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Abstract. We give a derived equivalence classification of algebras of the form Â/⟨ϕ⟩
for some piecewise hereditary algebra A of tree type and some automorphism ϕ of Â
such that ϕ(A[0]) = A[n] for some positive integer n.

Introduction

Throughout this note we fix an algebraically closed field k, and assume that all alge-
bras are basic and finite-dimensional k-algebras and that all categories are k-categories.

Let A be an algebra and n a positive integer. Then an algebra of the form T nψ (A) :=

Â/⟨ψ̂νnA⟩ for some automorphism ψ of A is called a twisted n-fold extension of A.

Further an algebra of the form Â/⟨ϕ⟩ for some automorphism ϕ of Â with jump n
is called a generalized n-fold extension of A, where ϕ is called an automorphism with
jump n if ϕ(A[0]) = A[n]. Since obviously ψ̂νnA is an automorphism with jump n, we see
that twisted n-fold extensions are generalized n-fold extensions. An algebra is called
a generalized (resp. twisted) multifold extension if it is a generalized (resp. twisted)
n-fold extension for some positive integer n. In [3], we gave the derived equivalence
classification of twisted multifold extensions of piecewise hereditary algebras of tree
type by giving a complete invariant. In this note we extend this result to generalized
multifold extensions of piecewise hereditary algebras of tree type.

1. Preliminaries

For a category R we denote by R0 and R1 the class of objects and morphisms of R,
respectively. A category R is said to be locally bounded if it satisfies the following:

• Distinct objects of R are not isomorphic;
• R(x, x) is a local algebra for all x ∈ R0;
• R(x, y) is finite-dimensional for all x, y ∈ R0; and
• The set {y ∈ R0 | R(x, y) ̸= 0 or R(y, x) ̸= 0} is finite for all x ∈ R0.

A category is called finite if it has only a finite number of objects.
A pair (A,E) of an algebra A and a complete set E := {e1, . . . , en} of orthogonal

primitive idempotents of A can be identified with a locally bounded and finite category
R by the following correspondences. Such a pair (A,E) defines a category R(A,E) := R
as follows: R0 := E, R(x, y) := yAx for all x, y ∈ E, and the composition of R is

The detailed version of this paper will be submitted for publication elsewhere.
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defined by the multiplication of A. Then the category R is locally bounded and finite.
Conversely, a locally bounded and finite category R defines such a pair (AR, ER) as
follows: AR :=

⊕
x,y∈R0

R(x, y) with the usual matrix multiplication (regard each

element of A as a matrix indexed by R0), and ER := {(1lxδ(i,j),(x,x))i,j∈R0 | x ∈ R0}.
We always regard an algebra A as a locally bounded and finite category by fixing a
complete set A0 of orthogonal primitive idempotents of A.

Definition 1.1. Let A be an algebra.
(1) The repetition Â of A is a k-category defined as follows (Â turns out to be locally

bounded):

• Â0 := A0 × Z = {x[i] := (x, i) | x ∈ A0, i ∈ Z}.

• Â(x[i], y[j]) :=


{f [i] | f ∈ A(x, y)} if j = i,

{ϕ[i] | ϕ ∈ DA(y, x)} if j = i+ 1,

0 otherwise,

for all x[i], y[j] ∈ Â0.

• For each x[i], y[j], z[k] ∈ Â0 the composition Â(y[j], z[k])×Â(x[i], y[j]) → Â(x[i], z[k])
is given as follows.
(i) If i = j, j = k, then this is the composition of A A(y, z)×A(x, y) → A(x, z).
(ii) If i = j, j + 1 = k, then this is given by the right A-module structure of

DA: DA(z, y)× A(x, y) → DA(z, x).
(iii) If i+1 = j, j = k, then this is given by the left A-module structure of DA:

A(y, z)×DA(y, x) → DA(z, x).
(iv) Otherwise, the composition is zero .

(2) We define an automorphism νA of Â, called the Nakayama automorphism of Â,
by νA(x

[i]) := x[i+1], νA(f
[i]) := f [i+1], νA(ϕ

[i]) := ϕ[i+1] for all i ∈ Z, x ∈ A0, f ∈ A1, ϕ ∈∪
x,y∈A0

DA(y, x).

(3) For each n ∈ Z, we denote by A[n] the full subcategory of Â formed by x[n] with

x ∈ A, and by 1l[n] : A
∼
→ A[n] ↪→ Â, x 7→ x[n], the embedding functor.

We cite the following from [3, Lemma 2.3].

Lemma 1.2. Let ψ : A→ B be an isomorphism of algebras. Denote by ψyx : A(y, x) →
B(ψy, ψx) the isomorphism defined by ψ for all x, y ∈ A. Define ψ̂ : Â→ B̂ as follows.

• For each x[i] ∈ Â, ψ̂(x[i]) := (ψx)[i];

• For each f [i] ∈ Â(x[i], y[i]), ψ̂(f [i]) := (ψf)[i]; and

• For each ϕ[i] ∈ Â(x[i], y[i+1]), ψ̂(ϕ[i]) := (D((ψyx)
−1)(ϕ))[i] = (ϕ ◦ (ψyx)−1)[i].

Then

(1) ψ̂ is an isomorphism.

(2) Given an isomorphism ρ : Â→ B̂, the following are equivalent.

(a) ρ = ψ̂;
(b) ρ satisfies the following.

(i) ρνA = νBρ;
(ii) ρ(A[0]) = A[0];
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(iii) The diagram

A
ψ−−−→ B

1l[0]

y y1l[0]

A[0] −−−→
ρ

B[0]

is commutative; and
(iv) ρ(ϕ[0]) = (ϕ ◦ (ψyx)−1)[0] for all x, y ∈ A and all ϕ ∈ DA(y, x).

An algebra is called a tree algebra if its ordinary quiver is an oriented tree. Let
R be a locally bounded category with the Jacobson radical J and with the ordinary
quiver Q. Then by definition of Q there is a bijection f : Q0 → R0, x 7→ fx and
injections āy,x : Q1(x, y) → J(fx, fy)/J

2(fx, fy) such that āy,x(Q1(x, y)) forms a basis of
J(fx, fy)/J

2(fx, fy), whereQ1(x, y) is the set of arrows from x to y inQ for all x, y ∈ Q0.
For each α ∈ Q1(x, y) choose ay,x(α) ∈ J(fx, fy) such that a(α) + J2(fx, fy) = āy,x(α).
Then the pair (f, a) of the bijection f and the family a of injections ay,x : Q1(x, y) →
J(fx, fy) (x, y ∈ Q0) uniquely extends to a full functor Φ: kQ → R, which is called a
display functor for R.

A path µ from y to x in a quiver with relations (Q, I) is called maximal if µ ̸∈ I but
αµ, µβ ∈ I for all arrows α, β ∈ Q1. For a k-vector space V with a basis {v1, . . . , vn}
we denote by {v∗1, . . . , v∗n} the basis of DV dual to the basis {v1, . . . , vn}. In particular
if dimk V = 1, v∗ ∈ DV is defined for all v ∈ V \{0}.

Lemma 1.3. Let A be a tree algebra and Φ : kQ→ A a display functor with I := KerΦ.
Then
(1) Φ uniquely induces the display functor Φ̂ : kQ̂→ Â for Â, where

(i) Q̂ = (Q̂0, Q̂1, ŝ, t̂) is defined as follows:

• Q̂0 := Q0 × Z = {x[i] := (x, i) | x ∈ Q0, i ∈ Z},
• Q1 × Z := {α[i] := (α, i) | α ∈ Q1, i ∈ Z},
Q̂1 := (Q1 × Z) ⊔ {µ∗[i] | µ is a maximal path in (Q, I), i ∈ Z},

• ŝ(α[i]) := s(α)[i], t̂(α[i]) := t(α)[i] for all α[i] ∈ Q1×Z, and if µ is a maximal
path from y to x in (Q, I) then, ŝ(µ∗[i]) := x[i], t̂(µ∗[i]) := y[i+1].

(ii) Φ̂ is defined by Φ̂(x[i]) := (Φx)[i], Φ̂(α[i]) := (Φα)[i], and Φ̂(µ∗[i]) := (Φ(µ)∗)[i]

for all i ∈ Z, x ∈ Q0, α ∈ Q1 and maximal paths µ in (Q, I).

(2) We define an automorphism νQ of Q̂ by νQ(x
[i]) := x[i+1], νQ(α

[i]) := α[i+1],
νQ(µ

∗[i]) := µ∗[i+1] for all i ∈ Z, x ∈ Q0, α ∈ Q1, and maximal paths µ in (Q, I).

(3) Ker Φ̂ is equal to the ideal Î defined by the full commutativity relations on Q̂ and the

zero relations µ = 0 for those paths µ of Q̂ for which there is no path t̂(µ)⇝ νQ(ŝ(µ)).

(Therefore note that if a path αn · · ·α1 is in I, then α
[i]
n · · ·α[i]

1 is in Î for all i ∈ Z.)

Let R be a locally bounded category. A morphism f : x → y in R1 is called a
maximal nonzero morphism if f ̸= 0 and fg = 0, hf = 0 for all g ∈ radR(z, x), h ∈
radR(y, z), z ∈ R0.
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Lemma 1.4. Let A be an algebra and x[i], y[j] ∈ Â0. Then there exists a maximal
nonzero morphism in Â(x[i], y[j]) if and only if y[j] = νA(x

[i]).

Proof. This follows from the fact that Â(-, x[i+1]) ∼= DÂ(x[i], -) for all i ∈ Z, x ∈ A0. □

Lemma 1.5. Let A be an algebra. Then the actions of ϕνA and νAϕ coincide on the
objects of Â for all ϕ ∈ Aut(Â).

Proof. Let x[i] ∈ Â0. Then there is a maximal nonzero morphism in Â(x[i], νA(x
[i])) by

Lemma 1.4. Since ϕ is an automorphism of Â, there is a maximal nonzero morphism
in Â(ϕ(x[i]), ϕ(νA(x

[i]))). Hence ϕ(νA(x
[i])) = νA(ϕ(x

[i])) by the same lemma. □

The following is immediate by the lemma above.

Proposition 1.6. Let A be an algebra, n an integer, and ϕ an automorphism of Â.
Then the following are equivalent:

(1) ϕ is an automorphism with jump n;
(2) ϕ(Ai) = A[i+n] for some integer i; and
(3) ϕ(Aj) = A[j+n] for all integers j.

In the sequel, we always assume that n is a positive integer when we consider a
morphism with jump n. Let Q be a quiver. We denote by Q̄ the underlying graph
of Q, and call Q finite if both Q0 and Q1 are finite sets. Each automorphism of Q is
regarded as an automorphism of Q̄ preserving the orientation of Q, thus Aut(Q) can be
regarded as a subgroup of Aut(Q̄). Suppose now that Q is a finite oriented tree. Then
it is also known that Aut(Q) ≤ Aut0(Q̄) := {f ∈ Aut(Q̄) | ∃x ∈ Q0, f(x) = x}. We
say that Q is an admissibly oriented tree if Aut(Q) = Aut0(Q̄). We quote the following
from [3, Lemma 4.1]:

Lemma 1.7. For any finite tree T there exists an admissibly oriented tree Q with a
unique source such that Q̄ = T .

We recall the following (cf. [3, Section 4.1]):

Definition 1.8. Let R be a locally bounded category. The formal additive hull addR
of R is a category defined as follows.

• (addR)0 := {
⊕n

i=1 xi := (x1, . . . , xn) | n ∈ N, x1, . . . , xn ∈ R0};
• For each x =

⊕m
i=1 xi, y =

⊕m
j=1 yi ∈ (addR)0,

(addR)(x, y) := {(µj,i)j,i | µj,i ∈ R(xi, yj) for all i = 1, . . . ,m, j = 1, . . . , n}; and

• The composition is given by the matrix multiplication.

It is well known that theYoneda functor YR : addR → prjR,
⊕n

i=1 xi 7→
⊕n

i=1R(-, xi)
is an equivalence. Let F : R → S be a functor of locally bounded categories. Then F
naturally induces functors addF : addR → addS and F̃ := Kb(addF ) : Kb(addR) →
Kb(addS), which are isomorphisms if F is an isomorphism.
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2. Reduction to hereditary tree algebras

Proposition 2.1. Let A be a piecewise hereditary algebra of tree type Q̄ for an admis-
sibly oriented tree Q, and n a positive integer. Then we have the following:

(1) For any ϕ ∈ Aut(Â) with jump n, there exists some ψ ∈ Aut(k̂Q) with jump n

such that Â/⟨ϕ⟩ is derived equivalent to k̂Q/⟨ψ⟩; and
(2) If we set ϕ′ := νnAϕ̂0 ∈ Aut(Â), where ϕ0 := (1l[0])−1ν−nϕ|A[0]1l[0], then there

exists some ψ′ ∈ Aut(k̂Q) with jump n such that Â/⟨ϕ′⟩ is derived equivalent

to k̂Q/⟨ψ′⟩, and that the actions of ψ and ψ′ coincide on the objects of k̂Q.

Proof. (1) We set ϕi := (1l[i])−1ν−nϕ|A[i]1l[i] ∈ Aut(A) for all i ∈ Z. By [3, Lemma 5.4],
there exists a tilting triple (A,E, kQ) with an isomorphism ζ : E → kQ such that E is

⟨η̃⟩-stable up to isomorphisms for all η ∈ Aut(A). In particular, E is ⟨ϕ̃i⟩-stable up to

isomorphisms for all i ∈ Z. Then (Â, Ê, k̂Q) is a tilting triple with an isomorphism ζ̂
by [1, Theorem 1.5] and the following holds.

Claim 1. Ê is ⟨ϕ̃⟩-stable up to isomorphisms.

Indeed for each T ∈ E0 and i ∈ Z, we have

ϕ̃1̃l
[i]
(T ) = ν̃nν̃−nϕ̃1̃l

[i]
(T )

= ν̃n1̃l
[i]
ϕ̃i(T )

= 1̃l
[i+n]

ϕ̃i(T ).

(2.1)

Since E is ⟨ϕ̃i⟩-stable up to isomorphisms, there is some T ′ ∈ E such that T ′ ∼= ϕ̃i(T ),

and hence 1̃l
[i+n]

ϕ̃i(T ) ∼= 1̃l
[i+n]

(T ′) ∈ Ê, as desired.

By [3, Remark 3.5], we have a ⟨ϕ̃⟩-stable tilting subcategory Ê ′ and an isomorphism

θ : Ê ′ ∼
→ Ê. Therefore by [2, Proposition 5.4] Â/⟨ϕ⟩ and Ê ′/⟨ϕ̃⟩ are derived equivalent.

If we set ψ := (ζ̂θ)ϕ̃(ζ̂θ)−1, then (2.1) shows that ψ is an automorphism with jump n,

and that Ê ′/⟨ϕ̃⟩ ∼= k̂Q/⟨ψ⟩. Hence Â/⟨ϕ⟩ and k̂Q/⟨ψ⟩ are derived equivalent.
(2) Note that ϕ′ is also an automorphism with jump n. By the same argument

we see that Ê is also ⟨ϕ̃′⟩-stable up to isomorphisms; there exists a ⟨ϕ̃′⟩-stable tilting

subcategory Ê ′′ and an isomorphism θ′ : Ê ′′ ∼
→ Ê; and Â/⟨ϕ′⟩ and Ê ′′/⟨ϕ̃′⟩ are de-

rived equivalent. Set ψ′ := (ζ̂θ′)ϕ̃′(ζ̂θ′)−1, then ψ′ is an automorphism with jump n,

Ê ′′/⟨ϕ̃′⟩ ∼= k̂Q/⟨ψ′⟩, and Â/⟨ϕ′⟩ and k̂Q/⟨ψ′⟩ are derived equivalent. Now for i = 0

(2.1) shows that ϕ̃1̃l
[0]
(T ) = 1̃l

[n]
ϕ̃0(T ) for all T ∈ E0. Since ϕ′

0 = ϕ0, the same cal-

culation shows that ϕ̃′1̃l
[0]
(T ) = 1̃l

[n]
ϕ̃0(T ) for all T ∈ E0. Thus the actions of ϕ̃ and

ϕ̃′ coincide on the objects of E[0], which shows that the actions of ψ and ψ′ coincide
on the objects of kQ[0]. Hence by Lemma 1.5 their actions coincide on the objects of

k̂Q. □

3. Hereditary tree algebras

Remark 3.1. Let Q be an oriented tree.
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(1) We may identify k̂Q = kQ̂/Î as stated in Lemma 1.3, and we denote by µ the

morphism µ+ Î in k̂Q for each morphism µ in kQ̂.
(2) Let x, y ∈ Q̂0. Since Î contains full commutativity relations, we have dimk k̂Q(x, y)

≤ 1, and in particular Q̂ has no double arrows.

(3) Let α : x→ y be in Q̂1 and ϕ ∈ Aut(k̂Q). Then there exists a unique arrow ϕx→
ϕy in Q̂, which we denote by (π̂ϕ)(α), and we have ϕ(α) = ϕα(π̂ϕ)(α) ∈ k̂Q(ϕx, ϕy)
for a unique ϕα ∈ k× := k \ {0}. This defines an automorphism π̂ϕ of Q̂, and thus a

group homomorphism π̂ : Aut(k̂Q) → Aut(Q̂).
(4) Similarly, let α : x → y be in Q1 and ψ ∈ Aut(kQ). Then there exists a unique

arrow ψx→ ψy in Q, which we denote by (πψ)(α). This defines an automorphism πψ
of Q, and thus a group homomorphism π : Aut(kQ) → Aut(Q).

We cite the following from [3, Proposition 7.4].

Proposition 3.2. Let R be a locally bounded category, and g, h automorphisms of R
acting freely on R. If there exists a map ρ : R0 → k× such that ρ(y)g(f) = h(f)ρ(x)
for all morphisms f : x→ y in R, then R/⟨g⟩ ∼= R/⟨h⟩. □
Definition 3.3. (1) For a quiver Q = (Q0, Q1, s, t) we set Q[Q−1

1 ] to be the quiver

Q[Q−1
1 ] := (Q0, Q1 ⊔ {α−1 | α ∈ Q1}, s′, t′),

where s′|Q1 := s, t′|Q1 := t, s′(α−1) := t(α) and t′(α−1) := s(α) for all α ∈ Q1. A walk
in Q is a path in Q[Q−1

1 ].
(2) Suppose that Q is a finite oriented tree. Then for each x, y ∈ Q0 there exists a

unique shortest walk from x to y in Q, which we denote by w(x, y). If w(x, y) =
αεnn · · ·αε11 for some α1, · · · , αn ∈ Q1 and ε1, . . . , εn ∈ {1,−1}, then we define a
subquiver W (x, y) of Q by W (x, y) := (W (x, y)0,W (x, y)1, s

′, t′), where W (x, y)0 :=
{s(αi), t(αi) | i = 1, . . . , n}, W (x, y)1 := {α1, . . . , αn}, and s′, t′ are restrictions of s, t
to W (x, y)1, respectively. Since Q is an oriented tree, w(x, y) is uniquely recovered
by W (x, y). Therefore we can identify w(x, y) with W (x, y), and define a sink and a
source of w(x, y) as those in W (x, y).

Proposition 3.4. Let Q be a finite oriented tree and ϕ, ψ automorphisms of k̂Q acting

freely on k̂Q. If the actions of ϕ and ψ coincide on the objects of k̂Q, then there exists a

map ρ : (Q̂0 =) k̂Q0 → k× such that ρ(y)ψ(f) = ϕ(f)ρ(x) for all morphisms f : x→ y

in k̂Q. Hence in particular, k̂Q/⟨ϕ⟩ is isomorphic to k̂Q/⟨ψ⟩.

Proof. Assume that the actions of ϕ, ψ ∈ Aut(k̂Q) coincides on the objects of k̂Q.
Then ϕ and ψ induce the same quiver automorphism q = π̂ϕ = π̂ψ of Q̂, and there

exist (ϕα)α∈Q̂1
, (ψα)α∈Q̂1

∈ (k×)Q̂1 such that for each α ∈ Q̂1 we have

ϕ(α) = ϕαq(α), ψ(α) = ψαq(α).

For each path λ = αn · · ·α1 in Q̂ with α1, . . . , αn ∈ Q̂1 we set ϕλ := ϕαn · · ·ϕα1 . Then
we have

ϕ(λ) = ϕλq(λ),
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where q(λ) := q(αn) · · · q(α1) because ϕ(αn) · · ·ϕ(α1) = ϕαn · · ·ϕα1q(αn) · · · q(α1).

To show the statement we may assume that ψα = 1 for all α ∈ Q̂1. Since for each

x, y ∈ Q̂0 the morphism space k̂Q(x, y) is at most 1-dimensional and has a basis of the

form µ for some path µ, it is enough to show that there exists a map ρ : Q̂0 → k×

satisfying the following condition:

ρ(v[j]) = ϕβρ(u
[i]) for all β : u[i] → v[j] in Q̂1. (3.1)

We define a map ρ as follows:
Fix a maximal path µ : y ⇝ x in Q. Then x is a sink and y is a source in Q. We
can write µ as µ = αl · · ·α1 for some α1, . . . , αl ∈ Q1. First we set ρ(x[0]) := 1. By
induction on 0 ≤ i ∈ Z we define ρ(x[i]) and ρ(x[−i]) by the following formulas:

ρ(x[i+1]) := ϕµ[i+1]ϕµ∗[i]ρ(x
[i]), (3.2)

ρ(x[i−1]) := ϕ−1
µ∗[i−1]ϕ

−1
µ[i]
ρ(x[i]). (3.3)

Now for each i ∈ Z and u ∈ Q0 if w(u, x) = βεmm · · · βε11 for some β1, . . . , βm ∈ Q1 and
ε1, . . . , εm ∈ {1,−1}, then we set

ρ(u[i]) := ϕ−ε1
β
[i]
1

· · ·ϕ−εm
β
[i]
m

ρ(x[i]). (3.4)

We have to verify the condition (3.1).
Case 1. β = α[i] : u[i] → v[i] for some i ∈ Z, and α : u → v in Q1. Since Q is an

oriented tree, we have either w(u, x) = w(v, x)α or w(v, x) = w(u, x)α−1. In either
case we have ρ(v[i]) = ϕα[i]ρ(u[i]) by the formula (3.4).

Case 2. Otherwise, we have β = λ∗[i] : u[i] → v[i+1] for some maximal path λ : v ⇝ u
in Q and i ∈ Z. In this case the condition (3.1) has the following form:

ρ(v[i+1]) = ϕλ∗[i]ρ(u
[i]). (3.5)

Two paths are said to be parallel if they have the same source and the same target.
We prepare the following for the proof.

Claim 2. If ζ and η are parallel paths in Q̂, then we have ϕζ = ϕη.

Indeed, since ζ − η ∈ Î, we have ϕ(ζ) = ϕ(η), which shows

ϕζq(ζ) = ϕηq(η).

Here we have q(ζ) = ψ(ζ) = ψ(η) = q(η), and ψ(ζ) ̸= 0 because ζ ̸= 0. Hence ϕζ = ϕη,
as required.

We now set d(a, b) to be the number of sinks in w(a, b) for all a, b ∈ Q0. By induction
on d(y, v) we can show that the condition (3.5) holds. □

4. Main result

Theorem 4.1. Let A be a piecewise hereditary algebra of tree type and ϕ an automor-
phism of Â with jump n. Then Â/⟨ϕ⟩ and T nϕ0(A) are derived equivalent, where we set

ϕ0 := (1l[0])−1ν−nϕ|A[0]1l[0].
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Proof. Let T be the tree type of A. Then by Lemma 1.7 there exists an admissibly
oriented tree Q with Q̄ = T . We set ϕ′ := νnAϕ̂0 (= ϕ̂0ν

n
A). Then T

n
ϕ0
(A) = Â/⟨ϕ′⟩. By

Proposition 2.1(2) there exist some ψ, ψ′ ∈ Aut(k̂Q) both with jump n such that Â/⟨ϕ⟩
(resp. Â/⟨ϕ′⟩) is derived equivalent to k̂Q/⟨ψ⟩ (resp. k̂Q/⟨ψ′⟩), and the actions of ψ and

ψ′ coincide on the objects of k̂Q. Then by Proposition 3.4 we have k̂Q/⟨ψ⟩ ∼= k̂Q/⟨ψ′⟩.
Hence Â/⟨ϕ⟩ and T nϕ0(A) are derived equivalent. □
Definition 4.2. Let Λ be a generalized n-fold extension of a piecewise hereditary
algebra A of tree type T , say Λ = Â/⟨ϕ⟩ for some ϕ ∈ Aut(A) with jump n. Further
let Q be an admissibly oriented tree with Q̄ = T . Then by Proposition 2.1 there

exists ψ ∈ Aut(k̂Q) with jump n such that Â/⟨ϕ⟩ is derived equivalent to k̂Q/⟨ψ⟩.
We define the (derived equivalence) type type(Λ) of Λ to be the triple (T, n, π(ψ0)),

where ψ0 := (1l[0])−1ν−nkQψ|(kQ)[0]1l
[0] and π(ψ0) is the conjugacy class of π(ψ0) in Aut(T ).

type(Λ) is uniquely determined by Λ.

By Theorem 4.1, we can extend the main theorem in [3] as follows.

Theorem 4.3. Let Λ, Λ′ be generalized multifold extensions of piecewise hereditary
algebras of tree type. Then the following are equivalent:

(i) Λ and Λ′ are derived equivalent.
(ii) Λ and Λ′ are stably equivalent.
(iii) type(Λ) = type(Λ′).
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