is uniquely determined, therefore the result holds. Suppose B is not
projective. Then A is quasi-injective as well projective. Therefore there exists η ∈ End(E)
such that it extends σ and A = η(A). If η(H) ⊆ H, we finish. Suppose η(H) * H. Now
H is also projective, for some u ∈ H and some indecomposable idempotent e ∈ R, H =
uR, ue = u. We write η(u) = x + y for some x ∈ L, y ∈ M such that xe = x, ye = y.
As x /∈ S, xR is projective. By using the fact that E

S
= L

S
⊕ M

S
, we get an automorphism

λ ∈ End(E) such that λ(η(u)) = x. Now A = usR for some s ∈ R. Let µ = λη.
Then η(us) = xs + ys ∈ A. This gives ys ∈ S, xs ∈ A. We also have homomorphism
ρ : uR → yR, ρ(u) = y.

Case 1. ys = 0. Then us = xs, η(us) = xs = µ(us). It follows that µ is an extension
of σ.

Case 2. ys ̸= 0. Then A is homogeneous. Now B ∼= fR
fJ2 for some indecomposable

idempotent f ∈ R. As B is not projective, fJ2 ̸= 0. Therefore fJ
fJ3

∼= A, fJ3 = 0. Set

K = ρ−1(B). Then K ∼= fR, K is not homogeneous, KJ is quasi-injective. As K
KJ2 is

isomorphic to B, it is also quasi-injective. Further K is projective as A ⊂ K and A is
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projective. Therefore by (i), there exists a τ ∈ End(K) extending σ. Let φ ∈ End(E)
be an extension of τ . Suppose φ(H) * H. Set F = H ∩ φ(H). Then K ⊆ F . By (4.2),

we get F < H ′ 6 H, such that H′

F
∼= C

S
∼= K

A
, thus H

A
have two isomorphic composition

factors. However as every submodule of H containing A is projective, no two composition
factors of H

A
can be isomorphic, which is a contradiction. Hence φ(H) = H, which proves

the result. ¤

Lemma 4.9. Let R be an artinian ring, NR = N1 ⊕ N2 ⊕ ..... ⊕ Nt be such that for
some simple module S, soc(Ni) = S and let T be a simple submodule of N generated
by an element (x1, x2, ..., xt) with xi ̸= 0 for every i. If for some i ̸= j, there exists a
homomorphism λ : Ni → Nj such that λ(xi) = xj, then T is contained in a summand of
N .

Proof. By re-indexing, we take i = 1, j = 2. Let C1 = {(x, λx) : x ∈ N1}. Then N =
N2 ⊕ (C1 ⊕ N3 ⊕ N4 ⊕ ... ⊕ Nt) and T ⊆ C1 ⊕ N3 ⊕ N4 ⊕ ... ⊕ Nt, a summand of N . ¤

Lemma 4.10. Let R be an artinian ring, MR an indecomposable module of finite com-
position length and M = K1 + K2 + K3 + .... + Kn for some uniform modules Ki * MJ ,
such that n > 1, N = K2 + K3 + .... + Kn = K2 ⊕ K3 ⊕ .... ⊕ Kn, K1 ∩ N = soc(K1).
Then the following hold.

(i) T = xR = soc(K1) is not contained in a summand of N.
(ii) For any 1 ≤ i ≤ n, Ni = Σ

j ̸=i
Kj = ⊕Σ

j ̸=i
Kj, Ki ∩ Ni = soc(Ki).

Proof. (i) Suppose N = A⊕B for some non-zero submodules A, B and T ⊆ A. Then M
= (K1 + A) ⊕ B, which is a contradiction.

(ii) Now x = x1 + x2 + .... + xn, xi ∈ Ki. By (i) xi ̸= 0, and soc(Ki) = xiR for any
1 ≤ i ≤ n. Clearly xi ∈ Ki∩Ni. Suppose for some i > 1, 0 ̸= zi ∈ Ki∩Ni, then zi = Σ

j ̸=i
zj

for some zj ∈ Kj. Then z1 = u2 + .... + un, where ui = zi, uj = −zj for j ̸= i, therefore
0 ̸= z1 ∈ K1 ∩ N1 = soc(K1). This gives that zi ∈ soc(Ki). Hence Ki ∩ Ni = soc(Ki). It
also gives Ni = ⊕Σ

j ̸=i
Kj. ¤

Lemma 4.11. Let R be a ring satisfying (***), SR a simple module such that E = E(S) is

not uniserial but soc2(E)
S

is homogeneous, and L a uniserial submodule of E with d(L) ≥ 2.
If A = soc2(E) ∩ L, and (D, D′) is drpa of L, then (D,D′) is also drpa of A.

Proof. Let (D1, D
′
1) be the drpa of A. By definition D = End(S) = D1. Let σ ∈ End(L).

Then σ | S = (σ | A) | S ∈ D′
1, therefore D′ ⊆ D′

1. Let η ∈ End(A). As every submodule
of L containing A is projective, no two composition factors of L

S
are isomorphic. Let

η ∈ End(A
S
) be induced by η. As L

S
is quasi-injective and L is quasi-projective, there

exists a λ ∈ End(L) that induces η. Suppose λ does not extend η, then λ1 = λ | A is
such that (λ1 − η)(A) = S, which gives that A

AJ
∼= S and S its only predecessor. By (4.3),

J2 = 0, therefore d(L) = 2, which is a contradiction. Thus λ is an extension of η, which
gives D′

1 ⊆ D′. Hence (D, D′) is drpa of A. ¤

We now prove the main theorem. We prove that conditions (**) and (***) are equiva-
lent.
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Theorem 4.12. Let R be an artinian ring. Then every finitely generated indecomposable
right R-module is uniform if and only if it satisfies the following.

(α) R is right serial.
(β) Let e, f , g be any three indecomposable idempotents of R with eJ , fJ , gJ non-zero.

Then the following hold.
(i) The drpa (D, D′) of A = eR

eJ2 is such that [D : D′]r ≤ 2, [D : D′]l ≤ 2.

(ii) If e, f are non-isomorphic and eJ
eJ2

∼= fJ
fJ2 , then eJ2 = 0 or fJ2 = 0.

(iii) If e, f are non-isomorphic and eJ
eJ2

∼= fJ
fJ2

∼= gJ
eJ2 , then g is isomorphic to e or f .

(iv) If A = eR
eJ2 is not quasi-injective, then eJ2 = 0, eJ

eJ2 � fJ
fJ2 whenever e is not

isomorphic to f .

Proof. If every finitely generated indecomposable right R-module is uniform, as seen be-
fore, R satisfies the given conditions, i.e R satisfies (***).

Conversely, let R satisfy (***). Suppose the contrary. We get an indecomposable
module MR of smallest composition length, which is not uniform. Then soc(M) ⊆ MJ .
Firstly, we prove that M = G + N for some uniserial submodule G * MJ , N < M such
that soc(G) = G ∩ N . Let S be a simple submodule of M . As M

S
is a direct sum of

uniform modules, we get two submodules K, N of M such that M = K + N , S = K ∩N
and K

S
is a non-zero uniform module. If K

S
is uniserial, then K is uniserial and we finish.

Suppose K
S

is not uniserial.

Case 1. M = K. As M is not uniform and M
S

is uniform, soc(M) = S ⊕ S ′ for some

simple submodule S ′. As M
S

is not uniserial, its critical uniserial submodule is soc(M
S

).

By (4.7), M
S+S′ is a direct sum of two uniserial modules. Therefore there exist non simple

uniserial submodules A, B of M such that M = A+B, (A+S)∩ (B +S) = S +S ′. Then
one of A, B say A does not contain S. But S + S ′ = S + A∩ (B + S). Thus A∩ (B + S)
= soc(A) and M = A + (B + S).

Case 2. M ̸= K. Then K is a direct sum of uniform modules. So there exists a uniform
summand L of K. Now K = L ⊕ W for some W 6 K. Then M = L + (W + N) with
L ∩ (W + N) = soc(L). If L is uniserial, we finish. Otherwise, by (4.7) L = A + B for
some non-simple uniserial submodules A, B such that soc(L) = A ∩ B. Now neither of
A, B is contained in MJ . Then M = A + (B + W + N), A ∩ (B + W + N) = soc(A).

We get a uniserial submodule A of M of minimum composition length such that A *
MJ , and for some N < M , M = A + N , soc(A) = A ∩ N . Set S = soc(A) = xR. Now
N = K1 ⊕ K2 ⊕ .... ⊕ Kt for some uniform submodules Ki. Suppose t ≥ 2.

Suppose some Ki say K1 is not uniserial. Then K1 = A1 + B1 for some uniserial
submodules A1, B1 such that d(A1) ≥ 2, d(B1) ≥ 2, A1 ∩ B1 = S1= soc(K1). Now M
= A1 + N1, where N1 = A + B1 + K2 + .... + Kt. As A1 ∩ N1 = soc(A1), the choice of
A implies d(A) ≤ d(A1). Similarly, d(A) ≤ d(B1). Let k = min{d(A1), d(B1)}. Then
A embeds in sock(E) = sock(K1), where E = E(K1). Hence K1 is A-injective. Now M
= K2 + H2, where H2 = A ⊕ K1 ⊕ K3 ⊕ .... ⊕ Kt. and soc(K2) = K2 ∩ H2. Let yR =
soc(K2). Then y = a + y1 + y3 + .... + yt for some a ∈ A, yi ∈ Ki, i ̸= 2. We get a
monomorphism σ : A → K1 for which σ(a) = y1. Then by (4.9), yR is contained in a
summand of H2, which contradicts (4.10). Hence every Ki is uniserial and d(A) ≤ d(Ki).
Set A = K0. Arrange Ki’s in a such way that d(Ki) ≤ d(Ki+1) for i > 0. Fix an x0 ̸= 0
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in soc(K0). Then x0 = x1 + x2 + .... + xt for some uniquely determined non-zero xi ∈ Ki.
Now M ∼= K0×K1×....×Kt

L
, where L = (x0,−x1,−x2, ....,−xt)R is a simple submodule not

contained in any summand of K0 × K1 × .... × Kt. Let E = E(K0), S = soc(E). Then
every Ki embeds in E. If E is uniserial, then K1 is K0-injective, and we get an embedding
σ : K0 → K1 such that σ(x0) = −x1, which gives that L is contained in a summand of
K0 × K1 × .... × Kt, therefore M is decomposable, which is a contradiction. Hence E is
not uniserial.

Case 1. soc2(E)
S

is homogeneous. Then given any two uniserial submodules V , W of E
with d(V ) ≤ d(W ), there exists an automorphism of E that maps V into W . Thus if K =
Kt, we take every Ki ⊆ K Let (D, D′) be the drpa of B = A∩soc2(E), therefore [D : D′]l
= 2. It can be seen that (D, D′) is also drpa of K. Now M ∼= K0×K1×....×Kt

L
⊆ K(t+1)

L
,

where for some non-zero ωi, 1 ≤ i ≤ t in D, −xi = ωix0. But I, ω1, ω2, ...., ωt are left
linearly dependent over D′. Therefore for some 1 ≤ i ≤ t, ωi = µ0I +µ1ω1 + ....+µi−1ωi−1,
where ω0 = I and each µj is the restriction to S of some ρj ∈ End(K). Let ρtj : Kj → Kt

( = K) = ρj | Kj. Then for µtj = (ρtj | S) = µj, ωi = µi0I + µi1ω1 + .... + µii−1ωi−1. By
(2.2), T is contained in a summand of K0 × K1 × .... × Kt, which is a contradiction.

Case 2. soc2(E)
S

is not homogeneous. Then E = F + H, for some uniserial submodules
F , H such that d(F ) ≥ 2 , d(H) ≥ 2 and S = F ∩ H. Let G,H be the intersection of F ,
H respectively with soc2(E). Then both G, H are quasi-injective, one of them say G is
projective, and any uniserial submodule L of E of composition length at least 2 contains
G or H. Once again, we suppose that all Ki ⊆ E. Suppose the number of Ki that contain
H is more than one, say H ⊆ K1 ∩ K2. Consider W = K1×K2

T ′ , where T ′ = (x1, x2)R.
We know that there is no homomorphism σ : K1 → K2 for which σ(x1) = x2, therefore
W is indecomposable. However as H is quasi-injective, there exists a homomorphism
η : H → H for which η(x1) = x2. By (1.1), W is not uniform, but d(W ) < d(M),
which gives a contradiction to the choice of M. Thus there is only one Ki containing H.
Similarly there is only one Ki containing G. Thus t = 1.

In any case t = 1, M ∼= K0×K1

L
, where L = (x0,−x1)R, and K0 is uniserial. As argued

earlier, K1 is also uniserial. We regard K0, K1 ⊆ E, then for some ω ∈ End(S)), ωx0 =
x1. Let A = K0 ∩ soc2(E), B = K1 ∩ soc2(E). As M is not uniform, by (1.1) ω extends
to an isomorphism σ : A → B.

Case 1. soc2(E)
S

is homogeneous. Then for any extension λ ∈ End(E) of σ, λ(K0) ⊆ K1,
which proves that M is decomposable, which is a contradiction.

Case 2. soc2(E)
S

is not homogeneous. Then σ(A) = B gives A = B. Suppose A is
not projective. Then K0 ⊆ K1. As there is unique maximal uniserial submodule P of E
containing A, for any extension λ ∈ End(E) of σ, λ(K0) ⊆ K1 . Thus M is decomposable,
which is a contradiction. This shows that A is projective, soc2(E) = A + C for some
uniquely determined uniserial submodule C with d(C) = 2, A∩C = S. Then there exists
unique maximal uniserial submodule Q of E containing C. Let P be a maximal uniserial
submodule of E containing K1. By (4.9)(ii), there exists an η ∈ End(E) which extend σ
and η(K0) = K0. Now K0 = xR for some x ∈ K0, such that for some indecomposable
idempotent e ∈ R, xe = x. Then η(x) = a+ b, for some a ∈ P , b ∈ Q with ae = a, be = b.
As E

S
= P

S
⊕ Q

S
, and K0, aR are projective, we get isomorphism ρ : K0 → aR for which

ρ(x) = a. As d(K0) ≤ d(K1), it follows that a ∈ K1. Now A = xsR. Then η(xs) ∈ A,
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as η(xs) = as + bs, as ∈ A, bs ∈ S. We also have homomorphism λ : K0 → Q, λ(x)
= b. It follows that if xsr ∈ S, then bsr = 0, therefore ρ(xsr) = asr = σ(xrs). Hence
ρ : K0 → K1 extends σ, which is a contradiction. This proves the result. ¤

It follows from the above theorem that any balanced ring, as discussed in [2], and which
is right serial satisfies (**)

Definition 4.13. [6]. Let M be a local module, D = End( M
J(M)

) and D′ the division

subring of D consisting of those σ ∈ D which can be lifted to some endomorphisms of M .
Then the pair (D, D′) is called the dual division ring pair associate (in short ddpa) of M .

By suitable dualization of the arguments involved in proving the above theorem, we
can prove the following dual of the above theorem.

Theorem 4.14. Let R be an artinian ring. Then every finitely generated indecomposable
right R-module is local if and only if the following hold.

(α) Any uniform right R-module is uniserial.
(β) For any three uniserial right R-modules A, B, C with d(A) = d(B) = d(C) = 2,

the following hold.
(i) The ddpa (D, D′) is such that [D, D′]r ≤ 2, [D, D]l ≤ 2;
(ii) if A, B are not isomorphic and A

AJ
∼= B

BJ
, then A is injective or B is injective.

(iii) if A, B are not isomorphic and A
AJ

∼= B
BJ

∼= C
CJ

, then C ∼= A or C ∼= B;

(iv) if A is not quasi-projective, then A is injective and A
AJ

� B
BJ

, whenever A � B.

Examples of rings satisfying (**) or (*) can be easily constructed.

Example 4.15. Let D be a division ring having a subdivision ring D′ such that [D,D′]r

= [D : D′]l =2. Let R =

[
D′ D
0 D

]
. Then R is right serial but not left serial, and its

radical J satisfies J2 = 0. Only uniserial right R-module with composition length 2 is
A = e11R. Its drpa is (D, D′). It follows from (4.12) that R satisfies (**). To within
isomorphism, R admits only one uniserial module A = Re22

D′e12
, it is injective and its ddpa

is (D,D′). By (4.14), every finitely generated indecomposable left module is local. Now

consider the ring R′ =

 D′ D′ D
0 D′ D
0 0 D

. Then R′ is right serial and J2 ̸= 0. There are

only two uniserial right R-modules of composition length 2, viz A = e11R
e11J2 , B = e22R.

Here A is injective. As seen for R the drpa of B is (D,D′). By (4.12), R′ satisfies (**).
R′ is also such that every finitely generated indecomposable left module is local.

Example 4.16. Let D be a division ring, and R =

 D 0 D
0 D D
0 0 D

. Then R is right

serial, but not left serial. Here J2 = 0. It admits only two uniserial right modules of
composition length 2, viz A = e11R, B = e22R. Both A, B are quasi-injective, and
soc(A) ∼= soc(B) ∼= e33R. It follows from (4.12) that R satisfies (**). R admits two
uniserial left modules of composition length 2, viz modules M = Re33

De23
, N = Re33

De13
, both of
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them are quasi-projective and injective. Once again, by (4.14). every finitely generated
indecomposable left R-module is local.

Example 4.17. Let D be a division ring admitting a division subring D′ such that

[D, D′]r = 2, [D, D′]l > 2. Such division rings exist [4]. Then R =

[
D′ D
0 D

]
is right

serial, but it does not satisfy (**).
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