HOCHSCHILD COHOMOLOGY OF CLUSTER-TILTED ALGEBRAS OF TYPES \mathbb{A}_n AND \mathbb{D}_n

TAKAHIKO FURUYA AND TAKAO HAYAMI

Abstract. In this note, we study the Hochschild cohomology for cluster-tilted algebras of Dynkin types \mathbb{A}_n and \mathbb{D}_n. We first show that all cluster-tilted algebras of type \mathbb{A}_n are (D, A)-stacked monomial algebras (with $D = 2$ and $A = 1$), and then investigate their Hochschild cohomology rings modulo nilpotence. Also we describe the Hochschild cohomology rings modulo nilpotence for some cluster-tilted algebras of type \mathbb{D}_n which are derived equivalent to a (D, A)-stacked monomial algebra. Finally we determine the structures of the Hochschild cohomology rings modulo nilpotence for algebras in a class of some special biserial algebras which contains a cluster-tilted algebra of type \mathbb{D}_4.

1. Introduction

The purpose in this note is to study the Hochschild cohomology for cluster-tilted algebras of Dynkin types \mathbb{A}_n and \mathbb{D}_n.

Throughout this note, let K denote an algebraically closed field. Let A be a finite-dimensional K-algebra, and let A^e be the enveloping algebra $A^{\text{op}} \otimes_K A$ of A (hence right A^e-modules correspond to A-A-bimodules). Then the Hochschild cohomology ring $\text{HH}^*(A)$ of A is defined by the graded ring

$$\text{HH}^*(A) := \text{Ext}^*_A(A, A) = \bigoplus_{i \geq 0} \text{Ext}^i_A(A, A),$$

where the product is given by the Yoneda product. It is well-known that $\text{HH}^*(A)$ is a graded commutative K-algebra.

Let N_A be the ideal in $\text{HH}^*(A)$ generated by all homogeneous nilpotent elements. The following question is important in the study of the Hochschild cohomology rings for finite-dimensional algebras:

Question ([23]). When is the Hochschild cohomology ring modulo nilpotence $\text{HH}^*(A)/N_A$ finitely generated as an algebra?

It is shown that the Hochschild cohomology rings modulo nilpotence are finitely generated in the following cases: blocks of a group ring of a finite group [12, 25], monomial algebras [16], self-injective algebras of finite representation type [17], finite-dimensional hereditary algebras ([19]). On the other hand, Xu [26] gave an algebra whose Hochschild cohomology ring modulo nilpotence is infinitely generated (see also [23]).

In [7], Buan, Marsh and Reiten introduced cluster-tilted algebras, and since then they have been the subjects of many investigations (see for example [1, 3, 6, 7, 8, 9, 10, 11, 21]). We briefly recall their definition. Let $H = KQ$ be the path algebra of a finite acyclic
quiver \(Q \) over \(K \), and let \(D^b(H) \) the bounded derived category of \(H \). Then the cluster category \(C_H \) associated with \(H \) is defined to be the orbit category \(D^b(H)/\tau^{-1}[1] \), where \(\tau \) denotes the Auslander-Reiten translation in \(D^b(H) \), and \([1] \) is the shift functor in \(D^b(H) \) ([5, 10]). Note that, by [5], \(C_H \) is a Krull-Schmidt category, and by Keller [20] it is also a triangulated category. A basic object \(T \) in \(C_H \) is called a cluster tilting object, if it satisfies the following conditions ([5]):

1. \(\text{Ext}^1_{C_H}(T, T) = 0 \); and
2. the number of the indecomposable summands of \(T \) equals the number of vertices of \(Q \).

Let \(\Delta \) be the underlying graph of \(Q \). Then the endomorphism ring \(\text{End}_{C_H}(T) \) of a cluster tilting object \(T \) in \(C_H \) is called a cluster-tilted algebra of type \(A_n \) ([7]). In this note, we deal with cluster-tilted algebras of Dynkin types \(A_n \) and \(D_n \). Note that by [7] these algebras are of finite representation type.

In Section 2, we show that cluster-tilted algebras of type \(A_n \) are \((D, A)\)-stacked monomial algebras (with \(D = 2 \) and \(A = 1 \)) of [18] (Lemma 3), and then describe the structures of their Hochschild cohomology rings modulo nilpotence by using [18] (Theorem 4). In Section 3, we determine the Hochschild cohomology rings modulo nilpotence for some cluster-tilted algebras of type \(D_n \) which are derived equivalent to a \((D, A)\)-stacked monomial algebra (Proposition 7). We also describe the Hochschild cohomology rings modulo nilpotence for algebras in a class of some special biserial algebras which contains a cluster-tilted algebra of type \(D_4 \) (Theorem 9).

2. Cluster-tilted algebras of type \(A_n \) and the Hochschild cohomology rings modulo nilpotence

In this section we describe the structure of the Hochschild cohomology rings modulo nilpotence for cluster-tilted algebras of type \(A_n \) (\(n \geq 1 \)).

First we recall the presentation by the quiver and relations of cluster-tilted algebras of type \(A_n \) given in [3, 9]. For a vertex \(x \) in a quiver \(\Gamma \), the neighborhood of \(x \) is the full subquiver of \(\Gamma \) consisting of \(x \) and the vertices which are end-points of arrows starting at \(x \) or start-points of arrows ending with \(x \). Let \(n \geq 2 \) be an integer, and let \(Q_n \) be the class of quivers \(Q \) satisfying the following:

1. \(Q \) has \(n \) vertices.
2. The neighborhood of each vertex \(v \) of \(Q \) is one of the following forms:

\begin{center}
\begin{tikzpicture}
\node (v) at (0,0) {v};
\node (w) at (1,0) {w};
\draw (v) -- (w);
\end{tikzpicture}
\end{center}
(3) There is no cycles in the underlying graph of Q apart from those induced by oriented cycles contained in neighborhoods of vertices of Q.

Let $Q_1 = \{Q'\}$, where Q' is the quiver which has a single vertex and no arrows. It is shown in [9, Proposition 2.4] that a quiver Γ is mutation equivalent A_n if and only if $\Gamma \in Q_n$.

In [9], Buan and Vatne proved the following (see also [3]):

Proposition 1 ([9, Proposition 3.1]). The cluster-tilted algebras of type A_n are exactly the algebras KQ/I, where $Q \in Q_n$, and

$$I = \langle p \mid p \text{ is a path of length } 2, \text{ and on an oriented } 3\text{-cycle in } Q \rangle$$

As a consequence we see that cluster-tilted algebras of type A_n are gentle algebras of [2]:

Corollary 2 ([9, Corollary 3.2]). The cluster-tilted algebras of type A_n are gentle algebras.

Green and Snashall [18] introduced (D,A)-stacked monomial algebras by using the notion of overlaps of paths, where D and A are positive integers with $D \geq 2$ and $A \geq 1$, and gave generators and relations of the Hochschild cohomology rings modulo nilpotence for (D,A)-stacked monomial algebras completely. (In this note, we do not state the definition of (D,A)-stacked algebras and the result of [18]; see for their details [13, Section 1], [18, Section 3], or [23, Section 3].)

It is known that $(2,1)$-stacked monomial algebras are precisely Koszul monomial algebras (equivalently, quadratic monomial algebras), and also $(D,1)$-stacked monomial algebras are exactly D-Koszul monomial algebras (see [4]). By the definition, we directly see that all gentle algebras are $(2,1)$-stacked monomial algebras (see [13]). Hence, by Corollary 2, we have the following:

Lemma 3. All cluster-tilted algebras of type A_n are $(2,1)$-stacked monomial algebras, and so are Koszul monomial algebras.

By Lemma 3, we can apply the result of [18] to describe the Hochshild cohomology rings of cluster-tilted algebras of type A_n. Applying [18, Theorem 3.4] with Proposition 1, we have the following theorem:

Theorem 4. Let n be a positive integer, and let $\Lambda = KQ/I$ be a cluster-tilted algebra of type A_n, where $Q \in Q_n$ and I is the ideal given by (2.1). Suppose that $\text{char } K \neq 2$. Moreover, let r be the number of oriented 3-cycles in Q. Then

$$\text{HH}^*(\Lambda)/N_A \cong \begin{cases} K[x_1, \ldots, x_r]/\langle x_ix_j \mid i \neq j \rangle & \text{if } r > 0 \cr K & \text{if } r = 0, \end{cases}$$

where $\text{deg } x_i = 6$ for $i = 1, \ldots, r$.

Example 5. Let Q be the following quiver with 17 vertices and five oriented 3-cycles:
Then \(Q \in Q_{17} \). Suppose \(\text{char } K \neq 2 \), and let \(A := KQ/I \), where \(I \) is the ideal generated by all possible paths of length 2 on oriented 3-cycles. Then \(A \) is a cluster-tilted algebra of type \(A_{17} \), and by Theorem 4 we have \(HH^*(A)/\mathcal{N}_A \cong K[x_1, \ldots, x_5]/\langle x_i x_j \mid i \neq j \rangle \), where \(\deg x_i = 6 \) (1 \(\leq i \leq 5 \)).

3. CLUSTER-TILTED ALGEBRAS OF TYPE \(\mathbb{D}_n \) AND THE HOCHSCHILD COHOMOLOGY RINGS MODULO NILPOTENCE

The purpose in this section is to describe the Hochschild cohomology rings modulo nilpotence for some cluster-tilted algebras of type \(\mathbb{D}_n \) (\(n \geq 4 \)) which are derived equivalent to a \((D,A)\)-stacked monomial algebra.

In [3, Theorem 2.3], Bastian, Holm and Ladkani introduced specific quivers, called “standard forms” for derived equivalences, and proved that any cluster-tilted algebra of type \(\mathbb{D}_n \) is derived equivalent to one of cluster-tilted algebras of type \(\mathbb{D}_n \) whose quiver is a standard form.

It is known that Hochschild cohomology ring is invariant under derived equivalence, so that it suffices to deal with cluster-tilted algebras of type \(\mathbb{D}_n \) whose quivers are standard forms. In this note, we consider the following quivers \(\Gamma_i \) (1 \(\leq i \leq 4 \)). Clearly these quivers are standard forms of [3, Theorem 2.3].

\[
\Gamma_1 : \begin{array}{c}
\bullet & \xrightarrow{a_0} & \bullet & \xrightarrow{a_1} & \bullet & \xrightarrow{a_2} & \bullet & \xrightarrow{a_0} & \bullet \\
\downarrow & & & & & & & & \\
\bullet & & & & & & & & \bullet
\end{array}
\quad \text{with } m \geq 4 \text{ vertices},
\]

\[
\Gamma_2 : \begin{array}{c}
\bullet & \xrightarrow{b_0} & \bullet & \xrightarrow{a_0} & \bullet & \xrightarrow{a_2 = b_2} & \bullet & \xrightarrow{b_1} & \bullet \\
\downarrow & & & & & & & & \\
\bullet & & & & & & & & \bullet
\end{array}
\]

\[
\Gamma_3 : \begin{array}{c}
\bullet & \xrightarrow{a_0} & \bullet & \xrightarrow{a_1} & \bullet & \xrightarrow{a_2} & \bullet & \xrightarrow{a_0} & \bullet \\
\downarrow & & & & & & & & \\
\bullet & & & & & & & & \bullet
\end{array}
\quad \text{with } m \text{ vertices, where } m \geq 5 \text{ is odd, or } m = 4,
\]

\[
\Gamma_4 : \begin{array}{c}
\bullet & \xrightarrow{a_0} & \bullet & \xrightarrow{a_1} & \bullet & \xrightarrow{a_2} & \bullet & \xrightarrow{a_0} & \bullet \\
\downarrow & & & & & & & & \\
\bullet & & & & & & & & \bullet
\end{array}
\quad \text{with } 2m \text{ vertices, where } m \geq 3.
\]
Proposition 7. For the algebras A_1, A_3 and A_4 above, we have

\[\dim_K \text{HH}^i(A_k) = \begin{cases}
 k + 1 & \text{if } i \equiv 0 \pmod{6} \\
 k + 1 & \text{if } i \equiv 1 \pmod{6} \\
 k & \text{if } i \equiv 2 \pmod{6} \\
 k + 1 & \text{if } i \equiv 3 \pmod{6} \text{ and char } K \mid 3k + 2 \\
 k & \text{if } i \equiv 3 \pmod{6} \text{ and char } K \not\mid 3k + 2 \\
 k + 1 & \text{if } i \equiv 4 \pmod{6} \text{ and char } K \mid 3k + 2 \\
 k & \text{if } i \equiv 4 \pmod{6} \text{ and char } K \not\mid 3k + 2 \\
 k & \text{if } i \equiv 5 \pmod{6}.
\end{cases} \]

Remark 6. For $i = 1, \ldots, 4$, let $A_i := K\Gamma_i/I_i$ be the cluster-tilted algebra of type \mathbb{D}_n corresponding to Γ_i. Then we see from [3, 24] that

1. A_1 is the path algebra of a Dynkin quiver of type \mathbb{D}_m.
2. A_2 is of type \mathbb{D}_4, and $I_2 = \langle a_1a_2, b_1b_2, a_2a_0, b_2b_0, a_0a_1 - b_0b_1 \rangle$. We immediately see that A_2 is a special biserial algebra of [22], but not a self-injective algebra.
3. A_3 is of type \mathbb{D}_m, and $I_3 = \langle p \mid p \text{ is a path of length } m - 1 \rangle$. Hence A_3 is a $(m-1,1)$-stacked monomial algebra, and is also a self-injective Nakayama algebra.
4. A_4 is of type \mathbb{D}_2m, and it follows by [3, Lemma 4.5] that A_4 is derived equivalent to the $(2m - 1,1)$-stacked monomial algebra $A' = KQ'/I'$, where Q' is the cyclic quiver with $2m$ vertices.

and I' is generated by all paths of length $2m - 1$. Note that A' is a self-injective Nakayama algebra, and moreover is a cluster-tilted algebra of type \mathbb{D}_2m ([21, 24]).

In [19], Happel described the Hochschild cohomology for path algebras. Using this result and [18, Theorem 3.4], we have the following proposition:

Proposition 8. For the algebras A_1, A_3 and A_4 above, we have

\[\text{HH}^*(A_1) \simeq \text{HH}^*(A_1)/\mathcal{N}_{A_1} \simeq K \]

\[\text{HH}^*(A_3)/\mathcal{N}_{A_3} \simeq \text{HH}^*(A_4)/\mathcal{N}_{A_4} \simeq K[x]. \]

Finally we describe the Hochschild cohomology ring modulo nilpotence of the algebra $A_k := \Gamma_2/J_k$, where $k \geq 0$ and J_k is the ideal generated by the following elements:

\[(a_1a_2a_0)^ka_1a_2, b_1b_2, (a_2a_0a_1)^ka_2a_0, b_2b_0, (a_0a_1a_2)^ka_0a_1 - b_0b_1. \]

If $k = 0$, then $J_0 = I_2$, and so $A_0 = \Gamma_2/J_0$ coincides with the algebra A_2. Note that, for all $k \geq 0$, A_k is a special biserial algebra and not a self-injective algebra.

Now the dimensions of the Hochschild cohomology groups of A_k are given as follows:

Theorem 9 ([14]). For $k \geq 0$ and $i \geq 0$ we have

\[\dim_K \text{HH}^i(A_k) = \begin{cases}
 k + 1 & \text{if } i \equiv 0 \pmod{6} \\
 k + 1 & \text{if } i \equiv 1 \pmod{6} \\
 k & \text{if } i \equiv 2 \pmod{6} \\
 k + 1 & \text{if } i \equiv 3 \pmod{6} \text{ and char } K \mid 3k + 2 \\
 k & \text{if } i \equiv 3 \pmod{6} \text{ and char } K \not\mid 3k + 2 \\
 k + 1 & \text{if } i \equiv 4 \pmod{6} \text{ and char } K \mid 3k + 2 \\
 k & \text{if } i \equiv 4 \pmod{6} \text{ and char } K \not\mid 3k + 2 \\
 k & \text{if } i \equiv 5 \pmod{6}.
\end{cases} \]
Moreover the Hochschild cohomology ring modulo nilpotence of A_k is given as follows:

Theorem 9 ([15]). For $k \geq 0$, we have

$$\text{HH}^*(A_k)/\mathcal{N}_{A_k} \simeq K[x],$$

where

$$\deg x = \begin{cases} 3 & \text{if } k = 0 \text{ and } \text{char } K = 2 \\ 6 & \text{otherwise.} \end{cases}$$

Hence $\text{HH}^*(A_k)/\mathcal{N}_{A_k}$ $(k \geq 0)$ is finitely generated as an algebra.

Remark 10. It seems that most of computations of the Hochschild cohomology rings modulo nilpotence for cluster-tilted algebras of type D_n except those in the derived equivalence classes of A_i $(1 \leq i \leq 4)$ are open questions.

References

Takahiko Furuya
Department of Mathematics
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601 JAPAN
E-mail address: furuya@ma.kagu.tus.ac.jp

Takao Hayami
Faculty of Engineering
Hokkai-Gakuen University
4-1-40, Asahi-machi, Toyohira-ku, Sapporo, JAPAN
E-mail address: hayami@ma.kagu.tus.ac.jp