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Abstract. In this paper, we study τ -tilting modules over Nakayama algebras. First, for
self-injective Nakayama algebras, we give a classification of τ -tilting modules. Secondly,
for Nakayama algebras, we give a combinatorial method to provide Hasse quivers of
support τ -tilting modules.

1. Introduction

In tilting theory of algebras, tilting modules are important objects. As a way to con-
struct tilting modules, there is the notion of tilting mutations introduced by Riedtmann-
Schofield [8]. Roughly speaking, tilting mutations are operations which construct new
tilting modules by replacing indecomposable direct summands of given tilting modules.
However, it is known that tilting mutations have the following disadvantage. Namely,
any basic almost complete tilting module can be completed to a basic tilting module in
at most two different ways [8, 9]. This means that tilting mutations are not always de-
fined. To overcome the disadvantage of tilting modules, the notion of τ -tilting modules
was introduced in [2]. The authors showed any basic almost support τ -tilting module can
be completed to a basic support τ -tilting module in exactly two different ways. More-
over, for a given algebra Λ, it is shown that there are bijections between support τ -tilting
Λ-modules, two-term silting complexes for Λ (see [1, 7]), and cluster-tilting objects in a
2-CY triangulated category C if Λ is an associated 2-CY tilted algebra to C (see [4, 6]).
Thus it is important to give a classification of support τ -tilting Λ-modules.

In this paper, we study τ -tilting modules over Nakayama algebras. First, we classify τ -
tilting modules over self-injective Nakayama algebras. We shall give a bijection between
τ -tilting modules and proper support τ -tilting modules. In this case, proper support
τ -tilting modules are reduced to tilting modules over path algebras of Dynkin quivers
of type A. A classification of tilting modules of the path algebras is well-known (e.g.
triangulations of polygons). Thus we can easily obtain proper support τ -tilting modules.

Secondly, we give a combinatorial method to provide Hasse quivers of support τ -tilting
modules over Nakayama algebras. Then Rejection Lemma of Drozd-Kirichenko plays
important role. The rejection lemma gives a connection of indecomposable modules be-
tween an algebra and its factor algebra by some ideal. Any Nakayama algebra is given
by a sequence of Drozd-Kirichenko rejection from some semisimple algebra. We study a
connection of support τ -tilting modules between two algebras of Drozd-Kirichenko rejec-
tion. Using the connection, we construct Hasse quivers of Nakayama algebras from some
semisimple algebra.

The detailed version of this paper will be submitted for publication elsewhere.
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Notation. Throughout this paper, K is an algebraically closed field, and Λ is a basic
finite dimensional K-algebra. We denote by modΛ the category of finitely generated right
Λ-modules, and by indΛ the set of isomorphism classes of indecomposable Λ-modules.
For two sets X and Y , we denote by X ⊔ Y the disjoint union of X and Y . We denote
by Cn the cyclic quiver and by A⃗n the Dynkin quiver of type A with linear orientation:
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2. Preliminaries

Let Λ be a basic finite dimensional K-algebra with a complete set {e1, e2, · · · , en} of
primitive orthogonal idempotents, and EΛ := {

∑
j∈J ej | ∅ ̸= J ⊂ {1, 2, · · · , n}}. For

a module M ∈ modΛ, we denote by |M | the number of nonisomorphic indecomposable
direct summands of M . We write by τΛ the Auslander-Reiten translation of Λ, and by
⟨e⟩ a two-sided ideal of Λ generated by e ∈ Λ.

In this section, we recall definitions and basic properties of τ -tilting modules.

Definition 1. Let Λ be a finite dimensional K-algebra, and M ∈ modΛ a module.

(1) We call M τ -rigid Λ-module if HomΛ(M, τΛM) = 0.
(2) We call M τ -tilting Λ-module if it is τ -rigid and |M | = |Λ|.
(3) We call M support τ -tilting Λ-module if there exists an idempotent e ∈ Λ such

that M is a τ -tilting (Λ/⟨e⟩)-module. In this case, if e ̸= 0, we call M proper
support τ -tilting Λ-module.

In the rest of the paper, we denote by tiltΛ (respectively, τ -tiltΛ, sτ -tiltΛ, psτ -tiltΛ)
the set of isomorphism classes of basic tilting (respectively, τ -tilting, support τ -tilting,
proper support τ -tilting) Λ-modules.

Lemma 2. [2, Proposition 2.3] For any proper support τ -tilting Λ-module M , there
uniquely exists an idempotent e ∈ EΛ such that M is a τ -tilting (Λ/⟨e⟩)-module. We
write by eM the above idempotent e.

The following is straightforward.

Proposition 3. The following hold.

(1) τ -tiltΛ = tiltΛ if Λ is a hereditary algebra.
(2) sτ -tiltΛ = τ -tiltΛ ⊔ psτ -tiltΛ.

(3) psτ -tiltΛ =
⊔
e∈EΛ

τ -tilt(Λ/⟨e⟩).

By the proposition above, we have important observations.
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Remark 4. We can decompose sτ -tiltΛ as the disjoint union of τ -tiltΛ and psτ -tiltΛ. More-
over, proper support τ -tilting Λ-modules are reduced to τ -tilting modules over smaller
algebras. To determine sτ -tiltΛ, it is thus important to construct τ -tilting Λ-modules.

The following lemma will be useful.

Lemma 5. [2, Lemma 2.1] Let I be a two-sided ideal of Λ, and M,N ∈ mod(Λ/I). Then
the following hold.

(1) If HomΛ(N, τΛM) = 0, then HomΛ/I(N, τΛ/IM) = 0.
(2) Assume that I = ⟨e⟩ for an idempotent e ∈ Λ. Then HomΛ(N, τΛM) = 0 if and

only if HomΛ/I(N, τΛ/IM) = 0.

We call M ∈ modΛ almost support τ -tilting Λ-module if there exists an idempotent
e ∈ Λ such that M is a τ -rigid (Λ/⟨e⟩)-module and |M | = |Λ| − |eΛ| − 1.

Proposition 6. [2, Theorem 2.18] Any basic almost support τ -tilting Λ-module can be
completed to a basic support τ -tilting module in exactly two different ways.

For any M,N ∈ sτ -tiltΛ, we write M ≥ N if Fac(M) ⊇ Fac(N).

Proposition 7. [2, Theorem 2.7] Let Λ be a finite dimensional K-algebra. Then ≥ gives
a partial order on sτ -tiltΛ.

By the proposition above, we have an associated Hasse quiver. We recall Hasse quivers.

Definition 8. We define the Hasse quiver of sτ -tiltΛ as follows:

• The vertices set is sτ -tiltΛ.
• We draw an arrow from M to N if M > N and there exists no L ∈ sτ -tiltΛ such
that M > L > N .

We denote by Γ(sτ -tiltΛ) the Hasse quiver of sτ -tiltΛ.

3. Main result I

In this section, we study τ -tilting modules over self-injective Nakayama algebras. As
an application of this section, we can easily obtain support τ -tilting modules over self-
injective Nakayama algebras.

Throughout this section, the following notation is used. Let Λ := Λr
n be a connected

self-injective Nakayama algebra with |Λ| = n and the Loewy length ℓ(Λ) = r. Then we
have Λ ≃ KCn/R

r, where Cn is the cyclic quiver and R is the arrow ideal of KCn (see
[3, V.3.8 Proposition]).

We define an automorphism ϕ : Λ → Λ by ϕ(ei) = ei+1 and ϕ(αi) = αi+1 for any
i ∈ {1, 2, · · · , n}. Then ϕ induces a functor as follows.

Lemma 9. The automorphism ϕ : Λ → Λ induces an equivalence of categories Φ :
modΛ → modΛ such that Φ(eiΛ) ≃ ei+1Λ for any i ∈ {1, 2, · · · , n}. Moreover, for any
nonprojective module M ∈ modΛ, we have Φ(M) ≃ τM .

Let Ψ be a quasi-inverse of Φ. Then we have Ψ(eiΛ) ≃ ei−1Λ and Ψ(M) ≃ τ−M for any
i ∈ {1, 2, · · · , n} and nonprojective module M ∈ modΛ. By Remark 4, it is important
to construct τ -tilting modules for given an algebra. Our main result of this section is to
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construct τ -tilting Λ-modules from proper support τ -tilting Λ-module. Proper support
τ -tilting Λ-modules are reduced to tilting modules over path algebras of Dynkin quivers
of type A with linear orientation. A classification of tilting (KA⃗l)-modules is already
well-known for any integer l > 0. Indeed, there is a bijection

tilt(KA⃗l)←→ { triangulations of (l + 2)-gon }.
Thus we can easily obtain proper support τ -tilting modules over a self-injective Nakayama
algebra.

In the rest of the paper, we denote by modnpΛ the full subcategory of modΛ consisting
Λ-modules which does not have nonzero projective direct summands. we let psτ -tiltnpΛ :=
psτ -tiltΛ ∩ modnpΛ, and τ -tiltnpΛ := τ -tiltΛ ∩ modnpΛ. We decompose M ∈ modΛ as
M = Mnp⊕Mpr, where Mnp ∈ modnpΛ and Mpr is a maximal projective direct summand
of M .

we state our main theorem of this section.

Theorem 10. Let Λ := Λr
n.

(1) There is a bijection

τ -tiltΛ←→ psτ -tiltnpΛ

given by τ -tiltΛ ∋M 7→Mnp ∈ psτ -tiltnpΛ and psτ -tiltnpΛ ∋M 7→M⊕Φ(eMΛ) ∈
τ -tiltΛ.

(2) Moreover, if r ≥ n, we have psτ -tiltnpΛ = psτ -tiltΛ. Namely, (1) gives a bijection

τ -tiltΛ←→ psτ -tiltΛ.

As an immediate consequence of Theorem 10, we have the following corollary.

Corollary 11. The following hold.

(1) If r ≥ n, we have

sτ -tiltΛ = {M, M ⊕ Φ(eMΛ) | M ∈ psτ -tiltΛ}

=
⊔

e∈EΛ

{M, M ⊕ Φ(eΛ) | M ∈ tilt(Λ/⟨e⟩)}.

(2) If r < n, we have

sτ -tiltΛ = (psτ -tiltΛ \ psτ -tiltnpΛ) ⊔ {M, M ⊕ Φ(eMΛ) | M ∈ psτ -tiltnpΛ}.

In the rest of this section, we give the proof of Theorem 10.

Proposition 12. If M is in psτ -tiltnpΛ, then M ⊕ Φ(eMΛ) is a τ -tilting Λ-module.

Proof. Let M ∈ modnpΛ be a τ -tilting (Λ/⟨e⟩)-module, where e := eM ∈ EΛ. Thus M is
a τ -rigid Λ-module by Lemma 5. Moreover we have

HomΛ(Φ(eΛ), τΛM) ≃ HomΛ(ΨΦ(eΛ),Ψ(τΛM)) ≃ HomΛ(eΛ,M) = 0

and

|M ⊕ Φ(eΛ)| = |M |+ |Φ(eΛ)| = |M |+ |eΛ| = |Λ|
by Lemma 9 and M ∈ modnpΛ. Thus M ⊕ Φ(eMΛ) is a τ -tilting Λ-module. □
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Conversely, we shall construct a proper support τ -tilting Λ-module for a given τ -tilting
Λ-module.

Proposition 13. Assume that M ∈ modΛ is not in modnpΛ. If M is a τ -tilting Λ-
module, then Mnp is a proper support τ -tilting Λ-module.

Proof. Let M is a τ -tilting Λ-module and not in modnpΛ. We decompose M as M =
Mnp ⊕Mpr and assume Mpr = eΛ, where e ∈ EΛ is an idempotent. Then Mnp is trivially
a τ -rigid Λ-module. Since M is a τ -tilting Λ-module, we have

HomΛ(ϕ
−1(e)Λ,Mnp) ≃ HomΛ(Φ(ϕ

−1(e)Λ),Φ(Mnp)) ≃ HomΛ(eΛ, τΛM) = 0

by Lemma 9, and

|Mnp| = |M | − |eΛ| = |Λ| − |ϕ−1(e)Λ|.

Thus Mnp is a τ -tilting (Λ/⟨ϕ−1(e)⟩)-module or proper support τ -tilting Λ-module by
Lemma 5. □

By Proposition 12 and 13, there is a bijection

τ -tiltΛ \ τ -tiltnpΛ←→ psτ -tiltnpΛ.

To complete the proof of Theorem 10, we have only to show that any τ -tilting Λ-module
always has a nonzero projective Λ-module as a direct summand.

We need the following lemma.

Lemma 14. Let X, Y ∈ modΛ be indecomposable with the Loewy length ℓ(X) ≥ ℓ(Y ),
and PX a projective cover of X. Then HomΛ(X, Y ) = 0 if and only if HomΛ(PX , Y ) = 0.

Proposition 15. Each τ -tilting Λ-module has a nonzero projective Λ-module as a direct
summand.

Proof. Let M = X ⊕N be a τ -tilting Λ-module such that X is indecomposable and the
Loewy length ℓ(X) ≥ ℓ(N). In particular, we have ℓ(N) = ℓ(τN) because Λ is Nakayama.
By the definition, N is an almost support τ -tilting Λ-module. Assume that M has no
projective Λ-module as a direct summand. Since M is τ -rigid, HomΛ(X, τN) vanishes.
By Lemma 14, we have HomΛ(PX , τN) = 0, where PX is a projective cover of X. Since
Λ is a Nakayama algebra, PX is indecomposable. Therefore we have

|PX ⊕N | = |PX |+ |N | = |PX |+ |M | − |X| = |M | = |Λ|.

Namely, PX ⊕ N is a τ -tilting Λ-module. Moreover, N is a support τ -tilting Λ-module
by Proposition 13. This means that almost support τ -tilting Λ-module N has pairwise
nonisomorphic 3 support τ -tilting Λ-modules N,X ⊕N and PX ⊕N . By Proposition 6,
this is contradiction. □

Now we are ready to prove Theorem 10.

Proof of Theorem 10. (1) It follows from Proposition 12, 13 and 15.
(2) One can show that any proper support τ -tilting Λ-module has no projective Λ-

module as a direct summand. □
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As an application of Theorem 10, we can easily calculate τ -tilting modules over self-
injective Nakayama algebras.

Finally, we give a example.

Example 16. Let Λ := Λ3
3. To obtain τ -tilting Λ-modules, we need to know factor

algebras Λ/⟨e⟩ for any idempotent e ∈ EΛ. Indeed, we have Λ/⟨ei⟩ ≃ KA⃗2, Λ/⟨ei + ej⟩ ≃
KA⃗1, and Λ/⟨e1+e2+e3⟩ = {0} for i, j ∈ {1, 2, 3}. Thus proper support τ -tilting modules
are given as follows:

τ -tilt(Λ/⟨e3⟩) = tilt(KA⃗2) = { 1
2 ⊕ 2 , 1

2 ⊕ 1 }

τ -tilt(Λ/⟨e2 + e3⟩) = tilt(KA⃗1) = {1}
τ -tilt(Λ/⟨e1 + e2 + e3⟩) = {0}

and cyclic permutation. By Theorem 10, we have

sτ -tiltΛ = { {0} , 1 , 2 , 3 , 1
2 ⊕ 2 , 1

2 ⊕ 1 , 2
3 ⊕ 3 , 2

3 ⊕ 2 , 3
1 ⊕ 1 , 3

1 ⊕ 3 }

⊔ { 1
2
3
⊕ 2

3
1
⊕ 3

1
2
, 1 ⊕ 1

2
3
⊕ 3

1
2
, 2 ⊕ 2

3
1
⊕ 1

2
3
, 3 ⊕ 3

1
2
⊕ 2

3
1
,

1
2 ⊕ 2 ⊕ 1

2
3
, 1
2 ⊕ 1 ⊕ 1

2
3
, 2
3 ⊕ 3 ⊕ 2

3
1
, 2
3 ⊕ 2 ⊕ 2

3
1
, 3
1 ⊕ 1 ⊕ 3

1
2
, 3
1 ⊕ 3 ⊕ 3

1
2
}

and the Hasse quiver Γ(sτ -tiltΛ) as follows:
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4. Main result II

In this section, we give a combinatorial method to provide Hasse quivers of support
τ -tilting modules over Nakayama algebras. Then Rejection Lemma of Drozd-Kirichenko
plays important role.

Let Λ be a finite dimensional K-algebra (not necessarily Nakayama). The following
lemma is called Rejection Lemma of Drozd-Kirichenko[5].

Lemma 17 (Rejection Lemma of Drozd-Kirichenko). Let Λ be a finite dimensional K-
algebra, and Q a projective-injective indecomposable summand of Λ. Then the following
hold.

(1) I := soc(Q) is a two-sided ideal of Λ.
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(2) There exists a one-to-one correspondence between ind(Λ/I) and ind(Λ) \ {Q}.

From now, we always assume that Q is a projective-injective indecomposable sum-
mand of Λ, and I := soc(Q). In the rest of the paper, we denote by sτ -tiltQ/I(Λ/I)

(respectively, sτ -tiltI(Λ/I)) the subset of sτ -tilt(Λ/I) consisting Λ-modules which have
Q/I as a direct summand (respectively, does not have I as a composition factor). We let
sτ -tiltIQ/I(Λ/I) := sτ -tiltQ/I(Λ/I)∩sτ -tiltI(Λ/I) and sτ -tiltIQ/IΛ := {M ∈ sτ -tiltΛ | bas(M⊗Λ

Λ/I) ∈ sτ -tiltIQ/I(Λ/I)}, where bas(X) means a basic part of X ∈ modΛ.
The following theorem is very important.

Theorem 18. Let Λ be a finite dimensional K-algebra, Q be a projective-injective inde-
composable summand of Λ, and I := soc(Q).

(1) The map M 7→ bas(M ⊗Λ Λ/I) gives a surjection

sτ -tiltΛ // // sτ -tilt(Λ/I)

which preserves the partial orders. Moreover, the restriction gives a bijection

sτ -tiltΛ \ sτ -tiltIQ/IΛ←→ sτ -tilt(Λ/I) \ sτ -tiltIQ/I(Λ/I)

where the inverse is given by

sτ -tiltQ/I(Λ/I) \ sτ -tiltIQ/I(Λ/I) ∋ Q/I ⊕ U 7→ Q⊕ U ∈ sτ -tiltΛ \ sτ -tiltIQ/IΛ

sτ -tilt(Λ/I) \ sτ -tiltQ/I(Λ/I) ∋ N 7→ N ∈ sτ -tiltΛ \ sτ -tiltIQ/IΛ.

(2) We have

sτ -tiltΛ = (sτ -tiltΛ \ sτ -tiltIQ/IΛ) ⊔ {N,Q⊕N | N ∈ sτ -tiltIQ/I(Λ/I)}.

By Theorem 18, we can recover sτ -tiltΛ from sτ -tilt(Λ/I). Moreover, since the map
preserves the partial orders, Hasse quivers of sτ -tiltΛ and sτ -tilt(Λ/I) are almost same.
Thus, as a result of Theorem 18, we have two corollaries for a construction of the Hasse
quiver Γ(sτ -tiltΛ).

If any M ∈ sτ -tiltQ/I(Λ/I) has I as a composition factor, we have sτ -tiltIQ/IΛ = ∅.
Thus we have a bijection between sτ -tiltΛ and sτ -tilt(Λ/I).

Corollary 19. If Q/I has I as a composition factor, then the map of Theorem 18 is a
bijection. In particular, there exists a quiver isomorphism

Γ(sτ -tiltΛ) −→ Γ(sτ -tilt(Λ/I)).

Assume that X ≥ N in sτ -tilt(Λ/I) and N ∈ sτ -tiltQ/I(Λ/I). Then we remark that X
is also in sτ -tiltQ/I(Λ/I).

Corollary 20. Γ(sτ -tiltΛ) is obtained from Γ(sτ -tilt(Λ/I)) by the following two steps:
First we replace any arrow X → N in Γ(sτ -tilt(Λ/I)) satisfying N ∈ sτ -tiltIQ/I(Λ/I) as
follows:
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• If X is in sτ -tiltQ/I(Λ/I) but not in sτ -tiltIQ/I(Λ/I),

X

��

Q⊕ (X/(Q/I))

� �
replacing by a subquiver Q⊕N .

��
N N

• If X is in sτ -tiltIQ/I(Λ/I),

X

��

Q⊕X
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Finally we replace other vetices by the bijection of Theorem 18(1).

From now, we assume that Λ is Nakayama with n = |Λ|. Let Q be a projective-injective
indecomposable summand of Λ, and I := soc(Q). If the Loewy length of Q is bigger than
n or ℓ(Q/I) ≥ n, then Q/I is sincere. Namely, Q/I has I as a composition factor. Then
we have a quiver isomorphism Γ(sτ -tiltΛ)→ Γ(sτ -tilt(Λ/I)) by Corollary 19.

On the other hand, if the Loewy length of Q is not bigger than n or ℓ(Q/I) < n,
then Q/I does not have I as a composition factor. In this case, by Corollary 20, we can
construct the Hasse quiver of Λ from Λ/I.

Since Nakayama algebras have a projective-injective indecomposable module and its
factor algebras is also Nakayama (see [3, V.3.3 Lemma and V.3.4 Lemma ]), we can
iteratively apply the rejection lemma to Nakayama algebras.

Let Λ0 := Λ be a Nakayama algebra with n = |Λ|. By iteratively applying the rejection
lemma, we have a sequence of Nakayama algebras

· · · // // Λ−2
// // Λ−1

// // Λ0
// // Λ1

// // · · · // // Λm = Kn

such that Λi := Λi−1/Ii−1 and Λm is a semisimple algebra Kn, where Qi is a projective-
injective indecomposable Λi-module, Ii := soc(Qi) and m > 0 is an integer. Thus we
always can construct the Hasse quiver of any Nakayama algebra from some semisimple
algebra by the observation above.

Theorem 21. Let Λ be a Nakayama algebra with n = |Λ|. Then Γ(sτ -tiltΛ) is obtained
from Γ(sτ -tilt(Kn)).

Example 22. Let Λ0 := Λ3
3 be a self-injecitve Nakayama algebra. Then we have a

sequence of Nakayama algebras

Λ0
// // Λ1

// // Λ2
// // Λ3

// // Λ4
// // Λ5

// // Λ6
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by the rejection lemma. Thus we have Hasse quivers from K3 to Λ3
3 by Theorem 21.
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(4) Λ3 = K( 3 2
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(5) Λ2 = KCn/⟨α2α3, α3α1⟩
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(6) Λ1 = KCn/⟨α1α2α3, α3α1⟩
1
2
3

2
3
1

3
1

3
2
3
1

3
1

3
2
3
1

2
3

3 3
1

3 2
3

3

1
2
3

1 3
1

3
1 1

1
2
3

1 1
2

1 1
2

1

1
2
3

2
3
1

2

1
2
3

1
2 2 2

3

2
3
1

2

1
2 2 2

3 2

2

0

��

��		
		
		
	

��(
((
((
((
((
((

��

%%KK
KKK

K

����
��
��
��
��

��

**TTT
TTTT

TTTT
TTTT

TTTT

����
��
��
��
�

��2
22

22
22

22
2

��7
77

77
7

��

{{ww
ww
ww

rreeeeeee
eeeeeee

eeeeeee
e

ttiiii
iiii

iiii
iiii

iiii

��



��4
44
44
44

�� ��

##G
GG

GG
G

yysss
sss

,,YYYYYY
YYYYYYY

YYYYYYY
YY

oo

oo

oo

))

,,

–10–



(7) Λ0 = Λ3
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