
DIMENSIONS OF TRIANGULATED CATEGORIES
WITH RESPECT TO SUBCATEGORIES

TOKUJI ARAYA

Abstract. We introduce the concept of the dimension of a triangulated category with
respect to a fixed full subcategory. For the bounded derived category of an abelian cate-
gory, upper bounds of the dimension with respect to a contravariantly finite subcategory
are given. Our methods not only recover some known results on the dimensions of de-
rived categories in the sense of Rouquier, but also apply to various commutative and
non-commutative noetherian rings.

1. Introduction

This is a joint work with T. Aihara, O. Iyama, R. Takahashi and M. Yoshiwaki [1]. The
notion of the dimension of a triangulated category has been introduced by Rouquier [14]
based on work of Bondal and Van den Bergh [9] on Brown representability. It measures
how many extensions are needed to build the triangulated category out of a single object,
up to finite direct sum, direct summand and shift. First of all, we recall its definition.

Definition 1. Let T be a triangulated category and X ,Y be subcategories of T .

(1) We denote by X ∗ Y the subcategory of T consisting of objects M that admit
triangles X → M → Y → X[1] with X ∈ X and Y ∈ Y . Then (X ∗ Y) ∗ Z =
X ∗ (Y ∗ Z) holds by octahedral axiom.

(2) Set ⟨X ⟩ := add{X[i] | X ∈ X , i ∈ Z}. For a positive integer n, let

⟨X ⟩Tn = ⟨X ⟩n := add(⟨X ⟩ ∗ ⟨X ⟩ ∗ · · · ∗ ⟨X ⟩︸ ︷︷ ︸
n

).

Clearly ⟨X ⟩n is closed under shifts. For an object M of T , we set

⟨M⟩n := ⟨addM⟩n.
(3) The (triangle) dimension of T is defined as

tri. dim T := inf{n ≥ 0 | T = ⟨M⟩n+1, ∃M ∈ T }.

We give an example.

Example 2. Let R be an artinian local ring with a maximal ideal m and a residue class
field k = R/m. Since R is artin, there exists a positive integer ℓ such that mℓ = 0. In this
case, We have tri. dimDb(modR) ≤ ℓ−1. Indeed, letX be a bounded complex onR. Then
the short exact sequence 0 → miX → mi−1X → mi−1X/miX → 0 of complexes induces
the exact triangle miX → mi−1X → mi−1X/miX → miX[1] for each i. Since mi−1X/miX
is annihilated by m, it is isomorphic to

⊕
i k

⊕[i], and we have mi−1X/miX ∈ ⟨k⟩1. On

The detailed version of this paper will be submitted for publication elsewhere.
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the other hand, we can see that mℓ−iX belongs to ⟨k⟩i by induction on i. Thus we get
X = m0X belongs to ⟨k⟩ℓ.

We give the definition of the (triangle) dimension of triangulated category with respect
to a subcategory.

Definition 3. Let T be a triangulated category and X be a fullsubcategory of T . Then
we define

X - tri. dim T := inf{n ≥ 0 | T = ⟨X ⟩n+1}.

2. Main results

First of this section, we give some basic definitions and preliminary results.
Let X be an additive category. An X -module is an additive contravariant functor

from X to the category of abelian groups. A morphism between X -modules is a natural
transformation. For any object X ∈ X , the functor HomX (−, X) is an X -module. We say
that an X -module F is finitely presented if there is an exact sequence HomX (−, X1) →
HomX (−, X0) → F → 0 with X0, X1 ∈ X [3, 16]. The category of finitely presented X -
modules is denoted by modX . The assignment X 7→ HomX (−, X) makes a fully faithful
functor X → modX , which is called the Yoneda embedding of X .

We recall here a well-known criterion for modX to be abelian. Let X be an additive
category and f : X → Y be a morphism in X . A morphism g : Z → X in X is called
a pseudo-kernel if HomX (−, Z) → HomX (−, X) → HomX (−, Y ) is exact on X . We say
that X has pseudo-kernels if all morphisms in X have pseudo-kernels.

Proposition 4. [4] Let X be an additive category. Then modX is an abelian category if
and only if X has pseudo-kernels.

We give a class of additive categories having pseudo-kernels. We say that a subcategory
X of an additive category A is contravariantly finite if for any object M ∈ A there exist
X ∈ X and a morphism f : X → M such that HomA(X

′, f) is surjective for all X ′ ∈ X
[8].

Example 5. Let A be an additive category and X be a contravariantly finite subcategory
of A. If A has pseudo-kernels, then X also has pseudo-kernels. Hence if A is an abelian
category, then so is modX .

Let A be an abelian category and X be a subcategory of A. We say that X generates
A if for any object M of A there is an epimorphism X → M with X ∈ X .

Now we can state the main result.

Theorem 6. Let A be an abelian category and X a contravariantly finite subcategory
which generates A. Then there is an inequality X - tri. dimDb(A) ≤ gl. dim(modX ).

In representation theory, the notion of tilting modules/complexes plays an important
role to control derived categories [13]. Its dual notion of cotilting modules was studied
by Auslander and Reiten as a non-commutative generalization of canonical modules over
commutative rings [5, 6, 7]. Now, we apply the results above to rings admitting cotilting
modules. Let us begin with recalling the definition of a cotilting module.
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Definition 7. Let A be a noetherian ring and T be a finitely generated A-module. Denote
by XT the subcategory of modA consisting of modules X with ExtiA(X,T ) = 0 for all
i > 0. We call T cotilting if it satisfies the following three conditions.

(1) The injective dimension of the A-module T is finite.
(2) ExtiA(T, T ) = 0 for all i > 0 (i.e., T ∈ XT ).
(3) For any X ∈ XT , there exists an exact sequence 0 → X → T ′ → X ′ → 0 in modA

with T ′ ∈ addT and X ′ ∈ XT .

Example 8. (1) Let R be a commutative Cohen-Macaulay local ring with a canonical
module ωR. We denote by CM(R) the category of maximal Cohen-Macaulay R-
modules. Then ωR is a cotilting module over R and XωR

= CM(R) holds. Let Λ
be an R-order. For any tilting Λop-module T in the sense of Miyashita [12] with
T ∈ CM(R), the Λ-module HomR(T, ωR) is cotilting. For the cotilting Λ-module
ωΛ := HomR(Λ, ωR) it holds that XωΛ

= CM(Λ).
(2) Let Λ be an Iwanaga-Gorenstein ring. Then Λ is a cotilting module over Λ, and

hence XΛ = CM(Λ).

Let R and Λ be as above. We set A := R or Λ. Let T be a cotilting A-module. It comes
from Auslander-Buchweitz approximation theory [5], we can see that the subcategory XT

of modA is a contravariantly finite subcategory which generates modA.
Immediately we have the following inequality, which is a special case of [10].

Proposition 9. Let T be a cotilting module of A. Then one has

gl. dim(modXT ) ≤ max{2, inj. dimT}.

Let R be a commutative Cohen-Macaulay local ring with a canonical module ωR. Since
the injective dimension of ωR is equal to the Krull dimension of R, we obtain the following
corollary.

Corollary 10. Let R be a commutative Cohen-Macaulay local ring with a canonical mod-
ule. Then one has

CM(R)- tri. dimDb(modR) ≤ max{1, dimR}.
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