SKEW REES RINGS WHICH ARE MAXIMAL ORDERS

M.R. HELMI, H. MARUBAYASHI AND A. UEDA

ABSTRACT. Let *R* be a Noetherian prime Goldie ring, σ be an automorphism of *R* and *X* be an invertible ideal of *R*. In this paper, we define the $(\sigma; X)$ -maximal order and show that a skew Rees ring $R[Xt;\sigma]$ is a maximal order if and only if *R* is a $(\sigma; X)$ -maximal order, which is proved by using the complete description of *v*-ideals of $R[Xt;\sigma]$. We give some examples of $(\sigma; X)$ -maximal orders which are not maximal orders (event not σ -maximal orders) and also of σ -maximal orders but not $(\sigma; X)$ -maximal orders.

1. INTRODUCTION

Throughout this paper, *R* is a Noetherian prime ring with quotient ring *Q* (in another word, *R* is a Noetherian order in a simple Artinian ring *Q*), σ is an automorphism of *R* and *X* is an invertible ideal of *R*.

Put

$$S = R[Xt, \sigma] = R \oplus Xt \oplus X^2t^2 \oplus \ldots \oplus X^nt^n \oplus \ldots$$

which is a subset of the skew polynomial ring $R[t, \sigma]$ in an indeterminate *t*. If *S* is a ring, then it is called a *skew Rees ring* associated to *X*. In this case, *S* and $R[t;\sigma]$ have the same quotient ring $Q(S) = Q(R[t;\sigma])$ which is a simple Artinian ring.

The aim of this paper is to obtain a necessary and sufficient conditions for *S* to be a maximal order and to describe the structure of v-ideals of *S* (Theorem 9 and Proposition 11). As applications, we give a necessary and sufficient conditions for *S* to be a generalized Asano ring and a unique factorization ring in the sense of [1], respectively (Corollary 12). These are done by using a complete description of v-ideals in Q(S).

Furthermore we give some examples of rings which are $(\sigma; X)$ -maximal orders but not maximal orders (even not σ -maximal orders). This means *S* is a maximal order but $R[t; \sigma]$ is not a maximal order. We also give examples of rings which are σ -maximal orders but not $(\sigma; X)$ -maximal orders.

Generalized Rees rings were studied in [8] and [15] under *PI* conditions and in the book [16], they summarized them from torsion theoretical view points under *PI* conditions. Recently Akalan proved in [2] that if *R* is generalized Asano ring with *PI* conditions, then so is *S*, which motivates us to study skew Rees rings. Note we do not assume in this paper that *R* satisfies *PI* conditions.

In [2] Akalan defined generalized Dedekind prime ring R. It turns out that R is a generalized Dedekind ring if and only if it is a maximal order and any v-ideal is invertible. In this paper, we say that R is a *generalized Asano ring* if it is a generalized Dedekind ring in the sense of [2], because one-sided v-ideals are not necessarily projective.

We refer the readers to the books [12] or [13] for order theory.

The detailed version of this paper will be submitted for publication elsewhere.

2. $(\sigma; X)$ -MAXIMAL ORDERS

First we introduce some notation. For any (fractional) right *R*-ideal *I* and left *R*-ideal *J*, let

$$(R:I)_l = \{q \in Q \mid qI \subseteq R\}$$
 and $(R:J)_r = \{q \in Q \mid Jq \subseteq R\}$

which is a left (right) R-ideal, respectively and

 $I_v = (R : (R : I)_l)_r$ and $_v J = (R : (R : J)_r)_l$,

which is a right (left) *R*-ideal containing I(J). I(J) is called a *right (left)* v-*ideal* if $I_v = I$ ($_vJ = J$). In case *I* is a two-sided *R*-ideal, it is said to be a v-*ideal* if $I_v = I = _vI$, and if $I \subseteq R$, we just say *I* is a v-*ideal* of *R*. An *R*-ideal *A* is said to be v-*invertible* if $_v((R : A)_lA) = R = (A(R : A)_r)_v$. We start with the following elementary lemma, which is frequently used in the paper.

Lemma 1. Let A be an R-ideal and I be a right R-ideal.

- (1) If A is v-invertible, then $O_r(A) = R = O_l(A)$ and $(R:A)_l = A^{-1} = (R:A)_r$, where $A^{-1} = \{q \in Q \mid AqA \subseteq A\}.$
- (2) $(IA_v)_v = (IA)_v$. If A is v-invertible, then $(I_vA_v)_v = (IA)_v$.

The following proposition is one of the crucial properties which shows a relation between ideals of R and of S.

Proposition 2. (1) $S = R[Xt; \sigma]$ is a ring if and only if $\sigma(X) = X$. In this case, S is also *Noetherian.*

(2) Suppose σ(X) = X.
(i) Let a be an deal of R. Then

$$\mathfrak{a}[Xt;\sigma] = \mathfrak{a} \oplus \mathfrak{a}Xt \oplus \mathfrak{a}X^2t^2 \oplus \ldots \oplus \mathfrak{a}X^nt^n \oplus \ldots$$

is an ideal of S if and only if $X\sigma(\mathfrak{a}) = \mathfrak{a}X$. (ii) Let \mathfrak{a} be an R-ideal in Q with $X\sigma(\mathfrak{a}) = \mathfrak{a}X$. Then $\mathfrak{a}[Xt;\sigma]$ is an S-ideal in Q(S).

In the remainder of this paper, we assume that $S = R[Xt; \sigma]$ is a ring and put $T = Q[t; \sigma]$, the skew polynomial ring over \dot{Q} . Note that T is a principal ideal ring ([3, Corollary 6.2.2] or [12, Corollary 2.3.7]) and we use this property to study *S*-ideal.

Lemma 3. Let I be a right S-ideal and J be a left S-ideal. Then

- (1) $(T:IT)_l = T(S:I)_l$ and $(T:TJ)_r = (S:J)_rT$.
- (2) $(IT)_v = I_v T$ and $_v(TJ) = T_v J$.
- (3) If I' is a right ideal of T, then $I' = (I' \cap S)T$. If I' is an essential right ideal, then $(I' \cap S)_v = I' \cap S$.

It is very important to investigate prime v-ideals *P* of *S* and there are two case whether $P \cap R$ is (0) or not. In case $P \cap R = (0)$, we have the following by using Lemma 3.

Lemma 4. Let $T = Q[t; \sigma]$. There is a (1-1)-correspondence between

$$\operatorname{Spec}_0(S) = \{P: \text{ prime ideal of } S \mid P \cap R = (0)\}$$
 and $\operatorname{Spec}(T)$

via $P \mapsto PT, P' \mapsto P' \cap S$. In particular, P is a v-ideal.

To express the case $P \cap R \neq (0)$, we need some preliminaries. Let \mathfrak{a} be a right R-ideal. Then $\mathfrak{a}[Xt; \sigma] = \mathfrak{a} \oplus \mathfrak{a}Xt \oplus ... \oplus \mathfrak{a}X^n t^n \oplus ...$ is a right S-ideal. Similarly for any left R-ideal \mathfrak{b} , $S\mathfrak{b} = \mathfrak{b} \oplus tX\mathfrak{b} \oplus ... \oplus t^n X^n \mathfrak{b} \oplus ...$ is a left S-ideal.

Lemma 5. Let \mathfrak{a} be a right *R*-ideal and \mathfrak{b} be a left *R*-ideal. Then

$$(S:\mathfrak{a}[Xt;\sigma])_l = S(R:\mathfrak{a})_l$$
 and $(S:S\mathfrak{b})_r = (R:\mathfrak{b})_r S$

In particular, $(\mathfrak{a}[Xt;\sigma])_v = \mathfrak{a}_v[Xt;\sigma]$ and $_v(S\mathfrak{b}) = S_v\mathfrak{b}$.

It is well known that σ is naturally extended to an automorphism of $Q(R[t;\sigma])$ by $\sigma(f(t)) = tf(t)t^{-1}$ for any $f(t) \in R[t;\sigma]$. Note that σ induces an automorphism of *S*. Let \mathfrak{a} be an ideal of *R*. We showed in Proposition 2 that $\mathfrak{a}[Xt;\sigma]$ is an ideal of *S* if and only if $X\sigma(\mathfrak{a}) = \mathfrak{a}X$ which is crucial property for *S* to be a maximal order. In general, a subset *I* of Q(S) is said to be $(\sigma;X)$ -invariant if $X\sigma(I) = IX$.

R is said to be a $(\sigma; X)$ -maximal order if $O_l(\mathfrak{a}) = R = O_r(\mathfrak{a})$ for any $(\sigma; X)$ -invariant ideal of *R*. If *R* is a $(\sigma; X)$ -maximal order, then it is proved that $O_l(\mathfrak{a}) = R = O_r(\mathfrak{a})$ for any $(\sigma; X)$ -invariant *R*-ideal \mathfrak{a} . Hence $(R:\mathfrak{a})_l = \mathfrak{a}^{-1} = (R:\mathfrak{a})_r$ where $\mathfrak{a}^{-1} = \{q \in Q \mid aq\mathfrak{a} \subseteq \mathfrak{a}\}$ and $\mathfrak{a}_v = \mathfrak{a}^{-1-1} = {}_v\mathfrak{a}$ follows.

Let $D_{\sigma,X}(R)$ be the set of all $(\sigma;X)$ -invariant ν -ideals. For any $\mathfrak{a}, \mathfrak{b} \in D_{\sigma,X}(R)$, we define $\mathfrak{a} \circ \mathfrak{b} = (\mathfrak{a}\mathfrak{b})_{\nu}$. Then we have the following whose proof is similar to one in the maximal orders ([12, (2.1.2)]).

Proposition 6. Let *R* be a $(\sigma;X)$ -maximal order in *Q*. Then $D_{\sigma,X}(R)$ is an Abelian group generated by maximal $(\sigma;X)$ -invariant *v*-ideals of *R*.

The following lemmas show how to obtain prime ideals of S from ideals of R and how to connect ideals of S with ideals of R.

Lemma 7. Suppose *R* is a $(\sigma;X)$ -maximal order in *Q*. Let \mathfrak{p} be a maximal $(\sigma;X)$ -invariant v-ideal of *R*. Then $P = \mathfrak{p}[Xt;\sigma]$ is a prime ideal and it is a v-ideal.

Lemma 8. Suppose *R* is a $(\sigma; X)$ -maximal order in *Q*. Let *A* be an ideal of *S* with $A = A_v$ and $\mathfrak{a} = A \cap R \neq (0)$. Then

(1) A and a are $(\sigma; X)$ -invariant.

(2) $A = \mathfrak{a}[Xt; \sigma]$ and is *v*-invertible.

Theorem is proved by mainly using Lemmas 3 and 8.

Theorem 9. Let *R* be a Noetherian prime ring with its quotient ring Q, σ be an automorphism of *R* and $S = R[Xt; \sigma]$ be a skew Rees ring associated to *X*, where *X* is an invertible ideal with $\sigma(X) = X$. Then *R* is a $(\sigma; X)$ -maximal order if and only if $S = R[Xt; \sigma]$ is a maximal order in Q(S).

3. Applications, Examples and Conjectures

As applications of Theorem 9, we give a necessary and sufficient conditions for *S* to be a generalized Asano ring and a unique factorization ring (a UFR). Furthermore we give Noetherian prime rings which are $(\sigma; X)$ -maximal orders (but not maximal orders) and $(\sigma; X)$ -maximal

orders (but not σ -maximal orders) where an order *R* is called a σ -maximal order if for any ideal \mathfrak{a} with $\sigma(\mathfrak{a}) = \mathfrak{a}$, $O_l(\mathfrak{a}) = R = O_r(\mathfrak{a})$.

If *R* is a $(\sigma; X)$ -maximal order, then *S* is a maximal order and so D(S), the set of all *v*-ideals in Q(S), is an Abelian group generated by prime *v*-ideals of *S* (see [12, Theorem 2.1.2]). Note that any maximal *v*-ideal of *S* is a prime *v*-ideal and the converse is also true. The set of principal *S*-ideals in Q(S) is a subgroup P(S) of D(S). The factor group D(S)/P(S) is called the *class group* of *S* and denoted by C(S). Similarly $P_{\sigma,X}(R)$, the set of $(\sigma;X)$ -invariant principal *R*-ideals in *Q* is a subgroup of $D_{\sigma,X}(R)$ and $C_{\sigma,X}(R) = D_{\sigma,X}(R)/P_{\sigma,X}(R)$ is called the $(\sigma;X)$ -*class group* of *R*.

First we describe the structure of v-ideals in Q(S) as follows (this is proved by using Lemma 8 and [12, (2.3.11)]):

Proposition 10. Suppose R is a $(\sigma;X)$ -maximal order and let A be a v-ideal in Q(S). Then $A = t^n w\mathfrak{a}[Xt;\sigma]$ for some $\mathfrak{a} \in D_{\sigma,X}(R)$, $w \in Z(Q(T))$ the center of Q(T) and n is an integer.

The statement (1) of Proposition 11 follows from Lemmas 3 and 8. To prove the second statement, consider the mapping $\varphi : D_{\sigma,X}(R) \to D(S)$ given by $\varphi(\mathfrak{a}) = \mathfrak{a}[Xt;\sigma]$ for any $\mathfrak{a} \in D_{\sigma,X}(R)$.

Proposition 11. Suppose *R* is a $(\sigma; X)$ -maximal order. Then

- (1) $D(S) \cong D_{\sigma,X}(R) \oplus D(T).$
- (2) $C(S) \cong C_{\sigma,X}(R)$.

An order *R* is called a *generalized Asano ring* (a *G-Asano ring*) if it is a maximal order and every v- ideal of *R* is invertible. Similarly *R* is called a *generalized* $(\sigma;X)$ -*Asano ring* (a $G - (\sigma;X)$ -*Asano ring*) if it is a $(\sigma;X)$ -maximal order and every $(\sigma;X)$ -invariant v-ideals of *R* is invertible. If *R* is a $G - (\sigma;X)$ -Asano ring, then *S* is a *G*-Asano ring by Proposition 10. The converse is also true which is proved by using Lemma 5.

In [1], they defined a non-commutative unique factorization ring (a UFR). It turns out that an order is a UFR if and only if it is a maximal order and every v-ideal is principal. We can define, in an obvious way, the concept of a (σ ; X)-UFR and it follows from Proposition 11 that R is a (σ ; X)-UFR if and only if $C_{\sigma,X}(R) = (0)$. Hence we have

Corollary 12. (1) *R* is a $G - (\sigma; X)$ -Asano ring if and only if $S = R[Xt; \sigma]$ is a G-Asano ring.

(2) *R* is a $(\sigma; X)$ -UFR if and only if *S* is a UFR.

Now we give some examples of $(\sigma; X)$ -maximal orders but not maximal orders (even not σ -maximal orders). We also give examples of σ -maximal orders but not $(\sigma; X)$ -maximal orders. The first example is a trivial case.

Example 1. Any Noetherian maximal order *R* is a $(\sigma; X)$ -maximal order and a σ -maximal order. Hence *S* and *R*[*t*; σ] are maximal orders (Theorem 9 and [12, Theorem 2.3.19]).

Let *R* be an HNP ring satisfying the following conditions :

- (a) There is a cycle $\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_n \ (n \ge 2)$ such that $\mathfrak{p} = \mathfrak{m}_1 \cap \mathfrak{m}_2 \cap ... \cap \mathfrak{m}_n$ is principal, say $\mathfrak{p} = aR = Ra$ for some $a \in \mathfrak{p}$.
- (b) Any maximal ideal different from $\mathfrak{m}_i (1 \le i \le n)$ is invertible.

See [1] for examples of HNP rings satisfying conditions (a) and (b). Define an automorphism σ of *R* by $\sigma(r) = ara^{-1}$ for $r \in R$. Then it follows from [1] that

- (1) $\sigma(\mathfrak{m}_1) = \mathfrak{m}_2, ..., \sigma(\mathfrak{m}_n) = \mathfrak{m}_1$ and
- (2) $\sigma(\mathfrak{n}) = \mathfrak{n}$ for all maximal ideals \mathfrak{n} with $\mathfrak{n} \neq \mathfrak{m}_i$ $(1 \le i \le n)$.

Example 2. Suppose *R* is an HNP ring with the conditions (a) and (b).

- (1) Put $X = \mathfrak{n}_1^{e_1} \dots \mathfrak{n}_k^{e_k}$, where \mathfrak{n}_j are maximal ideals different from \mathfrak{m}_i $(1 \le i \le n)$. Then *R* is a $(\sigma; X)$ -maximal order which is not a maximal order (in fact, it is a $G - (\sigma; X)$ -Asano ring as well as a $\sigma - G$ -Asano ring), but it is a $\sigma - G$ -Asano ring. Hence S and $R[t;\sigma]$ are G-Asano rings.
- (2) Put $X = \mathfrak{p}$. Then
 - (i) If n = 2, then R is not a $(\sigma; X)$ -maximal order and so S is not a maximal order.
 - (ii) If $n \ge 3$, then R is a $(\sigma; X)$ -maximal order and so S is a maximal order (in fact, it is a *G*-Asano ring).

As in Example 2, put $X = \mathfrak{p}$. Then since $\sigma(\mathfrak{m}_i) = X\mathfrak{m}_i X^{-1}$, we have $X\sigma^{-1}(\mathfrak{m}_i) = \mathfrak{m}_i X$ and so *R* is not a $(\sigma^{-1}; X)$ – maximal order. Hence we have

Remark 1 Under the same notation and assumptions as in Example 2(2), $S_1 = R[Xt; \sigma^{-1}]$ is not a maximal order and $R[t; \sigma^{-1}]$ is a maximal order.

Next we give examples of rings which are $(\sigma; X)$ -maximal orders but not σ -maximal orders.

Let *k* be a field with automorphism σ and let $K = \begin{pmatrix} k & k \\ k & k \end{pmatrix}$, the ring of 2 × 2 matrices over

k. Then we can extend σ to an automorphism of *K* by $\sigma(q) = \begin{pmatrix} \sigma(a) & \sigma(b) \\ \sigma(c) & \sigma(d) \end{pmatrix}$, where $q = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Let $U = K[x;\sigma]$ and I = eK + xU, where $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Then *I* is a σ -invariant maximal right ideal of *U* with *UU*.

maximal right ideal of U with UI = U. We consider $R = \{u \in U \mid uI \subseteq I\}$, the idealizer of I. By [13, Theorem 5.5.10], R is an HNP ring and I is an idempotent maximal ideal of R. We note that R = K(1-e) + eK + xU. R has another idempotent maximal ideal J = K(1-e) + xU, which is a σ -invariant maximal left ideal of U with JU = U. Put $X = I \cap J = eK(1-e) + xU$. Since $O_r(I) = U = O_l(J)$ and $O_r(J) = x^{-1}(eK(1-e)) + R = O_l(I)$, $\{I, J\}$ is a cycle and X is an invertible ideal of R by [5, Proposition 2.5].

Example 3. Under the same notation and assumptions,

- (1) *R* is not a σ -maximal order and *R*[*t*; σ] is not a maximal order.
- (2) R is a $(\sigma; X)$ -maximal order and S is a maximal order (in fact, S is a G-Asano ring). Furthermore
 - (i) If σ is of infinite order, then XS and XtS are only prime v-ideals of S.
 - (ii) If σ is of finite order, say *n*, then there are infinite number of prime *v*-ideals of *S*.

Remark 2 There exist some examples of maximal orders which are not G-Asano rings ([2, Example 3.4] and [11, Example]).

Remark 3 In Examples 2 and 3, the rings are all HNP rings. However, by using examples in [10] we can provide $(\sigma; X)$ -maximal orders which are neither HNP rings nor maximal orders. We will show them in detail in the forth-coming paper.

Finally we introduce a conjecture concerning skew Rees rings.

Problem Let $S = R[Xt; \sigma, \delta]$ be a subset of an Ore extension $R[t; \sigma, \delta]$, where δ is a left σ -derivation of R. Then what is a necessary and sufficient condition for S to be a maximal order or a generalized Asano ring?

REFERENCES

- G. Q. Abbasi, S. Kobayashi, H. Marubayashi and A. Ueda, *Noncommutative unique factorization rings*, Comm. in Algebra, **19(1)** (1991), 167–198.
- [2] E. Akalan, On generalized Dedekind prime rings, J. of Algebra, 320 (2008), 2907–2916.
- [3] G.Cauchon, Les T-anneaux et les anneaux a identites polynomiales Noetheriens, these, (1977).
- [4] M. Chamarie, Anneaux de Krull non commutative, these, (1981).
- [5] D. Eisenbud and J.C. Robson, Hereditary Noetherian prime rings, J. of Algebra, 16 (1970), 86–104.
- [6] A.J. Gray, A note on the invertible ideal theorem, Glasgow Math. J., 25 (1984), 27–30.
- [7] N. Jacobson, Pseudo-linear transformations, Annals of Math. 38 (2) (1937), 484–507.
- [8] L. Le Bruyn and F. Van Oystaeyen, *Generalized Rees rings and relative maximal order satisfying polynomial identities*, J. Algebra **83** (2) (1983), 409–436.
- [9] H. Marubayashi, A Krull type generalization of HNP rings with enough invertible ideals, Comm. in Algebra, 11(5) (1983), 469–499.
- [10] H. Marubayashi, Intan Muchtadi-Alamsyah and A. Ueda, *Skew polynomial rings which are generalized Asano prime rings*, preprint.
- [11] H. Marubayashi and K. Nishida, Overrings of Krull orders, Osaka J. Math. 16, (1979), 843-851.
- [12] H. Marubayashi and F. Van Oystaeyen, *Prime Divisors and Noncommutative Valuation Theory*, Lecture Notes in Mathematics 2059, Springer, (2013).
- [13] J.C. McConnel and J.C. Robson, Noncommutative Noetherian Rings, Wiley, (1987).
- [14] B. Stenstrőm, Rings of Quotients, Springer-Verlag, (1975).
- [15] F. Van Oystaeyen, Generalized Rees rings and arithmetical graded rings, J. Algebra 82(1), (1983), 185–193.
- [16] F. Van Oystaeyen and A. Verschoren, *Relative Invariants of rings*, The Noncommutative Theory, Pure and Applied Mathematics, Marcel Dekker, Inc., Vol. **86** (1984).

DEPARTMENT OF MATHEMATICS ANDALAS UNIVERSITY PADANG, WEST SUMATERA, 25163, INDONESIA

E-mail address: monika@fmipa.unand.ac.id

Faculty of Sciences and Engineering Tokushima Bunri University Sanuki, Kagawa, 769-2193, Japan *E-mail address*: marubaya@kagawa.bunri-u.ac.jp

DEPARTMENT OF MATHEMATICS SHIMANE UNIVERSITY MATSUE, SHIMANE, 690-8504, JAPAN *E-mail address*: ueda@riko.shimane-u.ac.jp