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Abstract. We prove that some subquotient categories of exact categories are abelian.
This generalizes a result by Koenig-Zhu in the case of (algebraic) triangulated categories.
As a particular case, if an exact category B with enough projectives and injectives has a
cluster tilting subcategory M, then B/[M] is abelian. More precisely, it is equivalent to
the category of finitely presented modules over M.

1. Introduction

Recently, cluster tilting theory (see for example [1, 3, 6]) permitted to construct abelian
categories from some triangulated categories. In this survey we sketch out the method we
introduced in [2] to generalize this observation to exact categories.

Recall that an exact category is Frobenius if it has enough projectives and injectives
and they coincide. From Happel [4, Theorem 2.6], the stable category of a Frobenius
category has a structure of a triangulated category. On the other hand, by Keller-Reiten
[7, Proposition 2.1], in the 2-Calabi-Yau case and then Koenig-Zhu [8, Theorem 3.3] in the
general case, one can pass from triangulated categories to abelian categories by factoring
out any cluster tilting subcategory. Combining these two results, we deduce that the
quotient of a Frobenius category by a cluster tilting subcategory is abelian. Thus, this
observation gives rise to a natural question: is the quotient of an exact category by a
cluster tilting subcategory abelian? As we will see, it turns out to be true.

This new result seems a priori less surprising than the one in triangulated categories
because these ones are intuitively further to abelian categories. Nevertheless, most tri-
angulated categories appearing in representation theory turn out to be in fact algebraic
(i.e. stable categories of Frobenius categories). In this respect, the case of exact categories
can be seen as a generalization of the result concerning triangulated categories, as well as
a more natural version.

2. Notations

Let B be a Krull-Schmidt exact category with enough projectives and injectives and
M be a full rigid subcategory of B (i.e. Ext1B(X,X) = 0 for any X ∈ M).

Denote by P (resp. I) the subcategory of projective (resp. injective) objects in B.
For any object X, Y ∈ B and a full subcategory C of B, denote by [C](X, Y ) the set of
morphisms in HomB(X,Y ) which factor through objects of C. If P ⊆ C (resp. I ⊆ C),

The detailed version [2] of this paper has been submitted for publication.
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the (co-)stable category C (resp. C) of C is the quotient category C/[P] (resp. C/[I]), i.e.
the category which has the same objects than C and morphisms are defined as

HomC(X,Y ) := HomC(X, Y )/[P ](X, Y )

(resp. HomC(X,Y ) := HomC(X, Y )/[I](X, Y )).

Denote by ModC the category of contravariant additive functors from C to modk for any
category C where k is a field. Let modC be the full subcategory of ModC consisting of
objects A admitting an exact sequence:

HomC(−, C1)
β−→ HomC(−, C0)

α−→ A → 0

where C0, C1 ∈ C.
Denote by ΩM the class of objects X ∈ B such that there exists a short exact sequence

0 → M → I → X → 0

where M ∈ M, and I is injective.
Denote by ML (resp. MR) the subcategory of objects X which admit short exact

sequences

0→X
d0−→ M0 d1−→ M1→0 (resp. 0→M1

d1−→ M0
d0−→ X→0)

with M0,M1,M0,M1 ∈ M. In this case, d0 (resp. d0) is a left (resp. right) M-
approximation of X.

3. Two quotient category: ML/[M] and MR/[ΩM]

3.1. Quotient category of ML/[M] by a rigid subcategory M. In this subsection,
we assume that M is a rigid subcategory of B which contains P . Now we consider the
functor

H : ML → ModM
X 7→ Ext1B(−, X)|M

Let π : ML → ML/[M] be the projection functor. By definition of a rigid subcategory,
HX = 0 if X ∈ M. Hence, by the universal property of π, there exists a functor
F : ML/[M] → ModM such that Fπ = H. From the following lemma we can see
directly that F (X) ∈ modM:

Lemma 1. For any short exact sequence

0 → X
d0−→ M0 d1−→ M1 → 0

where M0,M1 ∈ M, there is an exact sequence in ModM
HomM(−,M0) → HomM(−,M1) → FX → 0.

The functor F induces the equivalence we want:

Theorem 2. The functor F : ML/[M] → modM is an equivalence of categories.

Moreover, we have the following corollary:

Corollary 3. If M is rigid and contravariantly finite, then ML/[M] is abelian.
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3.2. Quotient category of MR by ΩM. In this subsection we assume that M is a
rigid subcategory of B which contains I.

We denote

K : MR → ModM
X 7→ HomB(−, X).

Let π′ : MR → MR/[ΩM] be the projection functor. By the universal property of π′,
there is a functor G : MR/[ΩM] → ModM such that Gπ′ = K. From the lemma we can
see that GX ∈ modM:

Lemma 4. For every short exact sequence

0 → M1
d1−→ M0

d0−→ X → 0

where M1,M0 ∈ M, there is an exact sequence

HomM(−,M1) → HomM(−,M0) → GX → 0.

The functor G also gives an equivalence:

Theorem 5. The functor G : MR/[ΩM] → modM is an equivalence of categories.

If we denote M⊥
= {X ∈ MR | HomB(M, X) = 0}, we get the following corollary:

Corollary 6. We have ΩM = M⊥
.

4. Case of n-cluster tilting subcategories and AR translation

For a subcategory C of B, we define

⊥mC = {X ∈ B | ∀i ∈ {1, . . . ,m},ExtiB(X, C) = 0}
and C⊥m = {X ∈ B | ∀i ∈ {1, . . . ,m},ExtiB(C, X) = 0}.

Recall that M is called n-cluster tilting, if it satisfies the following conditions:

(1) M is contravariantly finite and covariantly finite in B,
(2) M = M⊥n−1 ,
(3) M = ⊥n−1M.

The previous results concern categories ML and MR which have not good properties
in general. From now on, we suppose that M is n-cluster tilting for some integer n ≥ 2
(see [5, 6]). Thus, the properties of ML and MR becomes much clearer:

Proposition 7. The following equalities hold:

⊥n−2M = ML and M⊥n−2 = MR.

By this proposition, we obtain that both ML and MR are exact subcategories of B.
In particular we get

Corollary 8. If M is 2-cluster tilting then B/[M] ≃ modM is abelian.
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Now, we assume that B has an AR translation τ : B → B with reciprocal τ−. Following
[5], we define (n− 1)-AR translations

τn−1 :
⊥n−2P → I⊥n−2 and τ−n−1 : I⊥n−2 → ⊥n−2P

by τn−1 = τΩn−2 and τ−n−1 = τΩ
n−2

(where Ω is the syzygy functor). In fact, the only
property we need for these functors is that, if X ∈ ⊥n−2P and Y ∈ I⊥n−2 , the following
functorial isomorphisms hold:

(1) Extn−1
B (X, Y ) ≃ DHomB(Y, τn−1X) ≃ DHomB(τ

−
n−1Y,X),

(2) ∀i ∈ {1, 2, ..., n− 2},
Extn−1−i

B (X,Y ) ≃ DExtiB(Y, τn−1X) ≃ DExtiB(τ
−
n−1Y,X)

where D = HomExtk(−, k). This is a weak version of [5, Theorem 1.5].

From this, we deduce easily that τn−1 induces an equivalence from ⊥n−2M to M⊥n−2

the inverse of which is τ−1
n−1 = τ−n−1.

Remark that

X ∈ M ⇔ ExtiB(X,M) = 0, ∀i ∈ {1, 2, ..., n− 1}

⇔
{

HomB(M, τn−1X) = 0
ExtiB(M, τn−1X) = 0 for all i ∈ {1, 2, ..., n− 2}

⇔ τn−1X ∈ M⊥n−2 ∩M⊥
.

Moreover, as M⊥
= ΩM ⊆ M⊥n−2 , X ∈ M ⇔ τn−1X ∈ M.

Now X ∈ P implies that Extn−1
B (X,B) = 0, then HomB(B, τn−1X) = 0, which means

τn−1X ∈ I. Dually X ∈ I implies that τ−1
n−1X ∈ P . Hence X ∈ P ⇔ τn−1X ∈ I. We get

the following proposition:

Proposition 9. The functor τn−1 induces an equivalence from M to ΩM and an equiv-
alence from ⊥n−2M/[M] to M⊥n−2/[Ω/M].

Denote by Ω
−1

the inverse of Ω : M → ΩM. Then we have

Corollary 10. The compositions τ−1
n−1 ◦Ω and Ω

−1 ◦ τn−1 induce mutually inverse equiv-

alences between M and M.

According to this corollary, we can define reciprocal equivalences:

(1) µ : ModM → ModM, µ(C) = C ◦ τ−1
n−1 ◦ Ω,

(2) µ−1 : ModM → ModM, µ−1(C ′) = C ′ ◦ Ω−1 ◦ τn−1.

Thus we have:

Proposition 11. The functors µ and µ−1 induce mutually inverse equivalences between
modM and modM.

Finally we give:
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Theorem 12. If B has an (n − 1)–AR translation τn−1, then we have a diagram which
is commutative up to the equivalence

⊥n−2M/[M]
F−−−→ modM

τn−1

y yµ

M⊥n−2/[ΩM] −−−→
G

modM.

By duality, if we denote by mod′M (resp. mod′M) the category of finitely copresented
modules over M (resp. M), we get the following commutative diagram:

⊥n−2M/[ΩM]
∼−−−→ mod′M

τn−1

y y≀

M⊥n−2/[M]
∼−−−→ mod′M

where ΩM the class of objects X ∈ B such that there exists a short exact sequence

0 → X → P → M → 0

with M ∈ M and P projective.

5. Example

In this section, we explain an example coming directly from representation theory
(Auslander algebras).

Let Λ be the Auslander algebra of kA⃗3. That is kQ/R where Q is the following quiver
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and the ideal of relations R is generated by the mesh relations symbolized by dashed
lines. Then, using the method introduced in [6, §1], one can compute a cluster tilting
subcategory M of modΛ, and the quiver of M is given in Figure 1.

We can also calculate ΩM easily since in this case

ΩM = M⊥
= {X ∈ modΛ | HomΛ(M, X) = 0}.

In this example, the quiver of modΛ/[M] is the following.
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The quiver of M is the following.
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Figure 1. Quiver of M
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As expected, we obtain that modΛ/[M] ≃ modM. One can also calculate and check the

equivalence modΛ/[M⊥
] ≃ modM.
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