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Abstract. We give a new formula for the decomposition of a tensor product of in-
decomposable modules of cyclic two-groups. This formula is also shown to describe the
decomposition of tensor products of an important class of modules of dihedral two-groups.

1. Introduction

In this note, we give a new, closed formula for the decomposition of a tensor product of
indecomposable modules of cyclic 2-groups, and show how this formula also describes the
decomposition of tensor products of a class of D2l-modules. The problem of decomposing
such a tensor product of modules of cyclic p-groups in characteristic p has been treated
by several authors (e.g. [4, 6, 5, 1]). However, to date, all solutions have been recursive,
and rather involved. Concentrating on the case p = 2 is a simplification which makes it
possible to give a closed decomposition formula.

Our interest in this problem originated in the study of tensor products of modules of
dihedral 2-groups. Thus, we show that the decomposition formula for modules of cyclic
2-groups also describes the decompositions of tensor products of the D2l-modules induced
from the maximal cyclic subgroup.

Throughout this text, k denotes a field of characteristic 2. The dihedral group of order
2q is written as D2q = ⟨σ, τ | σ2 = τ 2 = (στ)q = 1⟩. Here q will always be a 2-power,
q ⩾ 2. The unique cyclic subgroup of index 2 in D2q is Hq = ⟨στ⟩�D2q.

The indecomposable modules of kCq are classified by their dimensions; that is, up to
isomorphism, for each i ∈ {1, . . . , q} there exists a unique indecomposable kCq-module of
dimension i. Fix a set of representatives {Vi}i⩽q such that dimVi = i. Every projective
indecomposable module is isomorphic to Vq, and the tensor product of a projective with
any other module is again projective. We recall that every non-projective kCq-module is
Ω-periodic of period at most 2. Indeed, for each i < q, the formula Ω(Vi) ≃ Vq−i holds.

There is a unique projection C2q ↠ Cq. This surjection, via the usual inflation op-
eration, induces a full embedding of module categories mod kCq ↪→ mod kC2q, Vi 7→ Vi,
respecting the tensor product. Thus Vi is viewed as a module for all cyclic 2-groups of
order greater than or equal to i.

2. Decomposition formula for tensor products of modules of cyclic
2-groups

The following result makes it possible to compute the decomposition of a tensor product
of any two kCq-modules recursively.

This paper is a summary of results that will be published elsewhere.
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Proposition 1. Let i, j ⩽ q. Then Vi ⊗ Vj ≃ Ω(Vq−i ⊗ Vj)⊕max{i+ j − q, 0}Vq.

If q/2 ≤ i < q then q − i ≤ q/2 hence, by applying Proposition 1, we can transfer the
problem of finding the decomposition of Vi⊗Vj to the smaller module category mod kCq/2.
This gives an inductive process which halts when one of the factors is projective, in which
case the product can be immediately computed. Example 2 below illustrates the proced-
ure. To avoid any ambiguity, we write Ωq to indicate the Heller translate in mod kCq.

Example 2. Consider the module V18⊗V6, a tensor product of indecomposable modules
of kC32. Applying Proposition 1, we see that

V18 ⊗ V6 ≃ Ω32(V14 ⊗ V6).(2.1)

Viewing V14 ⊗ V6 as a module for C16 and again applying Proposition 1, we obtain

V14 ⊗ V6 ≃ Ω16(V2 ⊗ V6)⊕ 4V16.(2.2)

Now V2 ⊗ V6 ∈ mod kC8, and

V2 ⊗ V6 ≃ Ω8(V2 ⊗ V2).(2.3)

In mod kC2, V2 is projective, so V2 ⊗ V2 ≃ 2V2. Applying in turn Equations (2.3), (2.2)
and (2.1), we obtain the decomposition

V18 ⊗ V6 ≃ Ω32(Ω16(Ω8(2V2))⊕ 4V16)

≃ 2V22 ⊕ 4V16.

The idea behind our decomposition formula is to record the successive applications of
Proposition 1 in numerical sequences, which are then used to compute the indecomposable
summands of the tensor product. Let x be any positive integer. Set υ(x) = min{y ∈ N |
2y ⩾ x} and x′ = 2υ(x) − x. A sequence (xn)n⩾0 is defined recursively by x0 = x and
xn+1 = x′

n. Let r ∈ N be the first number such that xr is a 2-power. Then (xn)
r
n=0 is

strictly decreasing, whereas xn = 0 for all n > r.
Now, given i, j ∈ N, set [i, j]0 = (i0, j0) = (i, j) and, if [i, j]n = (ia, jb),

(2.4) [i, j]n+1 =

{
(ia+1, jb) if ia ⩾ jb,

(ia, jb+1) if ia < jb.

This defines a sequence ([i, j]n)
w
n=0 =

(
([i, j]

(1)
n , [i, j]

(2)
n )
)w
n=0

, where w is the smallest

number such that max
{
[i, j]

(1)
w , [i, j]

(2)
w

}
is a 2-power. Now, set mn = 2υ(xn), for xn =

max
{
[i, j]

(1)
n , [i, j]

(2)
n

}
, n ∈ {0, . . . , w}. Finally, for all n ⩽ w, let

αn = max
{
0 , [i, j](1)n + [i, j](2)n −mn

}
and(2.5)

βn =
n∑

u=0

(−1)umu .(2.6)
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Theorem 3. For all i, j ∈ N,

Vi ⊗ Vj ≃
w⊕

n=0

αnVβn .

It may be noted that while the numbers in are, for simplicity of presentation, recursively
defined, they may all be read off from the binary expansion of the number i in a non-
recursive manner.

Example 4. Consider the case i = 20 and j = 51. We have

i0 = 20, i1 = 32− i0 = 12, i2 = 16− i1 = 4,

and

j0 = 51, j1 = 64− j0 = 13, j2 = 16− j1 = 3, j3 = 4− j2 = 1.

Now we can define all sequences needed for the application of Theorem 3. First, the
sequence [i, j] consists of pairs (ia, jb), formed by applying the equation (2.4) above:

[i, j]0 = (20, 51), [i, j]1 = (20, 13), [i, j]2 = (12, 13), [i, j]3 = (12, 3), [i, j]4 = (4, 3);

mn is the smallest 2-power greater than or equal to the two components of [i, j]n:

m0 = 64, m1 = 32, m2 = 16, m3 = 16, m4 = 4;

αn = [i, j]
(1)
n + [i, j]

(2)
n −mn if this number is positive, otherwise αn = 0:

α0 = 7, α1 = 1, α2 = 9, α3 = 0, α4 = 3;

βn is the alternating sum of the numbers m1, . . . ,mn:

β0 = 64, β1 = 32, β2 = 48, β3 = 32, β4 = 36.

With Theorem 3, we conclude that

V20 ⊗ V51 ≃ 7V64 ⊕ V32 ⊕ 9V48 ⊕ 3V36 .

3. Application: pseudoprojective modules of dihedral 2-groups

It turns out that Theorem 3 can be used to describe tensor products of a class of
modules of dihedral 2-groups. These are the so-called pseudoprojective modules, given as
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M(AlBl, 1) for some l ∈ N (see [3] for definition of the relevant notation). The pseudo-
projective modules are band modules, given by schemas in the following way:
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We shall use Md to denote the pseudoprojective module of dimension d, in other words,
M(AlB

−1
l , 1) ≃ M2l.

The pseudoprojective modules are precisely the kD2q-modules that are induced from
the maximal cyclic subgroup Hq �D2q:

Proposition 5. For each i ∈ {1, . . . , q}, the induced module Vi ↑
D2q

Hq
is isomorphic to M2i.

Applying Mackey’s tensor product theorem (see e.g. [2, Corollary 3.3.5(i)]),

M2i ⊗M2j ≃ 2 (Vi ⊗ Vj)↑D2q≃ 2

(
w⊕

n=0

αnVβn

)x
D2q

≃
w⊕

n=0

2αnM2βn .

Similarly, for V2i, V2j ∈ mod kC2q,

V2i ⊗ V2j ≃ Vi ↑
C2q

Cq
⊗Vj ↑

C2q

Cq
≃ 2

(
w⊕

n=0

αnVβn

)x
C2q

Cq

≃
w⊕

n=0

2αnV2βn .

It follows that the decompositions of tensor products V2i⊗V2j and M2i⊗M2j are governed
by the same formula. This proves the following result.

Corollary 6. For any even numbers i, j ∈ N, the decomposition formula

Mi ⊗Mj ≃
w⊕

n=0

αnVβn

holds, with the numbers αn and βn defined by Equations (2.5) and (2.6) respectively.
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