ON A GENERALIZATION OF STABLE TORSION THEORY

YASUHIKO TAKEHANA

ABSTRACT. Throughout this paper R is a ring with a unit element, every right R-module is unital and Mod-R is the category of right R-modules. A subfunctor of the identity functor of Mod-R is called a preradical. A torsion theory $(\mathcal{T}, \mathcal{F})$ is called stable if \mathcal{T} is closed under taking injective hulls. We denote E(M) the injective hull of a module M. For a preradical σ , we denote $E_{\sigma}(M)$ the σ -injective hull of a module M, where $E_{\sigma}(M)$ is defined by $E_{\sigma}(M)/M := \sigma(E(M)/M)$. For a preradical σ we call a torsion theory $(\mathcal{T}, \mathcal{F})$ is σ -stable if \mathcal{T} is closed under taking σ -injective hulls. In this note, we characterize σ -stable torsion theories and give some related facts.

0. Fundamental facts of torsion theory

For a preradical t it hold that $t(N) \subseteq t(M)$ and $t(M/N) \supseteq (t(M) + N)/N$ for any $M \in \text{Mod-}R$ and its submodule N. A preradical t is called idempotent (radical) if t(t(M)) = t(M) (t(M/t(M)) = 0) for any module M, respectively. For a preradical σ , $\mathcal{T}_{\sigma} := \{M \in \text{Mod-}R \mid \sigma(M) = M\}$ is the class of σ -torsion right R-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R \mid \sigma(M) = 0\}$ is the class of σ -torsionfree right R-modules. For a subclass C of Mod-R, it is said that C is closed under taking extensions if: if $N, M/N \in C$ then $M \in C$ for any $M \in \text{Mod-}R$ and its submodule N. A preradical t is called left exact if $t(N) = N \cap t(M)$ for any submodule N of a module M. It is also well known that a preradical t is idempotent and \mathcal{T}_t is closed under taking submodules if and only if t is left exact. A right R-module M is called σ -injective if the functor $\text{Hom}_R(-, M)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $C \in \mathcal{T}_{\sigma}$. For a preradical σ -injective if and only if M has no proper σ -essential in M. It holds that a module M is called π -injective if and only if M has no proper σ -essential extension.

Let σ be an idempotent radical. If X is minimal in $\{X \mid X \text{ is } \sigma\text{-injective and } X \supseteq M\}$, X is called to be a minimal σ -injective extension of M. If Y is maximal in $\{Y \mid Y \supseteq M \text{ and } M \text{ is } \sigma\text{-essential in } Y\}$, Y is called to be a maximal σ -essential extension of M. If $X \supseteq M$ and X is σ -injective and M is σ -essential in X, X is called to be a σ -injective σ -essential extension of M. For any module M a σ -injective σ -essential extension of M exists and is unique to within isomorphism. The σ -injective σ -essential extension of M coincides with the minimal σ -injective extension of M and the maximal σ -essential extension of M and is called to be the σ -injective hull of M. We put $\sigma(E(M)/M) = E_{\sigma}(M)/M$. For an idempotent radical σ , the σ -injective hull of M is isomorphic to $E_{\sigma}(M)$. But even if a preradical σ is not an idempotent radical, we call $E_{\sigma}(M)$ the σ -injective hull of a module M.

The detailed version of this paper will be submitted for publication elsewhere.

Let \mathcal{C} be a subclass of Mod-R. A torsion theory for \mathcal{C} is a pair $(\mathcal{T}, \mathcal{F})$ of classes of objects of \mathcal{C} such that

(i) $\operatorname{Hom}_R(T, F) = 0$ for all $T \in \mathcal{T}, F \in \mathcal{F}$

(ii) If $\operatorname{Hom}_R(M, F) = 0$ for all $F \in \mathcal{F}$, then $M \in \mathcal{T}$

(iii) If $\operatorname{Hom}_R(T, N) = 0$ for all $T \in \mathcal{T}$, then $N \in \mathcal{F}$.

We put $t(M) = \sum_{\mathcal{T} \ni N \subset M} (= \bigcap_{M/N \in \mathcal{F}})$, then $\mathcal{T} = \mathcal{T}_t$ and $\mathcal{F} = \mathcal{F}_t$ hold and t is an idempotent

radical. Conversely if t is an idempotent radical, then $(\mathcal{T}_t, \mathcal{F}_t)$ is a torsion theory.

1. A STABLE TORSION THEORY RELATIVE TO TORSION THEORIES

P. Gabriel studied a hereditary stable torsion theory in [3] (Or see p. 152 in [12]). We generalize hereditary stable torsion theory. First we generalize left exact preradicals. For preradicals σ and t, we call t a σ -left exact preradical if $t(N) = N \cap t(M)$ holds for any σ -dense submodule N of a module M.

Lemma 1. If σ is a radical, then $E_{\sigma}(M)$ is σ -injective for any module M.

Lemma 2. For a preradical σ , the following hold.

- (1) If σ is idempotent, then \mathcal{F}_{σ} is closed under taking extensions. Conversely if σ is a radical and \mathcal{F}_{σ} is closed under taking extensions, then σ is idempotent.
- (2) If σ is a radical, then \mathcal{T}_{σ} is closed under taking extensions. Conversely if σ is idempotent and \mathcal{T}_{σ} is closed under taking extensions, then σ is a radical.

In [14] we generalized hereditary torsion theories. For the sake of reader's convenience, we state the following propositions.

Proposition 3. For a left exact preradical σ and an idempotent preradical t, t is σ -left exact if and only if \mathcal{T}_t is closed under taking σ -dense submodules.

Proof. (\rightarrow) : Let N be a σ -dense submodule of a module $M \in \mathcal{T}_t$. Then $t(N) = N \cap t(M) = N \cap M = N$, as desired.

 (\leftarrow) : Let N be a σ -dense submodule of a module M. Since $t(M)/(N \cap t(M)) \simeq (N + t(M))/N \subseteq M/N \in \mathcal{T}_{\sigma}$ and $t(M) \in \mathcal{T}_t$, $N \cap t(M) \in \mathcal{T}_t$. Then it holds that $N \cap t(M) = t(N \cap t(M)) \subseteq t(N)$. Since it is clear that $N \cap t(M) \supseteq t(N)$, $N \cap t(M) = t(N)$ holds.

Proposition 4. For an idempotent radical σ and a radical t, t is σ -left exact if and only if \mathcal{F}_t is closed under taking σ -injective hulls.

Proof. (\rightarrow) : Let M be in \mathcal{F}_t . Then $0 = t(M) = M \cap t(E_{\sigma}(M))$, and so $t(E_{\sigma}(M)) = 0$, as desired.

 (\leftarrow) : Let N be a σ -dense submodule of a module $M \in \mathcal{T}_t$. Consider the following diagram.

$$0 \to N \xrightarrow{g} M \to M/N \to 0$$
$$\downarrow_j \qquad \downarrow_f$$
$$0 \to N/t(N) \xrightarrow{i} E_{\sigma}(N/t(N)),$$

where g and i are the inclusion maps, j is the canonical epimorphism and f is a homomorphism determined by the σ -injectivity of $E_{\sigma}(N/t(N))$. Since t is a radical, $E_{\sigma}(N/t(N)) \in \mathcal{F}_t$ by the assumption. Since $f(t(M)) \subseteq t(E_{\sigma}(N/t(N))) = 0$, it holds that $t(M) \subseteq \ker f$. Let $f|_N$ be a restriction map of f to N. Then it follows that $t(N) = \ker j = \ker f|_N = N \cap \ker f \supseteq N \cap t(M) \supseteq t(N)$, and so $t(N) = N \cap t(M)$, as desired.

Lemma 5. Let σ be an idempotent radical. If M is a σ -essential extension of a module N, then $E_{\sigma}(M) = E_{\sigma}(N)$ holds. Conversely if σ is a left exact radical, $N \subseteq M$ and $E_{\sigma}(M) = E_{\sigma}(N)$, then M is a σ -essential extension of N.

Lemma 6. Let σ be a left exact radical and L a submodule of a module M. Then the following are equivalent.

- (1) $L = E_{\sigma}(L) \cap M$.
- (2) L is σ -essentially closed in M, that is, if L is σ -essential in X such that $L \subseteq X \subseteq M$, then L = X.

Lemma 7. Let σ be an idempotent radical and M a module. Then M is σ -injective if and only if $E_{\sigma}(M) = M$.

A precadical t is called stable if \mathcal{T}_t is closed under taking injective hulls. Next we generalize stable torsion theory. We call a precadical t σ -stable if \mathcal{T}_t is closed under taking σ -injective hulls for a precadical σ . We put $\mathcal{X}_t(M) := \{X : M/X \in \mathcal{T}_t\}$ and $N \cap \mathcal{X}_t(M) := \{N \cap X : X \in \mathcal{X}_t(M)\}$. The following theorem generalize Proposition 7.1 in [12] and (i) and (ii) of Theorem 2.8 in [2].

Theorem 8. Let t be an idempotent preradical and σ an idempotent radical. Then the following conditions (1), (2) and (3) are equivalent.

Assume that t is an idempotent radical and \mathcal{T}_t is closed under taking σ -dense submodules and σ is a left exact radical, then all conditions $(1)^{\sim}(10)$ except (6) are equivalent. Moreover if t is left exact, then all conditions are equivalent.

- (1) t is σ -stable, that is, \mathcal{T}_t is closed under taking σ -injective hulls.
- (2) The class of σ -injective modules are closed under taking t(-), that is, t(E) is σ -injective for any σ -injective module E.
- (3) $E_{\sigma}(t(M)) \subseteq t(E_{\sigma}(M))$ holds for any module M.
- (4) \mathcal{T}_t is closed under taking σ -essential extensions.
- (5) If M/N is σ -torsion, then $N \cap \mathcal{X}_t(M) = \mathcal{X}_t(N)$ holds.
- (6) Every module $M \notin \mathcal{T}_t$ with $M/t(M) \in \mathcal{T}_\sigma$ contains a nonzero submodule $N \in \mathcal{F}_t$.
- (7) For any module M, $t(M) = E_{\sigma}(t(M)) \cap M$ holds.
- (8) For any module M, t(M) is σ -essentially closed in M.
- (9) For any σ -injective module E with $E/t(E) \in \mathcal{T}_{\sigma}$, t(E) is a direct summand of E.
- (10) $E_{\sigma}(t(M)) = t(E_{\sigma}(M))$ holds for any module M.

Proof. (1) \rightarrow (3): Let t be an idempotent preradical and $M \in \text{Mod-}R$. Then $t(M) \in \mathcal{T}_t$, and by assumption $E_{\sigma}(t(M)) \in \mathcal{T}_t$. Since $E_{\sigma}(t(M)) \subseteq E_{\sigma}(M)$, it follows that $E_{\sigma}(t(M)) = t(E_{\sigma}(t(M))) \subseteq t(E_{\sigma}(M))$, as desired.

 $(3) \rightarrow (2)$: Let σ be an idempotent radical and X be a σ -injective module, and then we have $E_{\sigma}(X) = X$ by Lemma 1. Then it follows that $E_{\sigma}(t(X)) \subseteq t(E_{\sigma}(X)) = t(X)$ by the

assumption. Since $E_{\sigma}(t(X)) \supseteq t(X)$ holds clearly, it follows that $E_{\sigma}(t(X)) = t(X)$, and so t(X) is σ -injective by Lemma 1, as desired.

 $(2) \to (1)$: Let σ be a radical and $M \in \mathcal{T}_t$. By the assumption, $t(E_{\sigma}(M))$ is σ -injective. Since $t(E_{\sigma}(M)) \supseteq t(M) = M$, $E_{\sigma}(M)/t(E_{\sigma}(M))$ is an epimorphic image of $E_{\sigma}(M)/M$, and so $E_{\sigma}(M)/t(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$. Thus the exact sequence $(0 \to t(E_{\sigma}(M)) \to E_{\sigma}(M) \to E_{\sigma}(M)) \to C_{\sigma}(M) \to C_{\sigma}(M) \to 0$ splits. Then there exists a submodule K of $E_{\sigma}(M)$ such that $E_{\sigma}(M) = t(E_{\sigma}(M)) \oplus K$, and so $0 = K \cap t(E_{\sigma}(M)) \supseteq K \cap M$. Since M is essential in $E_{\sigma}(M)$, it follows that K = 0, and so $E_{\sigma}(M) = t(E_{\sigma}(M))$, as desired.

 $(1) \to (4)$: Assume that σ is an idempotent radical and \mathcal{T}_t is closed under taking σ -dense submodules. Let $M \in \mathcal{T}_t$ be σ -essential in a module X. By the assumption it follows that $E_{\sigma}(M) \in \mathcal{T}_t$. By Lemma 5 $E_{\sigma}(M) = E_{\sigma}(X)$. Thus $E_{\sigma}(X) \in \mathcal{T}_t$. Since X is a σ -dense submodule of $E_{\sigma}(X)$, it follows that $X \in \mathcal{T}_t$, as desired.

 $(4) \rightarrow (1)$: It is clear.

 $(3) \to (7)$: Let t be a σ -left exact preradical. By the assumption it follows that $t(M) \subseteq M \cap E_{\sigma}(t(M)) \subseteq M \cap t(E_{\sigma}(M)) = t(M)$. Thus $t(M) = M \cap E_{\sigma}(t(M))$.

 $(7) \rightarrow (9)$: Let σ be an idempotent radical, E be σ -injective and $E/t(E) \in \mathcal{T}_{\sigma}$. Then it follows that $t(E) = E_{\sigma}(t(E)) \cap E$ and $E_{\sigma}(t(E)) \subseteq E_{\sigma}(E) = E$, and so $t(E) = E_{\sigma}(t(E))$. Hence t(E) is σ -injective. Thus the sequence $0 \rightarrow t(E) \rightarrow E \rightarrow E/t(E) \rightarrow 0$ splits, as desired.

 $(9) \to (1)$: Let σ be an idempotent radical and t be an idempotent preradical and $M \in \mathcal{T}_t$, then it follows that $M = t(M) \subseteq t(E_{\sigma}(M))$. Thus $E_{\sigma}(M)/t(E_{\sigma}(M))$ is a factor module of $E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$. By the assumption there exists a submodule K of $E_{\sigma}(M)$ such that $E_{\sigma}(M) = K \oplus t(E_{\sigma}(M))$. Thus it follows that $0 = K \cap t(E_{\sigma}(M)) \supseteq K \cap M$, and so K = 0. Hence $E_{\sigma}(M) = t(E_{\sigma}(M)) \in \mathcal{T}_t$.

 $(10) \rightarrow (2)$: It is clear.

(3) \rightarrow (10): Here we assume that σ is a left exact radical and t is a σ -left exact preradical.

First we claim that t(M) is σ -essential in $t(E_{\sigma}(M))$. Suppose that $L \cap t(M) = 0$ for a submodule L of $t(E_{\sigma}(M))$. Then it follows that $0 = L \cap t(M) = L \cap M \cap t(E_{\sigma}(M)) = L \cap M$. Since M is essential in $E_{\sigma}(M)$, L = 0, and so t(M) is essential in $t(E_{\sigma}(M))$. It is clear that t(M) is a σ -dense submodule of $t(E_{\sigma}(M))$ since $t(E_{\sigma}(M))/t(M) = t(E_{\sigma}(M))/(M \cap t(E_{\sigma}(M))) \simeq (M + t(E_{\sigma}(M)))/M \subseteq E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$.

Thus t(M) is σ -essential in $t(E_{\sigma}(M))$, and so by Lemma 5 $E_{\sigma}(t(M)) = E_{\sigma}(t(E_{\sigma}(M))) \supseteq t(E_{\sigma}(M))$. By the assumption $E_{\sigma}(t(M)) \subseteq t(E_{\sigma}(M))$, and so $E_{\sigma}(t(M)) = t(E_{\sigma}(M))$, as desired.

(4) \rightarrow (5): Assume that \mathcal{T}_t is closed under taking σ -dense submodules. Let N be a σ -dense submodule of a module M.

First we claim that $N \cap \mathcal{X}_t(M) \supseteq \mathcal{X}_t(N)$. Let $N_0 \in \mathcal{X}_t(N)$. Then $N/N_0 \in \mathcal{T}_t$. We put $\Gamma = \{M_i/N_0 \subseteq M/N_0 : (M_i/N_0) \cap (N/N_0) = 0\}$. Then by Zorn's argument, Γ has a maximal element M_0/N_0 which is a complement of N/N_0 in M/N_0 , and then $M_0 \cap N = N_0$. Hence $(M_0/N_0) \oplus (N/N_0)$ is essential in M/N_0 , and so $[(M_0/N_0) \oplus (N/N_0)]/[M_0/N_0]$ is essential in $[M/N_0]/[M_0/N_0]$. Therefore $(M_0+N)/M_0$ is essential in M/M_0 . Since $M/N \in \mathcal{T}_{\sigma}$, it follows that $M/(M_0 + N_0) \in \mathcal{T}_{\sigma}$. Thus $\mathcal{T}_t \ni N/N_0 = N/(M_0 \cap N) \simeq (N + M_0)/M_0$. So $(N + M_0)/M_0$ is σ -essential in M/M_0 . By the assumption it follows that $M/M_0 \in \mathcal{T}_t$. Since $M_0 \cap N = N_0$, it conclude that $N \cap \mathcal{X}_t(M) \supseteq \mathcal{X}_t(N)$. Next we will show that $N \cap \mathcal{X}_t(M) \subseteq \mathcal{X}_t(N)$. Let $M_1 \in \mathcal{X}_t(M)$, and then $M/M_1 \in \mathcal{T}_t$. Since $N/(N \cap M_1) \simeq (N + M_1)/M_1 \subseteq M/M_1 \in \mathcal{T}_t$ and $\mathcal{T}_\sigma \ni M/N \to M/(N + M_1) \to 0$, it follows that $N/(N \cap M_1) \in \mathcal{T}_t$ by the assumption, and so $N \cap M_1 \in \mathcal{X}_t(N)$.

 $(5) \to (1)$: Let σ be an idempotent preradical and M be in \mathcal{T}_t . Since $E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$, $\mathcal{X}_t(E_{\sigma}(M)) \cap M = \mathcal{X}_t(M) \ni 0$ for $M \in \mathcal{T}_t$. Thus there exists a submodule X of $E_{\sigma}(M)$ such that $E_{\sigma}(M)/X \in \mathcal{T}_t$ and $X \cap M = 0$. Since M is essential in $E_{\sigma}(M)$, it follows that X = 0, and so $E_{\sigma}(M) \in \mathcal{T}_t$.

 $(1) \to (6)$: Let $M \notin \mathcal{T}_t$ with $M/t(M) \in \mathcal{T}_\sigma$. Suppose that any nonzero submodule N of M is not t-torsionfree. Since $0 \neq t(N) \subseteq N \cap t(M)$, $N \cap t(M) \neq 0$ holds for any nonzero submodule N of M, and so t(M) is essential in M. By the assumption it follows that t(M) is σ -essential in M. By Lemma 5, $E_{\sigma}(t(M)) = E_{\sigma}(M)$ holds. Since t is an idempotent preradical, it follows that $t(M) \in \mathcal{T}_t$ and so $E_{\sigma}(t(M)) \in \mathcal{T}_t$ by the assumption. Thus $E_{\sigma}(M) \in \mathcal{T}_t$. Then $t(M) = M \cap t(E_{\sigma}(M)) = M \cap E_{\sigma}(M) = M$, and so $M \in \mathcal{T}_t$. This is a contradiction, and so $M \notin \mathcal{T}_t$ with $M/t(M) \in \mathcal{T}_\sigma$ contains a nonzero submodule $N \in \mathcal{F}_t$.

 $(6) \to (1)$: Let $M \in \mathcal{T}_t$, then $t(E_{\sigma}(M)) \supseteq t(M) = M$. Suppose that $E_{\sigma}(M) \notin \mathcal{T}_t$. Since $E_{\sigma}(M)/M \to E_{\sigma}(M)/t(E_{\sigma}(M)) \to 0$, it follows that $0 \neq E_{\sigma}(M)/t(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$. By the assumption there exists a nonzero submodule $N \in \mathcal{F}_t$ of $E_{\sigma}(M)$. Since M is essential in E(M), it follows that $M \cap N \neq 0$, and so $\mathcal{F}_t \ni N \supseteq N \cap M \subseteq M \in \mathcal{T}_t$. As t is left exact, $N \cap M \in \mathcal{F}_t \cap \mathcal{T}_t = \{0\}$. This is a contradiction. Thus it follows that $E_{\sigma}(M) \in \mathcal{T}_t$, as desired.

2. Some applications of σ -stable torsion theory

If R is right noetherian, t is stable if and only if every indecomposable injective module is t-torsion or t-torsionfree by Proposition 11.3 in [6]. We will generalize this. First we need the following torsion theoretic generalization of Matlis Papp's theorem in Theorem 1 in [10].

For a left exact radical σ , we denote $\mathcal{L}_{\sigma} := \{I \subseteq R; R/I \in \mathcal{T}_{\sigma}\}$

[10, Theorem 1] Let σ be a left exact radical. Then \mathcal{L}_{σ} satisfies ascending chain conditions if and only if every σ -injective σ -torsion R-module is a direct sum of σ -injective σ -torsion indecomposable submodules.

The following theorem generalizes [6, Proposition 11.3].

Theorem 9. Assume that t is an idempotent radical, σ is a left exact radical and \mathcal{T}_t is closed under taking σ -dense submodules. Then the following hold.

- (1) If t is σ -stable, then (*) every indecomposable σ -injective module E with $E/t(E) \in \mathcal{T}_{\sigma}$ is either t-torsion or t-torsionfree.
- (2) If the ring R satisfies the condition (*) and \mathcal{L}_{σ} satisfies ascending chain conditions, then $\mathcal{T}_t \cap \mathcal{T}_{\sigma}$ is closed under taking σ -injective hulls.

Proof of (1): Let E be an indecomposable σ -injective module with $E/t(E) \in \mathcal{T}_{\sigma}$. By (9) in Theorem 8, t(E) is a direct summand of E. As E is indecomposable, t(E) = 0 or t(E) = E, as desired.

Proof of (2): Let M be in $\mathcal{T}_t \cap \mathcal{T}_{\sigma}$. Since \mathcal{T}_{σ} is closed under taking extensions, $E_{\sigma}(M)$ is σ -torsion. As $E_{\sigma}(M)$ is σ -injective and σ -torsion, it follows that $E_{\sigma}(M) = \sum_{i \in I} \bigoplus E_i$

by [10, Theorem 1], where I is an index set and E_i is a nonzero σ -injective σ -torsion indecomposable submodule of $E_{\sigma}(M)$. As $E_i \subseteq E_{\sigma}(M) \in \mathcal{T}_{\sigma}$, it follows that $E_i \in \mathcal{T}_{\sigma}$, and so $E_i/t(E_i) \in \mathcal{T}_{\sigma}$, it follows that E_i is t-torsion or t-torsionfree. Since M is essential in $E_{\sigma}(M)$, it follows that $M \cap E_i \neq 0$. Since $M \in \mathcal{T}_{\sigma}$, $M/(M \cap E_i) \in \mathcal{T}_{\sigma}$. As $M \in \mathcal{T}_t$ and \mathcal{T}_t is closed under taking σ -dense submodules, $M \cap E_i \in \mathcal{T}_t$. Thus $t(E_i) \supseteq t(M \cap E_i) = M \cap E_i \neq i$ 0, and so $t(E_i) \neq 0$. Hence $t(E_i) = E_i$ holds for all *i*. Since every preradical preserves direct sums, it follows that $t(E_{\sigma}(M)) = t(\sum_{i \in I} \oplus E_i) = \sum_{i \in I} \oplus t(E_i) = \sum_{i \in I} \oplus E_i = E_{\sigma}(M)$, and

so
$$E_{\sigma}(M) \in \mathcal{T}_t$$

The following proposition generalizes [7, Proposition 1.2].

Proposition 10. Let $(\mathcal{T}_t, \mathcal{F}_t)$ be a σ -hereditary σ -stable torsion theory, that is, t is an idempotent radical and \mathcal{T}_t is closed under taking σ -injective hulls and σ -dense submodules, where σ is a left exact radical. Then there exists an isomorphism: $E_{\sigma}(M/t(M)) \simeq$ $E_{\sigma}(M)/E_{\sigma}(t(M)), \text{ if } M/t(M) \in \mathcal{T}_{\sigma}.$

Proof. For a module M consider the following commutative diagram.

$$\begin{array}{cccc} 0 \to & M \xrightarrow{j} & E_{\sigma}(M) \\ & \downarrow g & \downarrow f \\ 0 \to M/t(M) \xrightarrow{i} E_{\sigma}(M/t(M)), \end{array}$$

where i and j are inclusions and g is a canonical epimorphism and f is an induced morphism by σ -injectivity of $E_{\sigma}(M/t(M))$. By the above diagram, $t(M) = \ker g =$ $\ker(f|_M) = \ker f \cap M$, and so $t(M) = \ker f \cap M$ follows. Since $M/t(M) \in \mathcal{F}_t$ and \mathcal{F}_t is closed under taking σ -injective hulls and σ is a left exact preradical, it follows that $E_{\sigma}(M)/\ker f \subseteq E_{\sigma}(M/t(M)) \in \mathcal{F}_t$. Thus it follows that $t(E_{\sigma}(M)) \subseteq \ker f$. Since \mathcal{T}_{σ} is closed under taking extensions and $M/t(M) \in \mathcal{T}_{\sigma}$ and $E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}$, it follows that $E_{\sigma}(M)/t(M) \in \mathcal{T}_{\sigma}$. Since $E_{\sigma}(M)/t(E_{\sigma}(M))$ is an epimorphic image of $E_{\sigma}(M)/t(M)$, it follows that $E_{\sigma}(M)/t(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$. Since σ is left exact preradical and ker $f/t(E_{\sigma}(M)) \subseteq E_{\sigma}(M)/t(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$, it follows that ker $f/t(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$. By the assumption $t(E_{\sigma}(M))$ is σ -injective. Then the exact sequence $(0 \to t(E_{\sigma}(M)) \to \ker f \to f)$ ker $f/t(E_{\sigma}(M)) \to 0$ splits. Then there exists a submodule S of ker f such that ker f = $S \oplus t(E_{\sigma}(M))$. Then since $0 = S \cap t(E_{\sigma}(M)) \supseteq S \cap t(M)$, it follows that $0 = S \cap t(M) =$ $S \cap \ker f \cap M$. As M is essential in $E_{\sigma}(M)$, it follows that $0 = S \cap \ker f = S$. Thus it follows that $t(E_{\sigma}(M)) = \ker f$. So $f(E_{\sigma}(M)) \simeq E_{\sigma}(M) / \ker f = E_{\sigma}(M) / t(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$. Thus the exact sequence $0 \to t(E_{\sigma}(M)) \to E_{\sigma}(M) \to f(E_{\sigma}(M)) \to 0$ splits as $t(E_{\sigma}(M))$ is σ -injective. Thus $f(E_{\sigma}(M))$ is a direct summand of σ -injective module $E_{\sigma}(M)$, and so $f(E_{\sigma}(M))$ is also σ -injective. Since $E_{\sigma}(M/t(M)) \supseteq f(E_{\sigma}(M)) \supseteq g(M) \supseteq M/t(M)$, it follows that $E_{\sigma}(M/t(M))/f(E_{\sigma}(M)) \in \mathcal{T}_{\sigma}$. Thus the exact sequence $0 \to f(E_{\sigma}(M)) \to 0$ $E_{\sigma}(M/t(M)) \to E_{\sigma}(M/t(M))/f(E_{\sigma}(M)) \to 0$ splits. So there exists a submodule K of $E_{\sigma}(M/t(M))$ such that $E_{\sigma}(M/t(M)) = K \oplus f(E_{\sigma}(M))$. Since $f(E_{\sigma}(M)) \supseteq M/t(M)$, it follows that $K \cap (M/t(M)) = 0$. But M/t(M) is essential in $E_{\sigma}(M/t(M))$, and so K = 0. Thus $E_{\sigma}(M/t(M)) = f(E_{\sigma}(M)) \simeq E_{\sigma}(M)/\ker f = E_{\sigma}(M)/t(E_{\sigma}(M))$, as desired. Hereafter we omit the proof of the following propositions.

We call $A \sigma - M$ -injective if $\operatorname{Hom}_R(-, A)$ preserves the exactness for any exact sequence $0 \to N \to M \to M/N \to 0$, where $M/N \in \mathcal{T}_{\sigma}$. The following proposition is a generalization of Theorem 15 in [16].

Proposition 11. A is σ -M-injective if and only if $f(M) \subseteq A$ for any $f \in \text{Hom}_R(E_{\sigma}(M), E_{\sigma}(A))$.

We obtain the following corollary as a torsion theoretic generalization of the Johnson Wong theorem by putting M = A in Proposition 11. We call a module $A \sigma$ -quasi-injective if A is σ -A-injective.

Corollary 12. A is σ -quasi-injective if and only if $f(A) \subseteq A$ for any $f \in \text{Hom}_R(E_{\sigma}(A))$, $E_{\sigma}(A)$).

The following lemma generalizes Proposition 2.3 in [17].

Lemma 13. If A is σ -quasi-injective and $E_{\sigma}(A) = M \oplus N$, then $A = (M \cap A) \oplus (N \cap A)$.

Now we can generalize [1, Theorem 2.3]

Theorem 14. Assume that σ is a left exact radical and \mathcal{T}_t is closed under taking σ -injective hulls, then every σ -quasi-injective R-module A with $A/t(A) \in \mathcal{T}_{\sigma}$ splits, that is, $A = t(A) \oplus N$ where $N \in \mathcal{F}_t$, and then if t(A) is σ -torsion, then N is σ -quasi-injective.

The following corollary generalizes Corollary 2.15 in [5].

Corollary 15. Let M be a σ -quasi-injective module. Then any σ -essentially closed and σ -dense submodule of M is a direct summand of M, and any direct summand is σ -quasi-injective.

References

- E. P. Armendariz, Quasi-injective modules and stable torsion classes, Pacific J. Math. 31 (1969), 227–280.
- [2] L. Bican, P. Jambor, T. Kepka and P. Nemec, Stable and costable preradicals, Acta Universitatis Carolinae-Mathematicaet Physica, 16(2) (1975), 63–69.
- [3] P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- [4] J. L. Gómez Pardo, Spectral Gabriel topologies and relative singular functors, Comm. in Algebra 13(1) (1985), 21–57.
- [5] K. R. Goodearl, *Ring Theory*, Marcel Dekker, New York, 1976.
- [6] J. S. Golan, Localization of Noncommutative Rings, Marcel Dekker, New York, 1976.
- [7] J. S. Golan, Structure Sheaves over a Noncommutative Rings, Marcel Dekker, 1980.
- [8] J. S. Golan, Torsion Theories, Longman Scientific & Technical, 1986.
- [9] J. N. Manocha, Singular submodule relative to a kernel functor, Comm. in Algebra, 10(5) (1982), 474–491.
- [10] K. Masaike and T. Horigome, Direct sums of τ -injective modules, Tsukuba J. Math. 4 (1980), 77–81.
- [11] R. A. Rubin, Semi-simplicity relative to kernel functors, Can. J. Math. 26 (1974), 1405–1411.
- [12] Bo Stenström, Rings of Quotients, Springer-Verlag, Berlin, 1975.
- [13] Y. Takehana, On generalization of CQF-3' modules and cohereditary torsion theories, to appear in Math. J. Okayama Univ.
- [14] Y. Takehana, On generalization of QF-3' modules and hereditary torsion theories, to appear in Math. J. Okayama Univ.

- [15] Z. Papp, Semi-stability and topologies on R-sp, Comm. in Algebra 4 (1976), 793–809.
- [16] G. Azumaya, *M-projective and M-injectives*, unpublished.
- [17] M. Harada, Note on quasi-injective modules, Osaka J. Math. 2 (1965), 351–356.

GENERAL EDUCATION HAKODATE NATIONAL COLLEGE OF TECHNOLOGY 14-1 TOKURA-CHO HAKODATE HOKKAIDO, 042-8501 JAPAN *E-mail address*: takehana@hakodate-ct.ac.jp