DERIVED EQUIVALENCE CLASSIFICATION OF GENERALIZED MULTIFOLD EXTENSIONS OF PIECEWISE HEREDITARY ALGEBRAS OF TREE TYPE

HIDETO ASASHIBA AND MAYUMI KIMURA

ABSTRACT. We give a derived equivalence classification of algebras of the form $\hat{A}/\langle \phi \rangle$ for some piecewise hereditary algebra A of tree type and some automorphism ϕ of \hat{A} such that $\phi(A^{[0]}) = A^{[n]}$ for some positive integer n.

INTRODUCTION

Throughout this note we fix an algebraically closed field k, and assume that all algebras are basic and finite-dimensional k-algebras and that all categories are k-categories.

Let A be an algebra and n a positive integer. Then an algebra of the form $T_{\psi}^{n}(A) := \hat{A}/\langle \hat{\psi} \nu_{A}^{n} \rangle$ for some automorphism ψ of A is called a *twisted n-fold extension* of A. Further an algebra of the form $\hat{A}/\langle \phi \rangle$ for some automorphism ϕ of \hat{A} with jump n is called a *generalized n-fold extension* of A, where ϕ is called an automorphism with *jump n* if $\phi(A^{[0]}) = A^{[n]}$. Since obviously $\hat{\psi} \nu_{A}^{n}$ is an automorphism with jump n, we see that twisted *n*-fold extensions are generalized *n*-fold extensions. An algebra is called a *generalized (resp. twisted) multifold extension* if it is a generalized (resp. twisted) *n*-fold extension for some positive integer n. In [3], we gave the derived equivalence classification of twisted multifold extensions of piecewise hereditary algebras of tree type by giving a complete invariant. In this note we extend this result to generalized multifold extensions of tree type.

1. Preliminaries

For a category R we denote by R_0 and R_1 the class of objects and morphisms of R, respectively. A category R is said to be *locally bounded* if it satisfies the following:

- Distinct objects of R are not isomorphic;
- R(x, x) is a local algebra for all $x \in R_0$;
- R(x, y) is finite-dimensional for all $x, y \in R_0$; and
- The set $\{y \in R_0 \mid R(x, y) \neq 0 \text{ or } R(y, x) \neq 0\}$ is finite for all $x \in R_0$.

A category is called *finite* if it has only a finite number of objects.

A pair (A, E) of an algebra A and a complete set $E := \{e_1, \ldots, e_n\}$ of orthogonal primitive idempotents of A can be identified with a locally bounded and finite category R by the following correspondences. Such a pair (A, E) defines a category $R_{(A,E)} := R$ as follows: $R_0 := E$, R(x, y) := yAx for all $x, y \in E$, and the composition of R is

The detailed version of this paper will be submitted for publication elsewhere.

defined by the multiplication of A. Then the category R is locally bounded and finite. Conversely, a locally bounded and finite category R defines such a pair (A_R, E_R) as follows: $A_R := \bigoplus_{x,y \in R_0} R(x,y)$ with the usual matrix multiplication (regard each element of A as a matrix indexed by R_0 , and $E_R := \{(\mathbb{1}_x \delta_{(i,j),(x,x)})_{i,j\in R_0} \mid x \in R_0\}.$ We always regard an algebra A as a locally bounded and finite category by fixing a complete set A_0 of orthogonal primitive idempotents of A.

Definition 1.1. Let *A* be an algebra.

(1) The repetition \hat{A} of A is a k-category defined as follows (\hat{A} turns out to be locally bounded):

- $\hat{A}_0 := A_0 \times \mathbb{Z} = \{ x^{[i]} := (x, i) \mid x \in A_0, i \in \mathbb{Z} \}$ • $\hat{A}(x^{[i]}, y^{[j]}) := \begin{cases} \{f^{[i]} \mid f \in A(x, y)\} & \text{if } j = i, \\ \{\phi^{[i]} \mid \phi \in DA(y, x)\} & \text{if } j = i+1, \\ 0 & \text{otherwise,} \end{cases}$ • For each $x^{[i]}, y^{[j]}, z^{[k]} \in \hat{A}_0$ the composition $\hat{A}(y^{[j]}, z^{[k]}) \times \hat{A}(x^{[i]}, y^{[j]}) \to \hat{A}(x^{[i]}, z^{[k]})$
- is given as follows.
 - (i) If i = j, j = k, then this is the composition of $A A(y, z) \times A(x, y) \rightarrow A(x, z)$.
 - (ii) If i = j, j + 1 = k, then this is given by the right A-module structure of $DA: DA(z, y) \times A(x, y) \rightarrow DA(z, x).$
 - (iii) If i + 1 = j, j = k, then this is given by the left A-module structure of DA: $A(y,z) \times DA(y,x) \to DA(z,x).$
 - (iv) Otherwise, the composition is zero.

(2) We define an automorphism ν_A of \hat{A} , called the Nakayama automorphism of \hat{A} , by $\nu_A(x^{[i]}) := x^{[i+1]}, \nu_A(f^{[i]}) := f^{[i+1]}, \nu_A(\phi^{[i]}) := \phi^{[i+1]} \text{ for all } i \in \mathbb{Z}, x \in A_0, f \in A_1, \phi \in$ $\bigcup_{x,y\in A_0} DA(y,x).$

(3) For each $n \in \mathbb{Z}$, we denote by $A^{[n]}$ the full subcategory of \hat{A} formed by $x^{[n]}$ with $x \in A$, and by $\mathbb{1}^{[n]} : A \xrightarrow{\sim} A^{[n]} \hookrightarrow \hat{A}, x \mapsto x^{[n]}$, the embedding functor.

We cite the following from [3, Lemma 2.3].

Lemma 1.2. Let $\psi: A \to B$ be an isomorphism of algebras. Denote by $\psi_x^y: A(y, x) \to y$ $B(\psi y, \psi x)$ the isomorphism defined by ψ for all $x, y \in A$. Define $\hat{\psi} \colon \hat{A} \to \hat{B}$ as follows.

- For each $x^{[i]} \in \hat{A}, \hat{\psi}(x^{[i]}) := (\psi x)^{[i]};$
- For each $f^{[i]} \in \hat{A}(x^{[i]}, y^{[i]}), \hat{\psi}(f^{[i]}) := (\psi f)^{[i]}; and$
- For each $\phi^{[i]} \in \hat{A}(x^{[i]}, y^{[i+1]}), \hat{\psi}(\phi^{[i]}) := (D((\psi_x^y)^{-1})(\phi))^{[i]} = (\phi \circ (\psi_x^y)^{-1})^{[i]}.$

Then

- (1) $\hat{\psi}$ is an isomorphism.
- (2) Given an isomorphism $\rho: \hat{A} \to \hat{B}$, the following are equivalent.

(a)
$$\rho = \hat{\psi};$$

(b) ρ satisfies the following.

(i)
$$\rho \nu_A = \nu_B \rho;$$

(ii) $\rho(A^{[0]}) = A^{[0]};$

(iii) The diagram

is commutative; and
(iv)
$$\rho(\phi^{[0]}) = (\phi \circ (\psi_x^y)^{-1})^{[0]}$$
 for all $x, y \in A$ and all $\phi \in DA(y, x)$.

An algebra is called a *tree algebra* if its ordinary quiver is an oriented tree. Let R be a locally bounded category with the Jacobson radical J and with the ordinary quiver Q. Then by definition of Q there is a bijection $f: Q_0 \to R_0, x \mapsto f_x$ and injections $\bar{a}_{y,x}: Q_1(x,y) \to J(f_x,f_y)/J^2(f_x,f_y)$ such that $\bar{a}_{y,x}(Q_1(x,y))$ forms a basis of $J(f_x, f_y)/J^2(f_x, f_y)$, where $Q_1(x, y)$ is the set of arrows from x to y in Q for all $x, y \in Q_0$. For each $\alpha \in Q_1(x, y)$ choose $a_{y,x}(\alpha) \in J(f_x, f_y)$ such that $a(\alpha) + J^2(f_x, f_y) = \bar{a}_{y,x}(\alpha)$. Then the pair (f, a) of the bijection f and the family a of injections $a_{y,x}: Q_1(x, y) \to Q_2(x, y)$ $J(f_x, f_y)$ $(x, y \in Q_0)$ uniquely extends to a full functor $\Phi \colon \Bbbk Q \to R$, which is called a display functor for R.

A path μ from y to x in a quiver with relations (Q, I) is called *maximal* if $\mu \notin I$ but $\alpha \mu, \mu \beta \in I$ for all arrows $\alpha, \beta \in Q_1$. For a k-vector space V with a basis $\{v_1, \ldots, v_n\}$ we denote by $\{v_1^*, \ldots, v_n^*\}$ the basis of DV dual to the basis $\{v_1, \ldots, v_n\}$. In particular if $\dim_k V = 1$, $v^* \in DV$ is defined for all $v \in V \setminus \{0\}$.

Lemma 1.3. Let A be a tree algebra and $\Phi : \Bbbk Q \to A$ a display functor with $I := \operatorname{Ker} \Phi$. Then

(1) Φ uniquely induces the display functor $\hat{\Phi} : \mathbb{k}\hat{Q} \to \hat{A}$ for \hat{A} , where

- (i) $\hat{Q} = (\hat{Q}_0, \hat{Q}_1, \hat{s}, \hat{t})$ is defined as follows:
 - $\hat{Q}_0 := Q_0 \times \mathbb{Z} = \{ x^{[i]} := (x, i) \mid x \in Q_0, i \in \mathbb{Z} \},\$
 - $Q_1 \times \mathbb{Z} := \{ \alpha^{[i]} := (\alpha, i) \mid \alpha \in Q_1, i \in \mathbb{Z} \},\$
 - $\hat{Q}_1 := (Q_1 \times \mathbb{Z}) \sqcup \{\mu^{*[i]} \mid \mu \text{ is a maximal path in } (Q, I), i \in \mathbb{Z}\},$ $\hat{s}(\alpha^{[i]}) := s(\alpha)^{[i]}, \hat{t}(\alpha^{[i]}) := t(\alpha)^{[i]} \text{ for all } \alpha^{[i]} \in Q_1 \times \mathbb{Z}, \text{ and if } \mu \text{ is a maximal } \beta^{[i]}$ path from y to x in (Q, I) then, $\hat{s}(\mu^{*[i]}) := x^{[i]}, \hat{t}(\mu^{*[i]}) := y^{[i+1]}.$
- (ii) $\hat{\Phi}$ is defined by $\hat{\Phi}(x^{[i]}) := (\Phi x)^{[i]}, \ \hat{\Phi}(\alpha^{[i]}) := (\Phi \alpha)^{[i]}, \ and \ \hat{\Phi}(\mu^{*[i]}) := (\Phi(\mu)^{*})^{[i]}$ for all $i \in \mathbb{Z}$, $x \in Q_0$, $\alpha \in Q_1$ and maximal paths μ in (Q, I).
- (2) We define an automorphism ν_Q of \hat{Q} by $\nu_Q(x^{[i]}) := x^{[i+1]}, \ \nu_Q(\alpha^{[i]}) := \alpha^{[i+1]},$ $\nu_Q(\mu^{*[i]}) := \mu^{*[i+1]}$ for all $i \in \mathbb{Z}, x \in Q_0, \alpha \in Q_1$, and maximal paths μ in (Q, I).

(3) Ker $\hat{\Phi}$ is equal to the ideal \hat{I} defined by the full commutativity relations on \hat{Q} and the zero relations $\mu = 0$ for those paths μ of \hat{Q} for which there is no path $\hat{t}(\mu) \rightsquigarrow \nu_Q(\hat{s}(\mu))$. (Therefore note that if a path $\alpha_n \cdots \alpha_1$ is in I, then $\alpha_n^{[i]} \cdots \alpha_1^{[i]}$ is in \hat{I} for all $i \in \mathbb{Z}$.)

Let R be a locally bounded category. A morphism $f: x \to y$ in R_1 is called a maximal nonzero morphism if $f \neq 0$ and fg = 0, hf = 0 for all $g \in \operatorname{rad} R(z, x), h \in$ rad $R(y, z), z \in R_0$.

Lemma 1.4. Let A be an algebra and $x^{[i]}, y^{[j]} \in \hat{A}_0$. Then there exists a maximal nonzero morphism in $\hat{A}(x^{[i]}, y^{[j]})$ if and only if $y^{[j]} = \nu_A(x^{[i]})$.

Proof. This follows from the fact that $\hat{A}(-, x^{[i+1]}) \cong D\hat{A}(x^{[i]}, -)$ for all $i \in \mathbb{Z}, x \in A_0$. \Box

Lemma 1.5. Let A be an algebra. Then the actions of $\phi \nu_A$ and $\nu_A \phi$ coincide on the objects of A for all $\phi \in \operatorname{Aut}(A)$.

Proof. Let $x^{[i]} \in \hat{A}_0$. Then there is a maximal nonzero morphism in $\hat{A}(x^{[i]}, \nu_A(x^{[i]}))$ by Lemma 1.4. Since ϕ is an automorphism of \hat{A} , there is a maximal nonzero morphism in $\hat{A}(\phi(x^{[i]}), \phi(\nu_A(x^{[i]})))$. Hence $\phi(\nu_A(x^{[i]})) = \nu_A(\phi(x^{[i]}))$ by the same lemma.

The following is immediate by the lemma above.

Proposition 1.6. Let A be an algebra, n an integer, and ϕ an automorphism of \hat{A} . Then the following are equivalent:

- (1) ϕ is an automorphism with jump n;
- (2) $\phi(A^i) = A^{[i+n]}$ for some integer *i*; and (3) $\phi(A^j) = A^{[j+n]}$ for all integers *j*.

In the sequel, we always assume that n is a positive integer when we consider a morphism with jump n. Let Q be a quiver. We denote by \overline{Q} the underlying graph of Q, and call Q finite if both Q_0 and Q_1 are finite sets. Each automorphism of Q is regarded as an automorphism of \bar{Q} preserving the orientation of Q, thus Aut(Q) can be regarded as a subgroup of $\operatorname{Aut}(\overline{Q})$. Suppose now that Q is a finite oriented tree. Then it is also known that $\operatorname{Aut}(Q) \leq \operatorname{Aut}_0(Q) := \{f \in \operatorname{Aut}(Q) \mid \exists x \in Q_0, f(x) = x\}$. We say that Q is an *admissibly oriented* tree if $\operatorname{Aut}(Q) = \operatorname{Aut}_0(\overline{Q})$. We quote the following from [3, Lemma 4.1]:

Lemma 1.7. For any finite tree T there exists an admissibly oriented tree Q with a unique source such that Q = T.

We recall the following (cf. [3, Section 4.1]):

Definition 1.8. Let R be a locally bounded category. The formal additive hull add Rof R is a category defined as follows.

- $(\operatorname{add} R)_0 := \{\bigoplus_{i=1}^n x_i := (x_1, \dots, x_n) \mid n \in \mathbb{N}, x_1, \dots, x_n \in R_0\};$ For each $x = \bigoplus_{i=1}^m x_i, y = \bigoplus_{j=1}^m y_i \in (\operatorname{add} R)_0,$

 $(\text{add } R)(x, y) := \{(\mu_{i,i})_{i,i} \mid \mu_{i,i} \in R(x_i, y_i) \text{ for all } i = 1, \dots, m, j = 1, \dots, n\}; \text{ and } i = 1, \dots, m, j = 1, \dots, n\};$

• The composition is given by the matrix multiplication.

It is well known that the Yoneda functor Y_R : add $R \to \operatorname{prj} R$, $\bigoplus_{i=1}^n x_i \mapsto \bigoplus_{i=1}^n R(-, x_i)$ is an equivalence. Let $F: R \to S$ be a functor of locally bounded categories. Then F naturally induces functors add F: add $R \to \operatorname{add} S$ and $F := \mathcal{K}^{\mathsf{b}}(\operatorname{add} F) \colon \mathcal{K}^{\mathsf{b}}(\operatorname{add} R) \to$ $\mathcal{K}^{\mathrm{b}}(\mathrm{add}\,S)$, which are isomorphisms if F is an isomorphism.

2. Reduction to hereditary tree algebras

Proposition 2.1. Let A be a piecewise hereditary algebra of tree type \overline{Q} for an admissibly oriented tree Q, and n a positive integer. Then we have the following:

- (1) For any $\phi \in \operatorname{Aut}(\hat{A})$ with jump n, there exists some $\psi \in \operatorname{Aut}(\widehat{\Bbbk}\hat{Q})$ with jump n such that $\hat{A}/\langle \phi \rangle$ is derived equivalent to $\widehat{\Bbbk}\hat{Q}/\langle \psi \rangle$; and
- (2) If we set $\phi' := \nu_A^n \hat{\phi}_0 \in \operatorname{Aut}(\hat{A})$, where $\phi_0 := (\mathbb{1}^{[0]})^{-1} \nu^{-n} \phi|_{A^{[0]}} \mathbb{1}^{[0]}$, then there exists some $\psi' \in \operatorname{Aut}(\widehat{\Bbbk Q})$ with jump n such that $\hat{A}/\langle \phi' \rangle$ is derived equivalent to $\widehat{\Bbbk Q}/\langle \psi' \rangle$, and that the actions of ψ and ψ' coincide on the objects of $\widehat{\Bbbk Q}$.

Proof. (1) We set $\phi_i := (\mathbb{1}^{[i]})^{-1}\nu^{-n}\phi|_{A^{[i]}}\mathbb{1}^{[i]} \in \operatorname{Aut}(A)$ for all $i \in \mathbb{Z}$. By [3, Lemma 5.4], there exists a tilting triple $(A, E, \Bbbk Q)$ with an isomorphism $\zeta : E \to \Bbbk Q$ such that E is $\langle \tilde{\eta} \rangle$ -stable up to isomorphisms for all $\eta \in \operatorname{Aut}(A)$. In particular, E is $\langle \tilde{\phi}_i \rangle$ -stable up to isomorphisms for all $i \in \mathbb{Z}$. Then $(\hat{A}, \hat{E}, \widehat{\Bbbk Q})$ is a tilting triple with an isomorphism $\hat{\zeta}$ by [1, Theorem 1.5] and the following holds.

Claim 1. \hat{E} is $\langle \hat{\phi} \rangle$ -stable up to isomorphisms.

Indeed for each $T \in E_0$ and $i \in \mathbb{Z}$, we have

$$\tilde{\phi}\tilde{\mathbb{1}}^{[i]}(T) = \tilde{\nu}^{n}\tilde{\nu}^{-n}\tilde{\phi}\tilde{\mathbb{1}}^{[i]}(T)$$

$$= \tilde{\nu}^{n}\tilde{\mathbb{1}}^{[i]}\tilde{\phi}_{i}(T)$$

$$= \tilde{\mathbb{1}}^{[i+n]}\tilde{\phi}_{i}(T).$$
(2.1)

Since E is $\langle \tilde{\phi}_i \rangle$ -stable up to isomorphisms, there is some $T' \in E$ such that $T' \cong \tilde{\phi}_i(T)$, and hence $\tilde{\mathbb{1}}^{[i+n]} \tilde{\phi}_i(T) \cong \tilde{\mathbb{1}}^{[i+n]}(T') \in \hat{E}$, as desired.

By [3, Remark 3.5], we have a $\langle \tilde{\phi} \rangle$ -stable tilting subcategory \hat{E}' and an isomorphism $\theta \colon \hat{E}' \to \hat{E}$. Therefore by [2, Proposition 5.4] $\hat{A}/\langle \phi \rangle$ and $\hat{E}'/\langle \tilde{\phi} \rangle$ are derived equivalent. If we set $\psi := (\hat{\zeta}\theta)\tilde{\phi}(\hat{\zeta}\theta)^{-1}$, then (2.1) shows that ψ is an automorphism with jump n, and that $\hat{E}'/\langle \tilde{\phi} \rangle \cong \widehat{\Bbbk Q}/\langle \psi \rangle$. Hence $\hat{A}/\langle \phi \rangle$ and $\widehat{\Bbbk Q}/\langle \psi \rangle$ are derived equivalent.

(2) Note that ϕ' is also an automorphism with jump *n*. By the same argument we see that \hat{E} is also $\langle \tilde{\phi'} \rangle$ -stable up to isomorphisms; there exists a $\langle \tilde{\phi'} \rangle$ -stable tilting subcategory $\hat{E''}$ and an isomorphism $\theta' \colon \hat{E''} \xrightarrow{\sim} \hat{E}$; and $\hat{A}/\langle \phi' \rangle$ and $\hat{E''}/\langle \tilde{\phi'} \rangle$ are derived equivalent. Set $\psi' := (\hat{\zeta}\theta')\tilde{\phi'}(\hat{\zeta}\theta')^{-1}$, then ψ' is an automorphism with jump *n*, $\hat{E''}/\langle \tilde{\phi'} \rangle \cong \hat{kQ}/\langle \psi' \rangle$, and $\hat{A}/\langle \phi' \rangle$ and $\hat{kQ}/\langle \psi' \rangle$ are derived equivalent. Now for i = 0(2.1) shows that $\tilde{\phi}\tilde{1}^{[0]}(T) = \tilde{1}^{[n]}\tilde{\phi}_0(T)$ for all $T \in E_0$. Since $\phi'_0 = \phi_0$, the same calculation shows that $\tilde{\phi'}\tilde{1}^{[0]}(T) = \tilde{1}^{[n]}\tilde{\phi}_0(T)$ for all $T \in E_0$. Thus the actions of $\tilde{\phi}$ and $\tilde{\phi'}$ coincide on the objects of $E^{[0]}$, which shows that the actions of ψ and ψ' coincide on the objects of $kQ^{[0]}$. Hence by Lemma 1.5 their actions coincide on the objects of \hat{kQ} .

3. Hereditary tree algebras

Remark 3.1. Let Q be an oriented tree.

(1) We may identify $\widehat{\mathbb{k}Q} = \mathbb{k}\hat{Q}/\hat{I}$ as stated in Lemma 1.3, and we denote by $\overline{\mu}$ the morphism $\mu + \hat{I}$ in $\widehat{\mathbb{k}Q}$ for each morphism μ in $\mathbb{k}\hat{Q}$.

(2) Let $x, y \in \hat{Q}_0$. Since \hat{I} contains full commutativity relations, we have $\dim_{\mathbb{K}} \widehat{\mathbb{K}Q}(x, y) \leq 1$, and in particular \hat{Q} has no double arrows.

(3) Let $\alpha: x \to y$ be in \hat{Q}_1 and $\phi \in \operatorname{Aut}(\widehat{\Bbbk Q})$. Then there exists a unique arrow $\phi x \to \phi y$ in \hat{Q} , which we denote by $(\hat{\pi}\phi)(\alpha)$, and we have $\phi(\overline{\alpha}) = \phi_{\alpha}(\widehat{\pi}\phi)(\alpha) \in \widehat{\Bbbk Q}(\phi x, \phi y)$ for a unique $\phi_{\alpha} \in \Bbbk^{\times} := \Bbbk \setminus \{0\}$. This defines an automorphism $\hat{\pi}\phi$ of \hat{Q} , and thus a group homomorphism $\hat{\pi} : \operatorname{Aut}(\widehat{\Bbbk Q}) \to \operatorname{Aut}(\hat{Q})$.

(4) Similarly, let $\alpha \colon x \to y$ be in Q_1 and $\psi \in \operatorname{Aut}(\Bbbk Q)$. Then there exists a unique arrow $\psi x \to \psi y$ in Q, which we denote by $(\pi \psi)(\alpha)$. This defines an automorphism $\pi \psi$ of Q, and thus a group homomorphism $\pi : \operatorname{Aut}(\Bbbk Q) \to \operatorname{Aut}(Q)$.

We cite the following from [3, Proposition 7.4].

Proposition 3.2. Let R be a locally bounded category, and g, h automorphisms of R acting freely on R. If there exists a map $\rho: R_0 \to \mathbb{k}^{\times}$ such that $\rho(y)g(f) = h(f)\rho(x)$ for all morphisms $f: x \to y$ in R, then $R/\langle g \rangle \cong R/\langle h \rangle$.

Definition 3.3. (1) For a quiver $Q = (Q_0, Q_1, s, t)$ we set $Q[Q_1^{-1}]$ to be the quiver

$$Q[Q_1^{-1}] := (Q_0, Q_1 \sqcup \{\alpha^{-1} \mid \alpha \in Q_1\}, s', t')$$

where $s'|_{Q_1} := s$, $t'|_{Q_1} := t$, $s'(\alpha^{-1}) := t(\alpha)$ and $t'(\alpha^{-1}) := s(\alpha)$ for all $\alpha \in Q_1$. A walk in Q is a path in $Q[Q_1^{-1}]$.

(2) Suppose that Q is a finite oriented tree. Then for each $x, y \in Q_0$ there exists a unique shortest walk from x to y in Q, which we denote by w(x, y). If $w(x, y) = \alpha_n^{\varepsilon_n} \cdots \alpha_1^{\varepsilon_1}$ for some $\alpha_1, \cdots, \alpha_n \in Q_1$ and $\varepsilon_1, \ldots, \varepsilon_n \in \{1, -1\}$, then we define a subquiver W(x, y) of Q by $W(x, y) := (W(x, y)_0, W(x, y)_1, s', t')$, where $W(x, y)_0 := \{s(\alpha_i), t(\alpha_i) \mid i = 1, \ldots, n\}, W(x, y)_1 := \{\alpha_1, \ldots, \alpha_n\}$, and s', t' are restrictions of s, t to $W(x, y)_1$, respectively. Since Q is an oriented tree, w(x, y) is uniquely recovered by W(x, y). Therefore we can identify w(x, y) with W(x, y), and define a *sink* and a *source* of w(x, y) as those in W(x, y).

Proposition 3.4. Let Q be a finite oriented tree and ϕ, ψ automorphisms of $\widehat{\mathbb{k}Q}$ acting freely on $\widehat{\mathbb{k}Q}$. If the actions of ϕ and ψ coincide on the objects of $\widehat{\mathbb{k}Q}$, then there exists a map $\rho: (\hat{Q}_0 =) \widehat{\mathbb{k}Q}_0 \to \mathbb{k}^{\times}$ such that $\rho(y)\psi(f) = \phi(f)\rho(x)$ for all morphisms $f: x \to y$ in $\widehat{\mathbb{k}Q}$. Hence in particular, $\widehat{\mathbb{k}Q}/\langle \phi \rangle$ is isomorphic to $\widehat{\mathbb{k}Q}/\langle \psi \rangle$.

Proof. Assume that the actions of $\phi, \psi \in \operatorname{Aut}(\Bbbk \hat{Q})$ coincides on the objects of $\Bbbk \hat{Q}$. Then ϕ and ψ induce the same quiver automorphism $q = \hat{\pi}\phi = \hat{\pi}\psi$ of \hat{Q} , and there exist $(\phi_{\alpha})_{\alpha\in\hat{Q}_1}, (\psi_{\alpha})_{\alpha\in\hat{Q}_1}\in (k^{\times})^{\hat{Q}_1}$ such that for each $\alpha\in\hat{Q}_1$ we have

$$\phi(\overline{\alpha}) = \phi_{\alpha}q(\alpha), \quad \psi(\overline{\alpha}) = \psi_{\alpha}q(\alpha).$$

For each path $\lambda = \alpha_n \cdots \alpha_1$ in \hat{Q} with $\alpha_1, \ldots, \alpha_n \in \hat{Q}_1$ we set $\phi_{\lambda} := \phi_{\alpha_n} \cdots \phi_{\alpha_1}$. Then we have

$$\phi(\overline{\lambda}) = \phi_{\lambda} q(\lambda),$$

-21-

where $q(\lambda) := q(\alpha_n) \cdots q(\alpha_1)$ because $\phi(\overline{\alpha_n}) \cdots \phi(\overline{\alpha_1}) = \phi_{\alpha_n} \cdots \phi_{\alpha_1} \overline{q(\alpha_n) \cdots q(\alpha_1)}$.

To show the statement we may assume that $\psi_{\alpha} = 1$ for all $\alpha \in \hat{Q}_1$. Since for each $x, y \in \hat{Q}_0$ the morphism space $\widehat{\Bbbk Q}(x, y)$ is at most 1-dimensional and has a basis of the form $\overline{\mu}$ for some path μ , it is enough to show that there exists a map $\rho : \hat{Q}_0 \to \Bbbk^{\times}$ satisfying the following condition:

$$\rho(v^{[j]}) = \phi_{\beta}\rho(u^{[i]}) \quad \text{for all } \beta : u^{[i]} \to v^{[j]} \text{ in } \hat{Q}_1.$$

$$(3.1)$$

We define a map ρ as follows:

Fix a maximal path $\mu: y \rightsquigarrow x$ in Q. Then x is a sink and y is a source in Q. We can write μ as $\mu = \alpha_l \cdots \alpha_1$ for some $\alpha_1, \ldots, \alpha_l \in Q_1$. First we set $\rho(x^{[0]}) := 1$. By induction on $0 \leq i \in \mathbb{Z}$ we define $\rho(x^{[i]})$ and $\rho(x^{[-i]})$ by the following formulas:

$$\rho(x^{[i+1]}) := \phi_{\mu^{[i+1]}} \phi_{\mu^{*[i]}} \rho(x^{[i]}), \qquad (3.2)$$

$$\rho(x^{[i-1]}) := \phi_{\mu^{*[i-1]}}^{-1} \phi_{\mu^{[i]}}^{-1} \rho(x^{[i]}).$$
(3.3)

Now for each $i \in \mathbb{Z}$ and $u \in Q_0$ if $w(u, x) = \beta_m^{\varepsilon_m} \cdots \beta_1^{\varepsilon_1}$ for some $\beta_1, \ldots, \beta_m \in Q_1$ and $\varepsilon_1, \ldots, \varepsilon_m \in \{1, -1\}$, then we set

$$\rho(u^{[i]}) := \phi_{\beta_1^{[i]}}^{-\varepsilon_1} \cdots \phi_{\beta_m^{[i]}}^{-\varepsilon_m} \rho(x^{[i]}).$$

$$(3.4)$$

We have to verify the condition (3.1).

Case 1. $\beta = \alpha^{[i]} : u^{[i]} \to v^{[i]}$ for some $i \in \mathbb{Z}$, and $\alpha : u \to v$ in Q_1 . Since Q is an oriented tree, we have either $w(u, x) = w(v, x)\alpha$ or $w(v, x) = w(u, x)\alpha^{-1}$. In either case we have $\rho(v^{[i]}) = \phi_{\alpha^{[i]}}\rho(u^{[i]})$ by the formula (3.4).

Case 2. Otherwise, we have $\beta = \lambda^{*[i]} : u^{[i]} \to v^{[i+1]}$ for some maximal path $\lambda : v \rightsquigarrow u$ in Q and $i \in \mathbb{Z}$. In this case the condition (3.1) has the following form:

$$\rho(v^{[i+1]}) = \phi_{\lambda^{*[i]}} \rho(u^{[i]}). \tag{3.5}$$

Two paths are said to be *parallel* if they have the same source and the same target. We prepare the following for the proof.

Claim 2. If ζ and η are parallel paths in \hat{Q} , then we have $\phi_{\zeta} = \phi_{\eta}$.

Indeed, since $\zeta - \eta \in \hat{I}$, we have $\phi(\overline{\zeta}) = \phi(\overline{\eta})$, which shows

$$\phi_{\zeta}q(\zeta) = \phi_{\eta}q(\eta).$$

Here we have $\overline{q(\zeta)} = \psi(\overline{\zeta}) = \psi(\overline{\eta}) = \overline{q(\eta)}$, and $\psi(\overline{\zeta}) \neq 0$ because $\overline{\zeta} \neq 0$. Hence $\phi_{\zeta} = \phi_{\eta}$, as required.

We now set d(a, b) to be the number of sinks in w(a, b) for all $a, b \in Q_0$. By induction on d(y, v) we can show that the condition (3.5) holds.

4. Main result

Theorem 4.1. Let A be a piecewise hereditary algebra of tree type and ϕ an automorphism of \hat{A} with jump n. Then $\hat{A}/\langle \phi \rangle$ and $T^n_{\phi_0}(A)$ are derived equivalent, where we set $\phi_0 := (\mathbb{1}^{[0]})^{-1} \nu^{-n} \phi|_{A^{[0]}} \mathbb{1}^{[0]}$.

-22-

Proof. Let T be the tree type of A. Then by Lemma 1.7 there exists an admissibly oriented tree Q with $\overline{Q} = T$. We set $\phi' := \nu_A^n \hat{\phi}_0 (= \hat{\phi}_0 \nu_A^n)$. Then $T_{\phi_0}^n(A) = \hat{A}/\langle \phi' \rangle$. By Proposition 2.1(2) there exist some $\psi, \psi' \in \operatorname{Aut}(\widehat{kQ})$ both with jump n such that $\hat{A}/\langle \phi \rangle$ (resp. $\hat{A}/\langle \phi' \rangle$) is derived equivalent to $\widehat{kQ}/\langle \psi \rangle$ (resp. $\widehat{kQ}/\langle \psi' \rangle$), and the actions of ψ and ψ' coincide on the objects of \widehat{kQ} . Then by Proposition 3.4 we have $\widehat{kQ}/\langle \psi \rangle \cong \widehat{kQ}/\langle \psi' \rangle$. Hence $\widehat{A}/\langle \phi \rangle$ and $T_{\phi_0}^n(A)$ are derived equivalent.

Definition 4.2. Let Λ be a generalized *n*-fold extension of a piecewise hereditary algebra A of tree type T, say $\Lambda = \hat{A}/\langle \phi \rangle$ for some $\phi \in \operatorname{Aut}(A)$ with jump n. Further let Q be an admissibly oriented tree with $\bar{Q} = T$. Then by Proposition 2.1 there exists $\psi \in \operatorname{Aut}(\widehat{\Bbbk Q})$ with jump n such that $\hat{A}/\langle \phi \rangle$ is derived equivalent to $\widehat{\Bbbk Q}/\langle \psi \rangle$. We define the (derived equivalence) type type(Λ) of Λ to be the triple $(T, n, \overline{\pi}(\psi_0))$, where $\psi_0 := (\mathbb{1}^{[0]})^{-1} \nu_{\Bbbk Q}^{-n} \psi|_{(\Bbbk Q)^{[0]}} \mathbb{1}^{[0]}$ and $\overline{\pi}(\psi_0)$ is the conjugacy class of $\pi(\psi_0)$ in $\operatorname{Aut}(T)$. type(Λ) is uniquely determined by Λ .

By Theorem 4.1, we can extend the main theorem in [3] as follows.

Theorem 4.3. Let Λ , Λ' be generalized multifold extensions of piecewise hereditary algebras of tree type. Then the following are equivalent:

- (i) Λ and Λ' are derived equivalent.
- (ii) Λ and Λ' are stably equivalent.
- (iii) type(Λ) = type(Λ').

References

- [1] Asashiba, H.: A covering technique for derived equivalence, J. Algebra 191, (1997) 382-415.
- [2] _____: The derived equivalence classification of representation-finite selfinjective algebras, J. of Algebra 214, (1999) 182–221.
- [3] _____: Derived and stable equivalence classification of twisted multifold extensions of piecewise hereditary algebras of tree type, J. Algebra **249**, (2002) 345–376.

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SHIZUOKA UNIVERSITY, 836 OHYA, SURUGA-KU, SHIZUOKA, 422-8529, JAPAN *E-mail address*: shasash@ipc.shizuoka.ac.jp

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, SHIZUOKA UNIVERSITY, 836 OHYA, SURUGA-KU, SHIZUOKA, 422-8529, JAPAN *E-mail address*: f5144005@ipc.shizuoka.ac.jp