CYCLOTOMIC KLR ALGEBRAS OF CYCLIC QUIVERS

MASAHIDE KONISHI

ABSTRACT. For cyclic quiver, cyclotomic KLR algebras are defined by fixing α and Γ , two weights on vertices. We fix α and Γ in a special (but essential) case, and then show that there are systematic changes of structures.

1. INTRODUCTION

Khovanov-Lauda-Rouquier algebra (KLR algebra for short) is defined by Khovanov and Lauda, and independently Rouquier in 2008. Generators and Relations are obtained from a quiver Γ and a weight α on its vertices. We can regard generators as concatenation of such diagrams :

An another weight Λ on vertices of Γ defines a cyclotomic ideal. We call a quotient of the KLR algebra by the cyclotomic ideal a cyclotomic KLR algebra. After here, we fix quiver Γ as its vertices are $\{0, 1, 2, \dots, n-1\}$, and its arrows are from i to i + 1 (also n - 1 to 0), and set $\alpha = \sum_{i:vertex} \alpha_i$, $\Lambda = \Lambda_0$.

Our aim is to describe changes of structures of cyclotomic KLR algebras for n.

2. Preliminaries

After here, K is a field and I_n is a set consisting all of permutations of $(0, 1, \dots, n-1)$.

Definition 1. A KLR algebra $H_{\Gamma,\alpha}$ is an algebra obtained by following generators and relations.

- generators: $\{\mathbf{e}(\mathbf{i}) | \mathbf{i} \in I_n\} \cup \{y_1, \cdots, y_n\} \cup \{\psi_1, \cdots, \psi_{n-1}\}$
- relations: $\mathbf{e}(\mathbf{i})\mathbf{e}(\mathbf{j}) = \delta_{\mathbf{i},\mathbf{j}},$ $\sum_{\mathbf{i}\in \text{Seq}(\alpha)} \mathbf{e}(\mathbf{i}) = 1,$ $y_k \mathbf{e}(\mathbf{i}) = \mathbf{e}(\mathbf{i})y_k,$ $\psi_k \mathbf{e}(\mathbf{i}) = \mathbf{e}(\mathbf{s}_k \cdot \mathbf{i})\psi_k,$ $y_k y_l = y_l y_k,$ $\psi_k y_l = y_l \psi_k \ (l \neq k, k+1),$ $\psi_k \psi_l = \psi_l \psi_k \ (|k-l| > 1),$ $\psi_k y_{k+1} \mathbf{e}(\mathbf{i}) = y_k \psi_k \mathbf{e}(\mathbf{i}),$

The detailed version of this paper will be submitted for publication elsewhere.

$$y_{k+1}\psi_{k}\mathbf{e}(\mathbf{i}) = \psi_{k}y_{k}\mathbf{e}(\mathbf{i}), \\ \psi_{k}^{2}\mathbf{e}(\mathbf{i}) = \begin{cases} \mathbf{e}(\mathbf{i}) & (i_{k} \nleftrightarrow i_{k+1}) \\ (y_{k+1} - y_{k})\mathbf{e}(\mathbf{i}) & (i_{k} \to i_{k+1}) \\ (y_{k} - y_{k+1})\mathbf{e}(\mathbf{i}) & (i_{k} \leftarrow i_{k+1}) \\ (y_{k+1} - y_{k})(y_{k} - y_{k+1})\mathbf{e}(\mathbf{i}) & (i_{k} \leftrightarrow i_{k+1}) \\ \psi_{k}\psi_{k+1}\psi_{k}\mathbf{e}(\mathbf{i}) = \psi_{k+1}\psi_{k}\psi_{k+1}\mathbf{e}(\mathbf{i}). \end{cases}$$

The three generators are respectively coresponding to the three diagrams in section 1. A multiplication of two generators are obtained as a concatenation of two diagrams (but if the colors of connecting part are different, it becomes 0). Each relations are also given by following diagrams :

A cyclotomic ideal and a cyclotomic KLR algebra are defined from Λ as follows.

Definition 2. Generators of cyclotomic ideal are as follows :

 $\{y_1 \mathbf{e}(\mathbf{i}) | \mathbf{i} \in I_n, i_1 = 0\} \cup \{\mathbf{e}(\mathbf{i}) | \mathbf{i} \in I_n, i_1 \neq 0\}.$

Denote H_n for corresponding cyclotomic KLR algebra, a quotient of $H_{\Gamma,\alpha}$ by the ideal.

3. Properties

In this section, we describe four properties of H_n . We need some representation theoretical facts written in next section for proof.

Theorem 3. The number of $\mathbf{i} \in I_n$ satisfying $\mathbf{e}(\mathbf{i}) \neq 0$ is exactly 2^{n-2} . Moreover, the set consisting all of such $\mathbf{e}(\mathbf{i})$ s is complete set of primitive orthogonal idempotents.

Proof. Fix *n*. We show there are at most 2^{n-2} is satisfying $\mathbf{e}(\mathbf{i}) \neq 0$ by constructing i from i_1 to i_b avoiding $\mathbf{e}(\mathbf{i}) = 0$. The rest part is proved in next section.

In the case of n = 2, there is only (0, 1).

In the case of n > 2, at first i_1 must be 0 from the definition of the cyclotomic ideal. Next, i_2 must be 1 or n - 1 which are neighborhood of 0 in the quiver. If not, we obtain

$$\mathbf{e}((0, i_2, \cdots)) = \psi_1^2 \mathbf{e}((0, i_2, \cdots)) = \psi_1 \mathbf{e}((i_2, 0, \cdots)) \psi_1 = 0.$$

-83-

We can write this equation by using diagrams as follows :

We must keep taking one of the two neighborhoods for $i_k(2 < k < n-1)$. If not, $\mathbf{e}(\mathbf{i}) = 0$ from following equation :

$$0 = \underbrace{0}_{i_{2} i_{k-1} i_{k}} \cdots = \left| \underbrace{0}_{i_{2} i_{k-1} i_{k}} \cdots = \left| \begin{array}{c} \cdots \\ 0 i_{2} i_{k-1} i_{k} \end{array} \right| \cdots \\ 0 i_{2} i_{k-1} i_{k} 0 i_{2} i_{k-1} i_{k} \end{array} \right| \cdots$$

At last, we can set the rest number for i_n . Then we can obtain 2^{n-2} is constructed by using above method.

Proposition 4. Let $\mathbf{e}(\mathbf{i}) \neq 0$ in H_n . Then these properties hold :

- (a) $y_k \mathbf{e}(\mathbf{i}) = 0 \ (1 \le k < n),$
- (b) $y_n^2 \mathbf{e}(\mathbf{i}) = 0$,
- (c) $y_n \mathbf{e}(\mathbf{i}) \neq 0$.

Proof. (c) will be proved in next section.

In the case of n = 2, (a) is by definition, (b) follows by expanding $\psi \mathbf{e}(0, 1)\psi$.

In the case of n > 2, we prove (a) by induction for k.

For k = 1, $y_k \mathbf{e}(\mathbf{i}) = 0$ from definition.

We show $y_k \mathbf{e}(\mathbf{i}) = 0$ for k < n. By Thm.3, there is unique $1 \le l < k$ such that i_k and i_l are neighborhoods. Using $y_l \mathbf{e}(\mathbf{i}) = 0$ by assumption of induction, we obtain $y_k \mathbf{e}(\mathbf{i}) = 0$ from following equation :

We assume $i_l \to i_k$ in this equation, but if $i_l \leftarrow i_k$ the difference is only signs. Therefore (a) follows.

In the same way, since $y_k \mathbf{e}(\mathbf{i}) = 0$ for k < n and there are two neighborhoods i_l, i_m $(1 \le l < m < n)$ of i_n , we obtain $y_n^2 \mathbf{e}(\mathbf{i}) = 0$ as follows :

$$0 = \underbrace{0}_{i_l} \underbrace{1}_{i_m} \underbrace{1}_{i_m} \underbrace{1}_{i_n} = \begin{bmatrix} \cdots \\ 0 & i_l \end{bmatrix} \underbrace{1}_{i_m} \underbrace{1}_{i_m$$

-84-

Also we assume there $i_l \to i_n \to i_m$, but the difference with the case $i_l \leftarrow i_n \leftarrow i_m$ is only signs. Therefore (b) follows.

For H_n , set two subsets I_n^e , I_n^1 of I_n as follows :

$$I_n^e = \{ \mathbf{i} \in I_n \,|\, \mathbf{e}(\mathbf{i}) \neq 0 \}$$

$$I_n^1 = \{ \mathbf{i} \in I_n^e \,|\, i_2 = 1 \}$$

And set an idempotent \mathbf{e} of H_n as follows :

$$\mathbf{e} = \sum_{\mathbf{i} \in I_n^1} \mathbf{e}(\mathbf{i})$$

At last, set two maps $: I_{n-1}^e(\alpha) \to I_n^1(\alpha), : I_n^1(\alpha) \to I_{n-1}^e(\alpha)$ as follows :

$$\hat{\mathbf{i}} = (0, 1, i_2 + 1, \cdots, i_{n-1} + 1) \quad for \quad \mathbf{i} = (0, i_2, \cdots, i_{n-1}), \\ \bar{\mathbf{i}} = (0, i_3 - 1, \cdots, i_n - 1) \quad for \quad \mathbf{i} = (0, 1, i_3, \cdots, i_n).$$

In other word, \hat{i}_k except i_1 and inserts 1 at second, \bar{i}_k except i_1 and remove i_2 . Both maps are bijection and inversion of the other.

Proposition 5. For each n > 2, an isomorphism of algebras

$$H_{n-1} \xrightarrow{\sim} \mathbf{e} H_n \mathbf{e}$$

is obtained as follows :

$$\mathbf{e}(\mathbf{i}) \mapsto \mathbf{e}(\mathbf{i}) , y_{n-1} \mapsto y_n , \psi_k \mapsto \psi_{k+1} .$$

Proof. For $\mathbf{e}(\mathbf{i})$, $\mathbf{e}(\mathbf{i}) = 0$ and $\mathbf{e}(\hat{\mathbf{i}}) = 0$ are equivalent. For y_k , what we check is only $y_{n-1} \in H_{n-1}$ and $y_n \in H_n$ by Prop.4. It is easy to check each relations is preserved. Since elements in $\mathbf{e}H_n\mathbf{e}$ can be presented without ψ_1 , we can make the inversion map $\mathbf{e}H_n\mathbf{e} \to H_{n-1}$ as follows :

$$\mathbf{e}(\mathbf{i}) \mapsto \mathbf{e}(\mathbf{i}) , \ y_n \mapsto y_{n-1} , \ \psi_k \mapsto \psi_{k-1} .$$

Proposition 6. For each H_n , the two indecomposable projective modules corresponding to two primitive idempotents $\mathbf{e}(\mathbf{i})$ and $\mathbf{e}(\mathbf{j})$ are isomorphic if and only if $i_n = j_n$.

In particular, the isomorphic class of indecomposable projective modules has (n-1) elements.

-85-

4. Appendix : Representation Theoretical Facts

Using isomorphism given in [BK], each H_n is replaced by well-known object in representation theory. Using the facts in it, we complete the proofs of previous section.

Theorem 7 (Brundan-Kleshchev, Rouquier).

(a) ⊕_{|α|=n} H_{Γ,α,Λ} ≅ H^Λ_q(n) The right side is Ariki-Koike algebra determined by Λ and n, q = ⁿ√1 ∈ C.
(b) H_{C_n}, α, Λ is a block. That is, an indecomposable two-sided ideal.

We set $\Lambda = \Lambda_0$. In this case, Ariki-Koike algebra is Hecke algebra $H_q(\mathcal{S}_r)$ of type A. The following theorem holds. For notations in the theorem, see Mathas([4] p.50 Ex.18).

Theorem 8 (Dipper-James). Let λ be a partition of r. There exists $H_q(S_r)$ -module S^{λ} with following properties : Let n be minimum integer satisfying $1 + q + q^2 + \cdots + q^{n-1} = 0$.

- (a) If λ is n-regular (the same number doesn't continue n times), then top of S^{λ} is uniquely determined. In this case, we denote D^{λ} for top S^{λ} .
- (b) $\{D^{\lambda} \mid \lambda : n\text{-regular}\}$ is complete list of simple $H_q(\mathcal{S}_r)\text{-modules}$.

The following lemma holds in general.

Lemma 9. Let P^{λ} a indecomposable projective module corresponding to D^{λ} . As a left module,

$$H_q(\mathcal{S}_r) \cong \bigoplus_{\lambda} (\dim D^{\lambda}) P^{\lambda}$$

The following property holds in this time [5].

Theorem 10. As an element of Grothendieck group,

•
$$[D^{(n)}] = [S^{(n)}]$$

• $[D^{(n-k,1^k)}] = -[D^{(n-k+1,1^{k-1})}] + [S^{(n-k,1^k)}]$

By using hook length formula, the following property holds.

Proposition 11.

$$\dim S^{(n-k,1^k)} = \binom{n-1}{k}$$

Proof. The Young diagram corresponding to $(n - k, 1^k)$ is as follows:

$$\frac{\begin{vmatrix} n & n-k-1 \cdots & 2 & 1 \end{vmatrix}}{k} \quad \dim S^{(n-k,1^k)} = \frac{n!}{n \cdot k!(n-k-1)!} \\ = \frac{(n-1)!}{((n-1)-k)!k!} \\ = \binom{n-1}{k}$$

By using Thm.10 and Prop.11, the following property holds.

Proposition 12. For $0 \le k \le n-1$, denote $\lambda_k = (n-k, 1^k)$.

$$\sum_{k=0}^{n-1} \dim D^{\lambda_k} = 2^{n-2}$$

Proof. Since $\dim D^{\lambda_k} = -\dim D^{\lambda_{k-1}} + \dim S^{\lambda_k}$, we obtain $\dim D^{\lambda_k} + \dim D^{\lambda_{k-1}} = \dim S^{\lambda_k} = \binom{n-1}{k}$. Therefore if n is odd,

$$\sum_{k=0}^{n-1} \dim D^{\lambda_k} = 1 + \binom{n-1}{2} + \binom{n-1}{4} + \dots + \binom{n-1}{n-1} = 2^{n-2}$$

if even,

$$\sum_{k=0}^{n-1} \dim D^{\lambda_k} = \binom{n-1}{1} + \binom{n-1}{3} + \dots + \binom{n-1}{n-1} = 2^{n-2}$$

Therefore we obtain the following corollary.

Corollary 13. Every $2^{n-2} \mathbf{e}(\mathbf{i})s$ obtained in Thm.3 is primitive idempotent.

The folloing preperty holds.

Proposition 14. If $\mathbf{e}(\mathbf{i}) \neq 0$ then $y_n \mathbf{e}(\mathbf{i}) \neq 0$.

Proof. There are no elements except for $y_n \mathbf{e}(\mathbf{i})$ in $\mathbf{e}(\mathbf{i}) H_n \mathbf{e}(\mathbf{i})$ such that linearly independent to $\mathbf{e}(\mathbf{i})$. On the other hand, since there are no indecomposable simple projective modules by Thm.10, dim $(\text{End}(\mathbf{e}(\mathbf{i})H_n)) \ge 2$. Hence $y_n \mathbf{e}(\mathbf{i}) \neq 0$ from $\text{End}(\mathbf{e}(\mathbf{i})H_n) \cong \mathbf{e}(\mathbf{i}) H_n \mathbf{e}(\mathbf{i})$.

About Prop.6, if part follows from [1] and only if part follows from the fact ; H_n is Morita equivalent to Brauer tree algebra of A_n type.

References

- M. Khovanov, A. D. Lauda, A diagrammatic approach to categorification of quantum groups I, Represent. Theory 13 (2009), 309–347.
- [2] R. Rouquier, 2-Kac-Moody algebras, preprint 2008, arXiv:0812.5023.
- [3] J. Brundan, A. Kleshchev, Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras, Invent. Math. 178 (2009), no.3, 451–484.
- [4] A. Mathas, Iwahori-Hecke Algebras and Schur Algebras of the Symmetric Group, AMS, 1999.
- [5] K. Uno, On Representations of Non-semisimple Specialized Hecke Algebras, JOURNAL OF ALGE-BRA, 149 (1992), 287-312.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FROCHO, CHIKUSAKU, NAGOYA 464-8602 JAPAN *E-mail address*: m10021t@math.nagoya-u.ac.jp