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Abstract. Throughout this paper R is a ring with a unit element, every right R-module
is unital and Mod-R is the category of right R-modules. A subfunctor of the identity
functor of Mod-R is called a preradical. A torsion theory (T ,F) is called stable if T
is closed under taking injective hulls. We denote E(M) the injective hull of a module
M . For a preradical σ, we denote Eσ(M) the σ-injective hull of a module M , where
Eσ(M) is defined by Eσ(M)/M := σ(E(M)/M). For a preradical σ we call a torsion
theory (T ,F) is σ-stable if T is closed under taking σ-injective hulls. In this note, we
characterize σ-stable torsion theories and give some related facts.

0. Fundamental facts of torsion theory

For a preradical t it hold that t(N) ⊆ t(M) and t(M/N) ⊇ (t(M) + N)/N for any
M ∈ Mod-R and its submodule N . A preradical t is called idempotent (radical) if
t(t(M)) = t(M) (t(M/t(M)) = 0) for any module M , respectively. For a preradical
σ, Tσ := {M ∈ Mod-R | σ(M) = M} is the class of σ-torsion right R-modules, and
Fσ := {M ∈ Mod-R | σ(M) = 0} is the class of σ-torsionfree right R-modules. For a
subclass C of Mod-R, it is said that C is closed under taking extensions if: if N, M/N ∈ C
then M ∈ C for any M ∈ Mod-R and its submodule N . A preradical t is called left exact
if t(N) = N ∩ t(M) for any submodule N of a module M . It is also well known that a
preradical t is idempotent and Tt is closed under taking submodules if and only if t is left
exact. A right R-module M is called σ-injective if the functor HomR(−,M) preserves the
exactness for any exact sequence 0 → A → B → C → 0 with C ∈ Tσ. For a preradical
σ a submodule N of a module M is called σ-dense in M if M/N is σ-torsion, and N is
called σ-essential in M if N is σ-dense and essential in M . It holds that a module M is
σ-injective if and only if M has no proper σ-essential extension.

Let σ be an idempotent radical. If X is minimal in {X | X is σ-injective and X ⊇ M},
X is called to be a minimal σ-injective extension of M . If Y is maximal in {Y | Y ⊇ M and
M is σ-essential in Y }, Y is called to be a maximal σ-essential extension of M . If X ⊇ M
and X is σ-injective and M is σ-essential in X, X is called to be a σ-injective σ-essential
extension of M . For any module M a σ-injective σ-essential extension of M exists and
is unique to within isomorphism. The σ-injective σ-essential extension of M coincides
with the minimal σ-injective extension of M and the maximal σ-essential extension of M
and is called to be the σ-injective hull of M . We put σ(E(M)/M) = Eσ(M)/M . For an
idempotent radical σ, the σ-injective hull of M is isomorphic to Eσ(M). But even if a
preradical σ is not an idempotent radical, we call Eσ(M) the σ-injective hull of a module
M .

The detailed version of this paper will be submitted for publication elsewhere.
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Let C be a subclass of Mod-R. A torsion theory for C is a pair (T ,F) of classes of
objects of C such that

(i) HomR(T, F ) = 0 for all T ∈ T , F ∈ F
(ii) If HomR(M, F ) = 0 for all F ∈ F , then M ∈ T
(iii) If HomR(T, N) = 0 for all T ∈ T , then N ∈ F .
We put t(M) =

∑
N

T ∋N⊂M

(= ∩N
M/N∈F

), then T = T t and F = F t hold and t is an idempotent

radical. Conversely if t is an idempotent radical, then (Tt,Ft) is a torsion theory.

1. A stable torsion theory relative to torsion theories

P. Gabriel studied a hereditary stable torsion theory in [3] (Or see p. 152 in [12]). We
generalize hereditary stable torsion theory. First we generalize left exact preradicals. For
preradicals σ and t, we call t a σ-left exact preradical if t(N) = N ∩ t(M) holds for any
σ-dense submodule N of a module M .

Lemma 1. If σ is a radical, then Eσ(M) is σ-injective for any module M .

Lemma 2. For a preradical σ, the following hold.

(1) If σ is idempotent, then Fσ is closed under taking extensions. Conversely if σ is
a radical and Fσ is closed under taking extensions, then σ is idempotent.

(2) If σ is a radical, then Tσ is closed under taking extensions. Conversely if σ is
idempotent and Tσ is closed under taking extensions, then σ is a radical.

In [14] we generalized hereditary torsion theories. For the sake of reader’s convenience,
we state the following propositions.

Proposition 3. For a left exact preradical σ and an idempotent preradical t, t is σ-left
exact if and only if Tt is closed under taking σ-dense submodules.

Proof. (→): Let N be a σ-dense submodule of a module M ∈ Tt. Then t(N) = N∩t(M) =
N ∩ M = N , as desired.

(←): Let N be a σ-dense submodule of a module M . Since t(M)/(N ∩ t(M)) ≃
(N + t(M))/N ⊆ M/N ∈ Tσ and t(M) ∈ Tt, N ∩ t(M) ∈ Tt. Then it holds that
N∩t(M) = t(N∩t(M)) ⊆ t(N). Since it is clear that N∩t(M) ⊇ t(N), N∩t(M) = t(N)
holds. ¤

Proposition 4. For an idempotent radical σ and a radical t, t is σ-left exact if and only
if Ft is closed under taking σ-injective hulls.

Proof. (→): Let M be in Ft. Then 0 = t(M) = M ∩ t(Eσ(M)), and so t(Eσ(M)) = 0, as
desired.

(←): Let N be a σ-dense submodule of a module M ∈ Tt. Consider the following
diagram.

0 → N
g→ M → M/N → 0

↓j ↓f

0 → N/t(N)
i→ Eσ(N/t(N)),
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where g and i are the inclusion maps, j is the canonical epimorphism and f is a homomor-
phism determined by the σ-injectivity of Eσ(N/t(N)). Since t is a radical, Eσ(N/t(N)) ∈
Ft by the assumption. Since f(t(M)) ⊆ t(Eσ(N/t(N))) = 0, it holds that t(M) ⊆ kerf .
Let f |N be a restriction map of f to N . Then it follows that t(N) = ker j = ker f |N =
N ∩ ker f ⊇ N ∩ t(M) ⊇ t(N), and so t(N) = N ∩ t(M), as desired. ¤

Lemma 5. Let σ be an idempotent radical. If M is a σ-essential extension of a module
N , then Eσ(M) = Eσ(N) holds. Conversely if σ is a left exact radical, N ⊆ M and
Eσ(M) = Eσ(N), then M is a σ-essential extension of N.

Lemma 6. Let σ be a left exact radical and L a submodule of a module M . Then the
following are equivalent.

(1) L = Eσ(L) ∩ M.
(2) L is σ-essentially closed in M , that is, if L is σ-essential in X such that L ⊆

X ⊆ M , then L = X.

Lemma 7. Let σ be an idempotent radical and M a module. Then M is σ-injective if
and only if Eσ(M) = M .

A preradical t is called stable if Tt is closed under taking injective hulls. Next we
generalize stable torsion theory. We call a preradical t σ-stable if Tt is closed under
taking σ-injective hulls for a preradical σ. We put Xt(M) := {X : M/X ∈ Tt} and
N ∩ Xt(M) := {N ∩ X : X ∈ Xt(M)}. The following theorem generalize Proposition 7.1
in [12] and (i) and (ii) of Theorem 2.8 in [2].

Theorem 8. Let t be an idempotent preradical and σ an idempotent radical. Then the
following conditions (1), (2) and (3) are equivalent.

Assume that t is an idempotent radical and Tt is closed under taking σ-dense submod-
ules and σ is a left exact radical, then all conditions (1)˜(10) except (6) are equivalent.
Moreover if t is left exact, then all conditions are equivalent.

(1) t is σ-stable, that is, Tt is closed under taking σ-injective hulls.
(2) The class of σ-injective modules are closed under taking t(−), that is, t(E) is

σ-injective for any σ-injective module E.
(3) Eσ(t(M)) ⊆ t(Eσ(M)) holds for any module M.
(4) Tt is closed under taking σ-essential extensions.
(5) If M/N is σ-torsion, then N ∩ Xt(M) = Xt(N) holds.
(6) Every module M /∈ Tt with M/t(M) ∈ Tσ contains a nonzero submodule N ∈ Ft.
(7) For any module M , t(M) = Eσ(t(M)) ∩ M holds.
(8) For any module M , t(M) is σ-essentially closed in M .
(9) For any σ-injective module E with E/t(E) ∈ Tσ, t(E) is a direct summand of E.

(10) Eσ(t(M)) = t(Eσ(M)) holds for any module M .

Proof. (1)→(3): Let t be an idempotent preradical and M ∈ Mod-R. Then t(M) ∈ Tt,
and by assumption Eσ(t(M)) ∈ Tt. Since Eσ(t(M)) ⊆ Eσ(M), it follows that Eσ(t(M)) =
t(Eσ(t(M))) ⊆ t(Eσ(M)), as desired.

(3)→(2): Let σ be an idempotent radical and X be a σ-injective module, and then we
have Eσ(X) = X by Lemma 1. Then it follows that Eσ(t(X)) ⊆ t(Eσ(X)) = t(X) by the
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assumption. Since Eσ(t(X)) ⊇ t(X) holds clearly, it follows that Eσ(t(X)) = t(X), and
so t(X) is σ-injective by Lemma 1, as desired.

(2)→(1): Let σ be a radical and M ∈ Tt. By the assumption, t(Eσ(M)) is σ-injective.
Since t(Eσ(M)) ⊇ t(M) = M , Eσ(M)/t(Eσ(M)) is an epimorphic image of Eσ(M)/M ,
and so Eσ(M)/t(Eσ(M)) ∈ Tσ. Thus the exact sequence (0 → t(Eσ(M)) → Eσ(M) →
Eσ(M)/t(Eσ(M)) → 0) splits. Then there exists a submodule K of Eσ(M) such that
Eσ(M) = t(Eσ(M)) ⊕ K, and so 0 = K ∩ t(Eσ(M)) ⊇ K ∩ M . Since M is essential in
Eσ(M), it follows that K = 0, and so Eσ(M) = t(Eσ(M)), as desired.

(1)→(4): Assume that σ is an idempotent radical and Tt is closed under taking σ-dense
submodules. Let M ∈ Tt be σ-essential in a module X. By the assumption it follows that
Eσ(M) ∈ Tt. By Lemma 5 Eσ(M) = Eσ(X). Thus Eσ(X) ∈ Tt. Since X is a σ-dense
submodule of Eσ(X), it follows that X ∈ Tt, as desired.

(4)→(1): It is clear.
(3)→(7): Let t be a σ-left exact preradical. By the assumption it follows that t(M) ⊆

M ∩ Eσ(t(M)) ⊆ M ∩ t(Eσ(M)) = t(M). Thus t(M) = M ∩ Eσ(t(M)).
(7)→(9): Let σ be an idempotent radical, E be σ-injective and E/t(E) ∈ Tσ. Then it

follows that t(E) = Eσ(t(E)) ∩ E and Eσ(t(E)) ⊆ Eσ(E) = E, and so t(E) = Eσ(t(E)).
Hence t(E) is σ-injective. Thus the sequence 0 → t(E) → E → E/t(E) → 0 splits, as
desired.

(9)→(1): Let σ be an idempotent radical and t be an idempotent preradical and M ∈ Tt,
then it follows that M = t(M) ⊆ t(Eσ(M)). Thus Eσ(M)/t(Eσ(M)) is a factor module
of Eσ(M)/M ∈ Tσ. By the assumption there exists a submodule K of Eσ(M) such that
Eσ(M) = K⊕t(Eσ(M)). Thus it follows that 0 = K∩t(Eσ(M)) ⊇ K∩M , and so K = 0.
Hence Eσ(M) = t(Eσ(M)) ∈ Tt.

(10)→(2): It is clear.
(3)→(10): Here we assume that σ is a left exact radical and t is a σ-left exact preradical.
First we claim that t(M) is σ-essential in t(Eσ(M)). Suppose that L ∩ t(M) = 0 for a

submodule L of t(Eσ(M)). Then it follows that 0 = L∩t(M) = L∩M∩t(Eσ(M)) = L∩M .
Since M is essential in Eσ(M), L = 0, and so t(M) is essential in t(Eσ(M)). It is clear
that t(M) is a σ-dense submodule of t(Eσ(M)) since t(Eσ(M))/t(M) = t(Eσ(M))/(M ∩
t(Eσ(M))) ≃ (M + t(Eσ(M)))/M ⊆ Eσ(M)/M ∈ Tσ.

Thus t(M) is σ-essential in t(Eσ(M)), and so by Lemma 5 Eσ(t(M)) = Eσ(t(Eσ(M))) ⊇
t(Eσ(M)). By the assumption Eσ(t(M)) ⊆ t(Eσ(M)), and so Eσ(t(M)) = t(Eσ(M)), as
desired.

(4)→(5): Assume that Tt is closed under taking σ-dense submodules. Let N be a
σ-dense submodule of a module M .

First we claim that N ∩ Xt(M) ⊇ Xt(N). Let N0 ∈ Xt(N). Then N/N0 ∈ Tt. We
put Γ = {Mi/N0 ⊆ M/N0 : (Mi/N0) ∩ (N/N0) = 0}. Then by Zorn’s argument, Γ has a
maximal element M0/N0 which is a complement of N/N0 in M/N0, and then M0∩N = N0.
Hence (M0/N0) ⊕ (N/N0) is essential in M/N0, and so [(M0/N0) ⊕ (N/N0)]/[M0/N0] is
essential in [M/N0]/[M0/N0]. Therefore (M0+N)/M0 is essential in M/M0. Since M/N ∈
Tσ, it follows that M/(M0 + N0) ∈ Tσ. Thus Tt ∋ N/N0 = N/(M0 ∩N) ≃ (N + M0)/M0.
So (N + M0)/M0 is σ-essential in M/M0. By the assumption it follows that M/M0 ∈ Tt.
Since M0 ∩ N = N0, it conclude that N ∩ Xt(M) ⊇ Xt(N).
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Next we will show that N ∩ Xt(M) ⊆ Xt(N). Let M1 ∈ Xt(M), and then M/M1 ∈ Tt.
Simce N/(N ∩M1) ≃ (N + M1)/M1 ⊆ M/M1 ∈ Tt and Tσ ∋ M/N → M/(N + M1) → 0,
it follows that N/(N ∩ M1) ∈ Tt by the assumption, and so N ∩ M1 ∈ Xt(N).

(5)→(1): Let σ be an idempotent preradical and M be in Tt. Since Eσ(M)/M ∈ Tσ,
Xt(Eσ(M)) ∩ M = Xt(M) ∋ 0 for M ∈ Tt . Thus there exists a submodule X of Eσ(M)
such that Eσ(M)/X ∈ Tt and X ∩M = 0. Since M is essential in Eσ(M), it follows that
X = 0, and so Eσ(M) ∈ Tt.

(1)→(6): Let M /∈ Tt with M/t(M) ∈ Tσ. Suppose that any nonzero submodule N of
M is not t-torsionfree. Since 0 ̸= t(N) ⊆ N ∩ t(M), N ∩ t(M) ̸= 0 holds for any nonzero
submodule N of M , and so t(M) is essential in M . By the assumption it follows that t(M)
is σ-essential in M . By Lemma 5, Eσ(t(M)) = Eσ(M) holds. Since t is an idempotent
preradical, it follows that t(M) ∈ Tt and so Eσ(t(M)) ∈ Tt by the assumption. Thus
Eσ(M) ∈ Tt. Then t(M) = M ∩ t(Eσ(M)) = M ∩Eσ(M) = M , and so M ∈ Tt. This is a
contradiction, and so M /∈ Tt with M/t(M) ∈ Tσ contains a nonzero submodule N ∈ Ft.

(6)→(1): Let M ∈ Tt, then t(Eσ(M)) ⊇ t(M) = M . Suppose that Eσ(M) /∈ Tt. Since
Eσ(M)/M → Eσ(M)/t(Eσ(M)) → 0, it follows that 0 ̸= Eσ(M)/t(Eσ(M)) ∈ Tσ. By
the assumption there exists a nonzero submodule N ∈ Ft of Eσ(M). Since M is essential
in E(M), it follows that M ∩ N ̸= 0, and so Ft ∋ N ⊇ N ∩ M ⊆ M ∈ Tt. As t is left
exact, N ∩M ∈ Ft ∩ Tt = {0}. This is a contradiction. Thus it follows that Eσ(M) ∈ Tt,
as desired. ¤

2. Some applications of σ-stable torsion theory

If R is right noetherian, t is stable if and only if every indecomposable injective module
is t-torsion or t-torsionfree by Proposition 11.3 in [6]. We will generalize this. First we
need the following torsion theoretic generalization of Matlis Papp’s theorem in Theorem 1
in [10].

For a left exact radical σ, we denote Lσ := {I ⊆ R; R/I ∈ Tσ}
[10, Theorem 1] Let σ be a left exact radical. Then Lσ satisfies ascending chain con-
ditions if and only if every σ-injective σ-torsion R-module is a direct sum of σ-injective
σ-torsion indecomposable submodules.

The following theorem generalizes [6, Proposition 11.3].

Theorem 9. Assume that t is an idempotent radical, σ is a left exact radical and Tt is
closed under taking σ-dense submodules. Then the following hold.

(1) If t is σ-stable, then (∗) every indecomposable σ-injective module E with E/t(E) ∈
Tσ is either t-torsion or t-torsionfree.

(2) If the ring R satisfies the condition (∗) and Lσ satisfies ascending chain conditions,
then Tt ∩ Tσ is closed under taking σ-injective hulls.

Proof of (1): Let E be an indecomposable σ-injective module with E/t(E) ∈ Tσ. By (9)
in Theorem 8, t(E) is a direct summand of E. As E is indecomposable, t(E) = 0 or
t(E) = E, as desired.

Proof of (2): Let M be in Tt ∩ Tσ. Since Tσ is closed under taking extensions, Eσ(M)
is σ-torsion. As Eσ(M) is σ-injective and σ-torsion, it follows that Eσ(M) =

∑
i∈I

⊕ Ei
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by [10, Theorem 1], where I is an index set and Ei is a nonzero σ-injective σ-torsion
indecomposable submodule of Eσ(M). As Ei ⊆ Eσ(M) ∈ Tσ, it follows that Ei ∈ Tσ, and
so Ei/t(Ei) ∈ Tσ, it follows that Ei is t-torsion or t-torsionfree. Since M is essential in
Eσ(M), it follows that M ∩Ei ̸= 0. Since M ∈ Tσ, M/(M ∩Ei) ∈ Tσ. As M ∈ Tt and Tt is
closed under taking σ-dense submodules, M∩Ei ∈ Tt. Thus t(Ei) ⊇ t(M∩Ei) = M∩Ei ̸=
0, and so t(Ei) ̸= 0. Hence t(Ei) = Ei holds for all i. Since every preradical preserves
direct sums, it follows that t(Eσ(M)) = t(

∑
i∈I

⊕Ei) =
∑
i∈I

⊕ t(Ei) =
∑

⊕
i∈I

Ei = Eσ(M), and

so Eσ(M) ∈ Tt. ¤
The following proposition generalizes [7, Proposition 1.2].

Proposition 10. Let (Tt,Ft) be a σ-hereditary σ-stable torsion theory, that is, t is an
idempotent radical and Tt is closed under taking σ-injective hulls and σ-dense submod-
ules, where σ is a left exact radical. Then there exists an isomorphism: Eσ(M/t(M)) ≃
Eσ(M)/Eσ(t(M)), if M/t(M) ∈ Tσ.

Proof. For a module M consider the following commutative diagram.

0 → M
j→ Eσ(M)

↓ g ↓ f
0 → M/t(M) →

i
Eσ(M/t(M)),

where i and j are inclusions and g is a canonical epimorphism and f is an induced
morphism by σ-injectivity of Eσ(M/t(M)). By the above diagram, t(M) = ker g =
ker(f |M) = ker f ∩ M , and so t(M) = ker f ∩ M follows. Since M/t(M) ∈ Ft and
Ft is closed under taking σ-injective hulls and σ is a left exact preradical, it follows
that Eσ(M)/ ker f ⊆ Eσ(M/t(M)) ∈ Ft. Thus it follows that t(Eσ(M)) ⊆ ker f .
Since Tσ is closed under taking extensions and M/t(M) ∈ Tσ and Eσ(M)/M ∈ Tσ,
it follows that Eσ(M)/t(M) ∈ Tσ. Since Eσ(M)/t(Eσ(M)) is an epimorphic image of
Eσ(M)/t(M), it follows that Eσ(M)/t(Eσ(M)) ∈ Tσ. Since σ is left exact preradical and
ker f/t(Eσ(M)) ⊆ Eσ(M)/t(Eσ(M)) ∈ Tσ, it follows that ker f/t(Eσ(M)) ∈ Tσ. By the
assumption t(Eσ(M)) is σ-injective. Then the exact sequence (0 → t(Eσ(M)) → ker f →
ker f/t(Eσ(M)) → 0) splits. Then there exists a submodule S of ker f such that ker f =
S ⊕ t(Eσ(M)). Then since 0 = S ∩ t(Eσ(M)) ⊇ S ∩ t(M), it follows that 0 = S ∩ t(M) =
S ∩ ker f ∩ M . As M is essential in Eσ(M), it follows that 0 = S ∩ ker f = S. Thus it
follows that t(Eσ(M)) = ker f . So f(Eσ(M)) ≃ Eσ(M)/ ker f = Eσ(M)/t(Eσ(M)) ∈ Tσ.
Thus the exact sequence 0 → t(Eσ(M)) → Eσ(M) → f(Eσ(M)) → 0 splits as t(Eσ(M))
is σ-injective. Thus f(Eσ(M)) is a direct summand of σ-injective module Eσ(M), and
so f(Eσ(M)) is also σ-injective. Since Eσ(M/t(M)) ⊇ f(Eσ(M)) ⊇ g(M) ⊇ M/t(M), it
follows that Eσ(M/t(M))/f(Eσ(M)) ∈ Tσ. Thus the exact sequence 0 → f(Eσ(M)) →
Eσ(M/t(M)) → Eσ(M/t(M))/f(Eσ(M)) → 0 splits. So there exists a submodule K
of Eσ(M/t(M)) such that Eσ(M/t(M)) = K ⊕ f(Eσ(M)). Since f(Eσ(M)) ⊇ M/t(M),
it follows that K ∩ (M/t(M)) = 0. But M/t(M) is essential in Eσ(M/t(M)), and so
K = 0. Thus Eσ(M/t(M)) = f(Eσ(M)) ≃ Eσ(M)/ ker f = Eσ(M)/t(Eσ(M)), as de-
sired. ¤
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Hereafter we omit the proof of the following propositions.

We call A σ-M -injective if HomR(−, A) preserves the exactness for any exact sequence
0 → N → M → M/N → 0, where M/N ∈ Tσ. The following proposition is a generaliza-
tion of Theorem 15 in [16].

Proposition 11. A is σ-M-injective if and only if f(M) ⊆ A for any f ∈ HomR(Eσ(M),
Eσ(A)).

We obtain the following corollary as a torsion theoretic generalization of the Johnson
Wong theorem by putting M = A in Proposition 11. We call a module A σ-quasi-injective
if A is σ-A-injective.

Corollary 12. A is σ-quasi-injective if and only if f(A) ⊆ A for any f ∈ HomR(Eσ(A),
Eσ(A)).

The following lemma generalizes Proposition 2.3 in [17].

Lemma 13. If A is σ-quasi-injective and Eσ(A) = M ⊕N , then A = (M ∩A)⊕ (N ∩A).

Now we can generalize [1, Theorem 2.3]

Theorem 14. Assume that σ is a left exact radical and Tt is closed under taking σ-
injective hulls, then every σ-quasi-injective R-module A with A/t(A) ∈ Tσ splits, that is,
A = t(A) ⊕ N where N ∈ Ft, and then if t(A) is σ-torsion, then N is σ-quasi-injective.

The following corollary generalizes Corollary 2.15 in [5].

Corollary 15. Let M be a σ-quasi-injective module. Then any σ-essentially closed and
σ-dense submodule of M is a direct summand of M , and any direct summand is σ-quasi-
injective.
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