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Abstract. For cyclic quiver, cyclotomic KLR algebras are defined by fixing α and Γ,
two weights on vertices. We fix α and Γ in a special (but essential) case, and then show
that there are systematic changes of structures.

1. Introduction

Khovanov-Lauda-Rouquier algebra (KLR algebra for short) is defined by Khovanov and
Lauda, and independently Rouquier in 2008. Generators and Relations are obtained from
a quiver Γ and a weight α on its vertices. We can regard generators as concatenation of
such diagrams :

i1 i2 i3 i4
,
•

i1 i2 i3 i4
,
i1 i2 i3 i4

.

An another weight Λ on vertices of Γ defines a cyclotomic ideal. We call a quotient of
the KLR algebra by the cyclotomic ideal a cyclotomic KLR algebra. After here, we fix
quiver Γ as its vertices are {0, 1, 2, · · · , n− 1}, and its arrows are from i to i + 1 (also

n− 1 to 0), and set α =
∑

i:vertex

αi, Λ = Λ0.

Our aim is to describe changes of structures of cyclotomic KLR algebras for n.

2. Preliminaries

After here, K is a field and In is a set consisting all of permutations of (0, 1, · · · , n−1).

Definition 1. A KLR algebra HΓ,α is an algebra obtained by following generators and
relations.

• generators: {e(i)|i ∈ In} ∪ {y1, · · · , yn} ∪ {ψ1, · · · , ψn−1}
• relations:
e(i)e(j) = δi,j,∑
i∈Seq(α)

e(i) = 1,

yke(i) = e(i)yk,
ψke(i) = e(sk · i)ψk,
ykyl = ylyk,
ψkyl = ylψk (l ̸= k, k + 1),
ψkψl = ψlψk (|k − l| > 1),
ψkyk+1e(i) = ykψke(i),

The detailed version of this paper will be submitted for publication elsewhere.
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yk+1ψke(i) = ψkyke(i),

ψ2
ke(i) =


e(i) (ik ̸↔ ik+1)

(yk+1 − yk)e(i) (ik → ik+1)
(yk − yk+1)e(i) (ik ← ik+1)

(yk+1 − yk)(yk − yk+1)e(i) (ik ↔ ik+1)

,

ψkψk+1ψke(i) = ψk+1ψkψk+1e(i).

The three generators are respectively coresponding to the three diagrams in section 1.
A multiplication of two generators are obtained as a concatenation of two diagrams (but
if the colors of connecting part are different, it becomes 0). Each relations are also given
by following diagrams :

•
•

i j i j

=
, •

•

i j i j

=
,

• • • • •• • • ••
i j i j i j i j i j i j i j i j i j

= − − − −
, , ,

(i ̸= j ± 1) (i = j + 1) (i = j − 1) (n = 2)

i j k i j k

=
.

A cyclotomic ideal and a cyclotomic KLR algebra are defined from Λ as follows.

Definition 2. Generators of cyclotomic ideal are as follows :

{y1e(i)|i ∈ In, i1 = 0} ∪ {e(i)|i ∈ In, i1 ̸= 0}.
Denote Hn for corresponding cyclotomic KLR algebra, a quotient of HΓ,α by the ideal.

3. Properties

In this section, we describe four properties of Hn. We need some representation theo-
retical facts written in next section for proof.

Theorem 3. The number of i ∈ In satisfying e(i) ̸= 0 is exactly 2n−2. Moreover, the set
consisting all of such e(i)s is complete set of primitive orthogonal idempotents.

Proof. Fix n. We show there are at most 2n−2 is satisfying e(i) ̸= 0 by constructing i
from i1 to ib avoiding e(i) = 0. The rest part is proved in next section.

In the case of n = 2, there is only (0, 1).
In the case of n > 2, at first i1 must be 0 from the definition of the cyclotomic ideal.

Next, i2 must be 1 or n− 1 which are neighborhood of 0 in the quiver. If not, we obtain

e((0, i2, · · · )) = ψ2
1e((0, i2, · · · ))

= ψ1e((i2, 0, · · · ))ψ1

= 0.
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We can write this equation by using diagrams as follows :

0 i2

0 = · · ·

0 i2

= · · ·
.

We must keep taking one of the two neighborhoods for ik(2 < k < n − 1). If not,
e(i) = 0 from following equation :

0 i2 ik−1 ik

0 = · · · · · ·

0 i2 ik−1 ik

= · · · · · ·

0 i2 ik−1 ik

= · · · · · ·

0 i2 ik−1 ik

= · · · · · ·
.

At last, we can set the rest number for in. Then we can obtain 2n−2 is constructed by
using above method. □
Proposition 4. Let e(i) ̸= 0 in Hn. Then these properties hold :

(a) yke(i) = 0 (1 ≤ k < n),
(b) y2ne(i) = 0,
(c) yne(i) ̸= 0.

Proof. (c) will be proved in next section.
In the case of n = 2, (a) is by definition, (b) follows by expanding ψe(0, 1)ψ.
In the case of n > 2, we prove (a) by induction for k.
For k = 1, yke(i) = 0 from definition.
We show yke(i) = 0 for k < n. By Thm.3, there is unique 1 ≤ l < k such that ik and

il are neighborhoods. Using yle(i) = 0 by assumption of induction, we obtain yke(i) = 0
from following equation :

0 i2 il ik

0 = · · · · · · · · ·

0 i2 il ik

= · · · · · · · · ·

•

0 i2 il ik

= · · · · · · · · · •

0 i2 il ik

− · · · · · · · · ·

•

0 i2 il ik

= · · · · · · · · ·

•

0 i2 il ik

= · · · · · · · · ·
.

We assume il → ik in this equation, but if il ← ik the difference is only signs. Therefore
(a) follows.

In the same way, since yke(i) = 0 for k < n and there are two neighborhoods il,im
(1 ≤ l < m < n) of in, we obtain y2ne(i) = 0 as follows :

0 il im in

0 = · · · · · · · · ·

0 il im in

= · · · · · · · · ·
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•

0 il im in

= · · · · · · · · · •

0 il im in

− · · · · · · · · ·

•

0 il im in

= · · · · · · · · ·

•
•

0 il im in

= · · · · · · · · ·
•

•

0 il im in

− · · · · · · · · ·

••
0 il im in

= − · · · · · · · · ·
.

Also we assume there il → in → im, but the difference with the case il ← in ← im is
only signs. Therefore (b) follows. □

For Hn, set two subsets Ien, I
1
n of In as follows :

Ien = {i ∈ In|e(i) ̸= 0}
I1n = {i ∈ Ien|i2 = 1}

And set an idempotent e of Hn as follows :

e =
∑
i∈I1n

e(i)

At last, set two maps ˆ: Ien−1(α)→ I1n(α),¯: I
1
n(α)→ Ien−1(α) as follows :

î = (0, 1, i2 + 1, · · · , in−1 + 1) for i = (0, i2, · · · , in−1),

ī = (0, i3 − 1, · · · , in − 1) for i = (0, 1, i3, · · · , in).
In other word,ˆincrements ik except i1 and inserts 1 at second,¯decrements ik except i1
and remove i2. Both maps are bijection and inversion of the other.

Proposition 5. For each n > 2, an isomorphism of algebras

Hn−1
∼ // eHne

is obtained as follows :

e(i) 7→ e(̂i) , yn−1 7→ yn , ψk 7→ ψk+1 .

Proof. For e(i), e(i) = 0 and e(̂i) = 0 are equivalent. For yk, what we check is only
yn−1 ∈ Hn−1 and yn ∈ Hn by Prop.4. It is easy to check each relations is preserved.
Since elements in eHne can be presented without ψ1, we can make the inversion map
eHne→ Hn−1 as follows :

e(i) 7→ e(̄i) , yn 7→ yn−1 , ψk 7→ ψk−1 .

□
Proposition 6. For each Hn, the two indecomposable projective modules corresponding
to two primitive idempotents e(i) and e(j) are isomorphic if and only if in = jn.

In particular, the isomorphic class of indecomposable projective modules has (n − 1)
elements.

–85–



4. Appendix : Representation Theoretical Facts

Using isomorphism given in [BK], each Hn is replaced by well-known object in repre-
sentation theory. Using the facts in it, we complete the proofs of previous section.

Theorem 7 (Brundan-Kleshchev,Rouquier).

(a)
⊕
|α|=n

HΓ,α,Λ
∼= HΛ

q (n)

The right side is Ariki-Koike algebra determined by Λ and n, q = n
√
1 ∈ C.

(b) HCn , α,Λ is a block. That is, an indecomposable two-sided ideal.

We set Λ = Λ0. In this case, Ariki-Koike algebra is Hecke algebra Hq(Sr) of type A.
The following theorem holds. For notations in the theorem, see Mathas([4] p.50 Ex.18).

Theorem 8 (Dipper-James). Let λ be a partition of r.
There exists Hq(Sr)-module Sλ with following properties :
Let n be minimum integer satisfying 1 + q + q2 + · · ·+ qn−1 = 0.

(a) If λ is n-regular (the same number doesn’t continue n times), then top of Sλ is
uniquely determined. In this case, we denote Dλ for topSλ.

(b)
{
Dλ | λ : n-regular

}
is complete list of simple Hq(Sr)-modules.

The following lemma holds in general.

Lemma 9. Let P λ a indecomposable projective module corresponding to Dλ.
As a left module,

Hq(Sr) ∼=
⊕
λ

(dimDλ)P λ

The following property holds in this time [5].

Theorem 10. As an element of Grothendieck group,

•
[
D(n)

]
=

[
S(n)

]
•
[
D(n−k,1k)

]
= −

[
D(n−k+1,1k−1)

]
+
[
S(n−k,1k)

]
By using hook length formula, the following property holds.

Proposition 11.

dimS(n−k,1k) =

(
n− 1

k

)
Proof. The Young diagram corresponding to (n− k, 1k) is as follows :

n n− k − 1· · · 2 1

k

· · ·
1

dimS(n−k,1k) =
n!

n · k!(n− k − 1)!

=
(n− 1)!

((n− 1)− k)!k!

=

(
n− 1

k

)
□
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By using Thm.10 and Prop.11, the following property holds.

Proposition 12. For 0 ≤ k ≤ n− 1, denote λk = (n− k, 1k).
n−1∑
k=0

dimDλk = 2n−2

Proof. Since dimDλk = −dimDλk−1 + dimSλk ,
we obtain dimDλk + dimDλk−1 = dimSλk =

(
n−1
k

)
.

Therefore if n is odd,
n−1∑
k=0

dimDλk = 1 +

(
n− 1

2

)
+

(
n− 1

4

)
+ · · ·+

(
n− 1

n− 1

)
= 2n−2

if even,
n−1∑
k=0

dimDλk =

(
n− 1

1

)
+

(
n− 1

3

)
+ · · ·+

(
n− 1

n− 1

)
= 2n−2

□
Therefore we obtain the following corollary.

Corollary 13. Every 2n−2 e(i)s obtained in Thm.3 is primitive idempotent.

The folloing preperty holds.

Proposition 14. If e(i) ̸= 0 then yne(i) ̸= 0.

Proof. There are no elements except for yne(i) in e(i)Hne(i) such that linearly independent
to e(i). On the other hand, since there are no indecomposable simple projective modules
by Thm.10, dim(End(e(i)Hn)) ≥ 2. Hence yne(i) ̸= 0 from End(e(i)Hn) ∼= e(i)Hne(i).

□
About Prop.6, if part follows from [1] and only if part follows from the fact ;

Hn is Morita equivalent to Brauer tree algebra of An type.
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