CONSTRUCTIONS OF AUSLANDER-GORENSTEIN LOCAL RINGS

MITSUO HOSHINO, NORITSUGU KAMEYAMA AND HIROTAKA KOGA

ABSTRACT. Generalizing the notion of crossed product, we provide systematic constructions of Auslander-Gorenstein local rings starting from an arbitrary Auslander-Gorenstein local ring.

1. INTRODUCTION

Auslander-Gorenstein rings (see Definition 2) appear in various areas of current research. For instance, regular 3-dimensional algebras of type A in the sense of Artin and Schelter, Weyl algebras over fields of characteristic zero, enveloping algebras of finite dimensional Lie algebras and Sklyanin algebras are Auslander-Gorenstein rings (see [2], [3], [4] and [12], respectively). However, little is known about constructions of Auslander-Gorenstein rings. It was shown in [7] that a left and right noetherian ring is an Auslander-Gorenstein ring if it admits an Auslander-Gorenstein resolution over another Auslander-Gorenstein ring. In this note, generalizing the notion of crossed product (see e.g. [8], [11] and so on), we will provide systematic constructions of Auslander-Gorenstein local rings starting from an arbitrary Auslander-Gorenstein local ring.

In order to provide the construction, we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku [9, 10], which we modify as follows. A ring A is said to be an extension of a ring R if A contains R as a subring, and the notation A/R is used to denote that A is an extension ring of R. A ring extension A/R is said to be Frobenius if the following conditions are satisfied: (F1) $A \in \text{Mod-}R$ and $A \in \text{Mod-}R^{\text{op}}$ are finitely generated projective; and (F2) $A \cong \text{Hom}_R(A, R)$ in Mod-A and $A \cong \text{Hom}_{R^{\text{op}}}(A, R)$ in Mod- A^{op} (see [1]). If R is a noetherian ring, a Frobenius extension A/R is a typical example of a noetherian ring A admitting Auslander-Gorenstein resolution over R, so that if R is an Auslander-Gorenstein ring then so is A with inj dim $A \leq \text{inj}$ dim R, where the equality holds whenever A/R is split, i.e., the inclusion $R \to A$ is a split monomorphism of R-R-bimodules (Proposition 7).

Generalizing the notion of crossed product, we will define new multiplications on the ring of full matrices and the group ring of finite cyclic groups. Let $n \ge 2$ be an integer and set $I(n) = \{1, \ldots, n\}$. We fix a cyclic permutation

$$\pi = \left(\begin{array}{rrrr} 1 & 2 & \cdots & n \\ n & 1 & \cdots & n-1 \end{array}\right)$$

of I(n). Then the law of composition $I(n) \times I(n) \to I(n), (i, j) \mapsto \pi^{-i}(j)$ makes I(n) a cyclic group. We denote by $\Omega(n)$ the set of mappings $\omega : I(n) \times I(n) \to \mathbb{Z}$ satisfying the

The detailed version of this paper will be submitted for publication elsewhere.

following conditions: (W1) $\omega(i, i) = 0$ for all $i \in I(n)$; (W2) $\omega(i, j) + \omega(j, k) \ge \omega(i, k)$ for all $i, j, k \in I(n)$; (W3) $\omega(i, j) + \omega(j, i) \ge 1$ unless i = j; and (W4) $\omega(i, j) + \omega(j, \pi(i)) = \omega(i, \pi(i))$ for all $i, j \in I(n)$. We fix $\omega \in \Omega(n)$ and a ring R together with a pair (σ, c) of $\sigma \in \operatorname{Aut}(R)$ and $c \in R$ such that $\sigma(c) = c$ and $xc = c\sigma(x)$ for all $x \in R$. For instance, for any ring R and any $\sigma \in \operatorname{Aut}(R)$, a skew power series ring $R[[t; \sigma]]$ has such a pair (σ, t) (Example 8).

Denote by $\Omega_+(n)$ the subset of $\Omega(n)$ consisting of $\omega \in \Omega(n)$ such that $\omega(1, i) = \omega(i, n) = 0$ for all $i \in I(n)$. Set $\chi(i) = \sum_{k=1}^{i} \omega(k, \pi(k))$ for $i \in I(n)$. Assume that $\omega \in \Omega_+(n)$ and that $\sigma^{\chi(n)} = \operatorname{id}_R$. Let A be a free right R-module with a basis $\{v_i\}_{i \in I(n)}$ and define a multiplication on A subject to the following axioms: (G1) $v_i v_j = v_{\pi^{-j}(i)} c^{\omega(\pi^{-j}(i),j)}$ for all $i, j \in I(n)$; and (G2) $xv_i = v_i \sigma^{-\chi(i)}(x)$ for all $x \in R$ and $i \in I(n)$. Then A is an associative ring with $1 = v_n$ and R is considered as a subring of A via the injective ring homomorphism $R \to A, x \mapsto v_n x$; A/R is a split Frobenius extension; A is commutative if R is commutative and $\sigma^{\chi(i)} = \operatorname{id}_R$ for all $i \in I(n)$; and A is local if R is local and $c \in \operatorname{rad}(R)$ (Theorem 16).

2. Preliminaries

For a ring R we denote by rad(R) the Jacobson radical of R, by R^{\times} the set of units in R, by Z(R) the center of R, by Aut(R) the group of ring automorphisms of R, for $\sigma \in Aut(R)$ by R^{σ} the subring of R consisting of all $x \in R$ with $\sigma(x) = x$, and for $n \ge 2$ by $M_n(R)$ the ring of $n \times n$ full matrices over R. We denote by Mod-R the category of right R-modules. Left R-modules are considered as right R^{op} -modules, where R^{op} denotes the opposite ring of R. In particular, we denote by inj dim R (resp., inj dim R^{op}) the injective dimension of R as a right (resp., left) R-module and by $Hom_R(-, -)$ (resp., $Hom_{R^{op}}(-, -)$) the set of homomorphisms in Mod-R (resp., Mod- R^{op}).

We start by recalling the notion of Auslander-Gorenstein rings.

Proposition 1 (Auslander). Let R be a left and right noetherian ring. Then for any $n \ge 0$ the following are equivalent.

- (1) In a minimal injective resolution I^{\bullet} of R in Mod-R, flat dim $I^{i} \leq i$ for all $0 \leq i \leq n$.
- (2) In a minimal injective resolution J^{\bullet} of R in Mod- R^{op} , flat dim $J^i \leq i$ for all $0 \leq i \leq n$.
- (3) For any $1 \le i \le n+1$, any $M \in \text{mod-}R$ and any submodule X of $\text{Ext}^i_R(M, R) \in \text{mod-}R^{\text{op}}$ we have $\text{Ext}^j_{R^{\text{op}}}(X, R) = 0$ for all $0 \le j < i$.
- (4) For any $1 \le i \le n+1$, any $X \in \text{mod-}R^{\text{op}}$ and any submodule M of $\text{Ext}_{R^{\text{op}}}^{i}(X, R) \in \text{mod-}R$ we have $\text{Ext}_{R}^{j}(M, R) = 0$ for all $0 \le j < i$.

Definition 2 ([4]). For a left and right noetherian ring R we say that R satisfies the Auslander condition if it satisfies the equivalent conditions in Proposition 1 for all $n \ge 0$, and that R is an Auslander-Gorenstein ring if inj dim $R = \text{inj dim } R^{\text{op}} < \infty$ and if it satisfies the Auslander condition.

Next, we recall the notion of Frobenius extensions of rings due to Nakayama and Tsuzuku [9, 10] which we modify as follows (see [1, Section 1]).

Definition 3 ([1]). A ring A is said to be an extension of a ring R if A contains a ring R as a subring, and the notation A/R is used to denote that A is an extension of a ring R. A ring extension A/R is said to be Frobenius if the following conditions are satisfied:

(F1) $A \in \text{Mod-}R$ and $A \in \text{Mod-}R^{\text{op}}$ are finitely generated projective; and

(F2) $A \cong \operatorname{Hom}_R(A, R)$ in Mod-A and $A \cong \operatorname{Hom}_{R^{\operatorname{op}}}(A, R)$ in Mod- A^{op} .

It should be noted that if A/R is a Frobenius extension then so is $A^{\text{op}}/R^{\text{op}}$. The next proposition is well-known and easily verified.

Proposition 4. Let A/R be a ring extension with $\phi : A \xrightarrow{\sim} \operatorname{Hom}_R(A, R)$ in Mod-A. Then the following hold.

- (1) There exists a ring homomorphism $\theta : R \to A$ such that $x\phi(1) = \phi(1)\theta(x)$ for all $x \in R$. In particular, ϕ is an isomorphism of R-A-bimodules if and only if $\theta(x) = x$ for all $x \in R$.
- (2) If $A \in \text{Mod-}R$ is finitely generated projective then so is $\text{Hom}_R(A, R) \in \text{Mod-}R^{\text{op}}$ and $A \xrightarrow{\sim} \text{Hom}_{R^{\text{op}}}(\text{Hom}_R(A, R), R), a \mapsto (h \mapsto h(a))$, which is an isomorphism of A-R-bimodules.
- (3) If $A \in \text{Mod}-R$ is finitely generated projective, and if ϕ is an isomorphism of R-A-bimodules, then $A \in \text{Mod}-R^{\text{op}}$ is finitely generated projective and we have an isomorphism of A-R-bimodules $\psi : A \xrightarrow{\sim} \text{Hom}_{R^{\text{op}}}(A, R)$ with $\psi(a)(b) = \phi(b)(a)$ for all $a, b \in A$, so that A/R is a Frobenius extension.

Definition 5. Let A/R be a Frobenius extension with $\phi : A \xrightarrow{\sim} \operatorname{Hom}_R(A, R)$ in Mod-A and $\theta : R \to A$ a ring homomorphism such that $x\phi(1) = \phi(1)\theta(x)$ for all $x \in R$. In general, $\theta(R) \neq R$ ([1]). Following [9, 10], we say that A/R is a Frobenius extension of second kind if θ induces a ring automorphism of R and that A/R is a Frobenius extension of first kind if $\theta(x) = x$ for all $x \in R$, i.e., ϕ is an isomorphism of R-A-bimodules.

Definition 6 ([1]). A ring extension A/R is said to be split if the inclusion $R \to A$ is a split monomorphism of R-R-bimodules.

Proposition 7 ([1]). For any Frobenius extension A/R the following hold.

- (1) If R is an Auslander-Gorenstein ring then so is A with inj dim $A \leq inj \dim R$.
- (2) Assume that A/R is split. If A is an Auslander-Gorenstein ring then so is R with inj dim R = inj dim A.

We end this section with recalling the notion of skew power series rings.

Example 8. Let R be a ring and $\sigma \in \operatorname{Aut}(R)$. Let $R[t;\sigma]$ be a free right R-module with a basis $\{t^p\}_{p\geq 0}$ and define a multiplication on $R[t;\sigma]$ subject to the following axioms: (P1) $t^pt^q = t^{p+q}$ for all $p, q \geq 0$; and (P2) $xt^p = t^p\sigma^p(x)$ for all $x \in R$ and $p \geq 0$. Then $R[t;\sigma]$ is an associative ring with $1 = t^0$ and t^p is the *p*th power of $t = t^1$ for all $p \geq 2$. We consider R as a subring of $R[t;\sigma]$ via the injective ring homomorphism $R \to R[t;\sigma], x \mapsto t^0 x$.

Next, setting $(t^p) = \sum_{q \ge p} t^q R$ for $p \ge 1$, we have a descending chain of two-sided ideals $(t) \supset (t^2) \supset \cdots$ in $R[t;\sigma]$ and set $R[[t;\sigma]] = \varprojlim R[t;\sigma]/(t^p)$. Namely, $R[[t;\sigma]]$ is the ring of formal power series and contains $R[t;\sigma]$ as a subring. Also, every $\tau \in \operatorname{Aut}(R)$ with $\tau\sigma = \sigma\tau$ is extended to a ring automorphism of $R[[t;\sigma]]$ such that $\sum_{p>0} t^p x_p \mapsto$

 $\sum_{p\geq 0} t^p \tau(x_p)$ which we denote again by τ . In particular, $\sigma \in \operatorname{Aut}(R[[t;\sigma]])$ with $\sigma(t) = t$ and $at = t\sigma(a)$ for all $a \in R[[t;\sigma]]$.

3. Structure system

Throughout the rest of this note, we set $I(n) = \{1, ..., n\}$ with $n \ge 2$ and fix a cyclic permutation

$$\pi = \left(\begin{array}{rrrr} 1 & 2 & \cdots & n \\ n & 1 & \cdots & n-1 \end{array}\right)$$

of I(n). Then $\pi^{-i}(j) = \pi^{-j}(i)$ for all $i, j \in I(n)$ and the law of composition

 $I(n) \times I(n) \to I(n), (i,j) \mapsto \pi^{-i}(j)$

makes I(n) a cyclic group.

We denote by $\Omega(n)$ the set of mappings $\omega : I(n) \times I(n) \to \mathbb{Z}$ satisfying the following conditions:

(W1) $\omega(i,i) = 0$ for all $i \in I(n)$; (W2) $\omega(i,j) + \omega(j,k) \ge \omega(i,k)$ for all $i, j, k \in I(n)$; (W3) $\omega(i,j) + \omega(j,i) \ge 1$ unless i = j; and (W4) $\omega(i,j) + \omega(j,\pi(i)) = \omega(i,\pi(i))$ for all $i, j \in I(n)$.

Example 9. Let n = 4. Then, setting

$$(\omega(i,j))_{1 \le i,j \le 4} = \begin{pmatrix} 0 & 4 & 4 & 3\\ 1 & 0 & 2 & -1\\ -1 & 3 & 0 & -1\\ 2 & 4 & 6 & 0 \end{pmatrix},$$

we have $\omega \in \Omega(4)$.

Lemma 10. For any $\omega \in \Omega(n)$ the following hold.

(1)
$$\omega(\pi(i), \pi(j)) = \omega(i, j) - \omega(i, \pi(i)) + \omega(j, \pi(j))$$
 for all $i, j \in I(n)$.
(2) $\omega(1, i) = 0$ for all $i \in I(n)$ if and only if $\omega(i, n) = 0$ for all $i \in I(n)$.

We denote by $\Omega_+(n)$ the subset of $\Omega(n)$ consisting of $\omega \in \Omega(n)$ such that $\omega(1,i) = \omega(i,n) = 0$ for all $i \in I(n)$ (cf. Lemma 10(2)).

Example 11. Let n = 4. Then, setting

$$(\omega(i,j))_{1 \le i,j \le 4} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 2 & 3 & 0 \end{pmatrix},$$

we have $\omega \in \Omega_+(4)$.

Lemma 12. For any $\omega \in \Omega_+(n)$ the following hold.

$$\begin{array}{l} (1) \ \omega(i,\pi(i)) = \omega(i,1) = \omega(n,\pi(i)) \geq 1 \ unless \ i = 1. \\ (2) \ \omega(i,j) + \omega(\pi^{j}(i),k) = \omega(i,\pi^{-j}(k)) + \omega(\pi^{-j}(k),j) \ for \ all \ i,j,k \in I(n) \end{array}$$

We denote by $X_+(n)$ the set of mappings $\chi : I(n) \to \mathbb{Z}$ satisfying the following conditions:

- (X1) $\chi(1) < \chi(2) < \cdots < \chi(n);$
- (X2) $\chi(i) + \chi(n i + 1) = \chi(n)$ for all $i \in I(n)$; and
- (X3) $\chi(j-i) \leq \chi(j) \chi(i) \leq \chi(j-i+1)$ for all $i, j \in I(n)$ with i < j.

Remark 13. For any $\chi: I(n) \to \mathbb{Z}$ satisfying the condition (X2) we have $\chi(1) + \chi(n) = \chi(n)$ and hence $\chi(1) = 0$.

Example 14. Let n = 4. Then, setting $\chi(1) = 0$, $\chi(2) = 3$, $\chi(3) = 5$ and $\chi(4) = 8$, we have $\chi \in X(4)$.

Proposition 15. For any $\omega \in \Omega_+(n)$, setting $\chi(i) = \sum_{k=1}^i \omega(k, \pi(k))$ for $i \in I(n)$, we have $\chi \in X_+(n)$ and

$$\omega(i,j) = \begin{cases} \chi(i) - \chi(j) + \chi(j-i+1) & \text{if } i \le j, \\ \chi(i) - \chi(j) - \chi(i-j) & \text{if } i > j \end{cases}$$

for all $i, j \in I(n)$, so that we have a bijection $\Omega_+(n) \xrightarrow{\sim} X_+(n), \omega \mapsto \chi$.

4. Group rings

Throughout the rest of this note, we fix a ring R together with a pair (σ, c) of $\sigma \in Aut(R)$ and $c \in R$ satisfying the following condition

(*)
$$\sigma(c) = c$$
 and $xc = c\sigma(x)$ for all $x \in R$.

Note that if $c \in R^{\times}$ then $\sigma(x) = c^{-1}xc$ for all $x \in R$, and that the condition (*) is satisfied if either c = 0 and σ is arbitrary, or $c \in Z(R)$ and $\sigma = id_R$. We refer to Example 8 for a non-trivial example. As usual, we require that $c^0 = 1$ even if c = 0. We fix $\omega \in \Omega_+(n)$ and, setting $\chi(i) = \sum_{k=1}^{i} \omega(k, \pi(k))$ for $i \in I(n)$, assume that $\sigma^{\chi(n)} = id_R$.

Let A be a free right R-module with a basis $\{v_i\}_{i \in I(n)}$ and define a multiplication on A subject to the following axioms:

- (G1) $v_i v_j = v_{\pi^{-j}(i)} c^{\omega(\pi^{-j}(i),j)}$ for all $i, j \in I(n)$; and
- (G2) $xv_i = v_i \sigma^{-\chi(i)}(x)$ for all $x \in R$ and $i \in I(n)$.

Denoting by $\{\beta_i\}_{i \in I(n)}$ the dual basis of $\{v_i\}_{i \in I(n)}$ for the free left *R*-module Hom_{*R*}(*A*, *R*), we have $a = \sum_{i \in I(n)} v_i \beta_i(a)$ for all $a \in A$. It is not difficult to see that for any $a, b \in A$ and $i \in I(n)$ we have

$$\beta_i(ab) = \sum_{j \in I(n)} c^{\omega(i,j)} \sigma^{-\chi(j)}(\beta_{\pi^j(i)}(a)) \beta_j(b).$$

Theorem 16. The following hold.

- (1) A is an associative ring with $1 = v_n$ and contains R as a subring via the injective ring homomorphism $R \to A, x \mapsto v_n x$.
- (2) A/R is a split Frobenius extension of first kind.
- (3) $v_i v_j = v_j v_i$ for all $i, j \in I(n)$. In particular, A is commutative if R is commutative and $\sigma^{\chi(i)} = \operatorname{id}_R$ for all $i \in I(n)$. Furthermore, for any $i \in I(n)$ with $i \neq n$ we have $v_i^r = c^s$ for some $2 \leq r \leq n$ and $s \geq 1$.

(4) There exists an injective ring homomorphism

$$\rho: A \to \mathcal{M}_n(R), a \mapsto (c^{\omega(i,j)} \sigma^{-\chi(j)}(\beta_{\pi^j(i)}(a)))_{i,j \in I(n)}$$

such that $a \in A^{\times}$ for all $a \in A$ with $\rho(a) \in M_n(R)^{\times}$.

(5) If $c \in \operatorname{rad}(R)$ then $\beta_n(a) \in R^{\times}$ for all $a \in A^{\times}$ and $R/\operatorname{rad}(R) \xrightarrow{\sim} A/\operatorname{rad}(A)$ canonically, so that if R is local then so is A.

Remark 17. Every $\tau \in \operatorname{Aut}(R)$ with $\tau \sigma = \sigma \tau$ and $\tau(c) = c$ is extended to a ring automorphism of A such that $\sum_{i \in I(n)} v_i x_i \mapsto \sum_{i \in I(n)} v_i \tau(x_i)$ which we denote again by τ . In particular, $\sigma \in \operatorname{Aut}(A)$ with $\sigma(c) = c$ and $ac = c\sigma(a)$ for all $a \in A$, so that for any $v \in \operatorname{Z}(A)^{\sigma}$ we can replace $(R; \sigma, c)$ by $(A; \sigma, vc)$ in the construction above.

In the following, we denote by $R[\omega; \sigma, c]$ the ring A constructed above.

Example 18. If $\chi(i) = (i-1)p$ with $p \ge 1$ for all $i \in I(n)$ then

$$R[t; \sigma^p]/(t^n - c^p) \xrightarrow{\sim} R[\omega; \sigma, c], t \mapsto v_{n-1},$$

 $R[t;\sigma^p]/(t \label{eq:relation}$ where $(t^n-c^p)=(t^n-c^p)R[t;\sigma^p].$

References

- H. Abe and M. Hoshino, Frobenius extensions and tilting complexes, Algebras and Representation Theory 11(3) (2008), 215–232.
- [2] M. Artin, J. Tate and M. Van den Bergh, Modules over regular algebras of dimension 3, Invent. Math. 106 (1991), no. 2, 335–388.
- [3] J.-E. Björk, *Rings of differential operators*, North-Holland Mathematical Library, 21. North-Holland Publishing Co., Amsterdam-New York, 1979.
- [4] _____, The Auslander condition on noetherian rings, in: Séminaire d'Algèbre Paul Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), 137-173, Lecture Notes in Math., 1404, Springer, Berlin, 1989.
- [5] R. M. Fossum, Ph. A. Griffith and I. Reiten, *Trivial extensions of abelian categories*, Lecture Notes in Math., 456, Springer, Berlin, 1976.
- [6] M. Hoshino, Strongly quasi-Frobenius rings, Comm. Algebra 28(8) (2000), 3585–3599.
- [7] M. Hoshino and H. Koga, Auslander-Gorenstein resolution, J. Pure Appl. Algebra 216 (2012), no. 1, 130–139.
- [8] G. Karpilovsky, The algebraic structure of crossed products, North-Holland Mathematics Studies, 142, Notas de Matemática, 118. North-Holland Publishing Co., Amsterdam, 1987.
- [9] T. Nakayama and T. Tsuzuku, On Frobenius extensions I, Nagoya Math. J. 17 (1960), 89–110.
- [10] T. Nakayama and T. Tsuzuku, On Frobenius extensions II, Nagoya Math. J. 19 (1961), 127–148.
- [11] D. S. Passman, *Infinite crossed products*, Pure and Applied Mathematics, 135, Academic Press, Inc., Boston, MA, 1989.
- [12] J. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996), no. 1-3, 619–647.
- [13] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969), 73-86.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305-8571, JAPAN *E-mail address*: hoshino@math.tsukuba.ac.jp INTERDISCIPLINARY GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY SHINSHU UNIVERSITY 3-1-1 ASAHI, MATSUMOTO, NAGANO, 390-8621, JAPAN *E-mail address*: kameyama@math.shinshu-u.ac.jp

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA IBARAKI, 305-8571, JAPAN *E-mail address*: koga@math.tsukuba.ac.jp