CHARACTERIZATION OF GORENSTEIN STRONGLY KOSZUL HIBI RINGS BY F-INVARIANTS

KAZUNORI MATSUDA

ABSTRACT. Hibi rings are a kind of graded toric ring on a finite distributive lattice D = J(P), where P is a partially ordered set. In this article, we compute diagonal F-thresholds and F-pure thresholds of Hibi rings and give a characterization of Hibi rings which satisfy the equality between these invariants in terms of its trivialness in the sense of Herzog-Hibi-Restuccia.

1. INTRODUCTION

This is a partially joint work with T. Chiba.

Firstly, we recall the definition of Hibi rings(see[Hib]).

Let $P = \{p_1, p_2, \ldots, p_N\}$ be a finite partially ordered set(poset for short), and let J(P) be the set of all poset ideals of P, where a poset ideal of P is a subset I of P such that if $x \in I, y \in P$ and $y \leq x$ then $y \in I$.

A chain X of P is a totally ordered subset of P. The *length* of a chain X of P is #X-1, where #X is the cardinality of X. The *rank* of P, denoted by rankP, is the maximum of the lengths of chains in P. A poset is called *pure* if its all maximal chains have the same length. For $x, y \in P$, we say that y covers x, denoted by x < y, if x < y and there is no $z \in P$ such that x < z < y.

Definition 1. ([Hib]) Let the notation be as above. Let φ be the following map:

$$\varphi: J(P) \longrightarrow k[T, X_1, \dots, X_N], \qquad I \longmapsto T \prod_{p_i \in I} X_i$$

Then the *Hibi ring* R(P) is defined as follows:

$$R(P) = k[\varphi(I) \mid I \in J(P)].$$

Remark 2. (1) ([Hib]) Hibi rings are graded toric rings.

(2) dim R(P) = #P + 1.

(3) ([Hib]) R(P) is Gorenstein if and only if P is pure.

Finally, we define rank*P and rank*P for a poset P in order to state our main theorem. A sequence $C = (q_1, \ldots, q_t)$ is called a *path* of P if C satisfies the following conditions:

(1) q_1, \ldots, q_t are distinct elements of P,

- (2) q_1 is a minimal element of P and $q_{t-1} \leq q_t$,
- (3) $q_i \lessdot q_{i+1}$ or $q_{i+1} \lessdot q_i$.

The detailed version of this paper will be submitted for publication elsewhere.

In short, we regard the Hasse diagram of P as a graph, and consider paths on it. In particular, if q_t is a maximal element of P, then we call C maximal path. For a path $C = (q_1, \ldots, q_t)$, we denote $C = q_1 \rightarrow q_t$.

For a path $C = (q_1, \ldots, q_t)$, q_i is said to be a *locally maximal element* of C if $q_{i-1} < q_i$ and $q_{i+1} < q_i$, and a *locally minimal element* of C if $q_i < q_{i-1}$ and $q_i < q_{i+1}$. For convenience, we consider that q_1 is a locally minimal element and q_t is a locally maximal element of C.

For a path $C = (q_1, \ldots, q_t)$, if $q_1 \leq \cdots \leq q_t$ then we call C an ascending chain and if $q_1 \geq \cdots \geq q_t$ then we call C a descending chain. We denote a ascending chain by a symbol A and a descending chain by a symbol D. For a ascending chain $A = (q_1, \ldots, q_t)$, we put $t(A) = q_t$ and $\langle A \rangle = \{q \in P \mid q \leq t(A)\}$. Since $\langle A \rangle$ is a poset ideal of Pgenerated by A, we note that $\langle A \rangle \in J(P)$.

Let $C = (q_1, \ldots, q_t)$ be a path and V(C) the vertices of C. We now introduce the notion of the *decomposition* of C. We decompose V(C) as follows:

$$V(C) = V(A_1) \coprod V(D_1) \coprod V(A_2) \coprod \cdots \coprod V(D_{n-1}) \coprod V(A_n)$$

such that

$$V(A_1) = \{q_1, \dots, q_{a(1)}\},\$$

$$V(D_1) = \{q'_1, \dots, q'_{d(1)}\},\$$

$$V(A_2) = \{q_{a(1)+1}, \dots, q_{a(2)}\},\$$

:

$$V(D_{n-1}) = \{q'_{d(n-2)+1}, \dots, q'_{d(n-1)}\},\$$
$$V(A_n) = \{q_{a(n-1)+1}, \dots, q_{a(n)} = q_t\}$$

where $\{q_{a(1)}, \ldots, q_{a(n)}\}$ is the set of locally maximal elements and $\{q_1, q'_{d(1)}, \ldots, q'_{d(n-1)}\}$ is the set of locally minimal elements of C. Then A_i are ascending chains and D_j are descending chains. This decomposition is denoted by $C = A_1 + D_1 + A_2 + \cdots + D_{n-1} + A_n$.

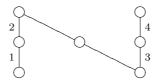
For a path $C = (q_1, \ldots, q_t)$, we define the upper length by

$$length^*C = \#\{(q_i, q_{i+1}) \in E(C) \mid q_i \lessdot q_{i+1}\},\$$

where E(C) is the set of edges of C.

Example 3. (1) If C is a chain, then length^{*}C = lengthC.

(2) Consider the following path C:



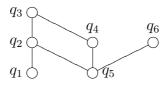
Then length^{*}C = 4.

-100-

Next, we introduce the condition (*).

Definition 4. For a path $C = (q_1, \ldots, q_t)$, we say that C satisfies a condition (*) if C satisfies the following conditions: for all q_r which is locally maximal element or locally minimal element of C, $q_{s'} \not\leq q_s$ for all s' > r and r > s.

Example 5. Consider the following poset *P*:



Then, $C_1 = (q_1, q_2, q_5, q_6)$ satisfies the condition (*), but $C_2 = (q_1, q_2, q_3, q_4, q_5, q_6)$ does not satisfy the condition (*) because $q_2 \ge q_5$.

Remark 6. (1) For a path $C = (q_1, \ldots, q_t)$ such that C satisfies a condition (*) and q_t is a locally maximal element, we can extend C to a path $\tilde{C} = (q_1, \ldots, q_t, \ldots, q_{t'})$ such that \tilde{C} is a maximal path which satisfies a condition (*). Indeed, if q_t is not a maximal element of P, then there exists q_{t+1} such that $q_t < q_{t+1}$. We decompose $C = A_1 + D_1 + \ldots + D_{n-1} + A_n$. If $q_{t+1} \in \langle A_i \rangle$ for some i, then so is q_t . This means that C does not satisfy a condition (*), a contradiction. Hence a path $C' = (q_1, \ldots, q_t, q_{t+1})$ also satisfies a condition (*). Therefore, by repeating this operation, we can extend C to a path $\tilde{C} = (q_1, \ldots, q_t, \ldots, q_{t'})$ such that \tilde{C} is a maximal path which satisfies a condition (*).

(2) Let $C = (q_1, \ldots, q_t)$ be a path of P. If C is a unique path such that its starting point is q_1 and its end point is q_t , then C satisfies a condition (*). Indeed, if C does not so, there exists a locally maximal (or minimal) element q_r such that $q_{s'} \leq q_s$ for some s < r < s'. Then, $C' = (q_1, \ldots, q_s, q_{s'}, \ldots, q_t)$ is also a path, but this is a contradiction.

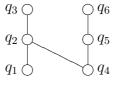
Now, we can define the upper rank rank P and the lower rank rank P for a poset P.

Definition 7. For a poset P, we define

rank^{*} $P = \max\{ \text{length}^*C \mid C \text{ is a maximal path which satisfies a condition}(*) \},$ rank_{*} $P = \min\{ \text{length}^*C \mid C \text{ is a maximal path which satisfies a condition}(*) \}.$

We call rank*P upper rank and rank*P lower rank of P. We note that $\#P-1 \ge \operatorname{rank}*P \ge \operatorname{rank}*P$.

Example 8. Consider the following poset *P*:



Then, the following paths satisfy the condition (*):

-101-

Hence we have $\operatorname{rank}^* P = 3$ and $\operatorname{rank}_* P = \operatorname{rank} P = 2$.

2. DIAGONAL F-THRESHOLDS OF HIBI RINGS

In this section, we recall the definition and several basic results of F-threshold and give a formula of the F-thresholds of Hibi rings.

2.1. **Definition and basic properties.** Let R be a Noetherian ring of characteristic p > 0 with dim $R = d \ge 1$. Let \mathfrak{m} be a maximal ideal of R. Suppose that \mathfrak{a} and J are \mathfrak{m} -primary ideals of R such that $\mathfrak{a} \subseteq \sqrt{J}$ and $\mathfrak{a} \cap R^{\circ} \neq \emptyset$, where R° is the set of elements of R that are not contained in any minimal prime ideal of R.

Definition 9 (see [HMTW]). Let R, \mathfrak{a}, J be as above. For each nonnegative integer e, put $\nu_{\mathfrak{a}}^{J}(p^{e}) = \max\{r \in \mathbb{N} \mid \mathfrak{a}^{r} \not\subseteq J^{[p^{e}]}\}$, where $J^{[p^{e}]} = (a^{p^{e}} \mid a \in J)$. Then we define

$$c^{J}(\mathfrak{a}) = \lim_{e \to \infty} \frac{\nu^{J}_{\mathfrak{a}}(p^{e})}{p^{e}}$$

if it exists, and call it the *F*-threshold of the pair (R, \mathfrak{a}) with respect to *J*. Moreover, we call $c^{\mathfrak{a}}(\mathfrak{a})$ the diagonal *F*-threshold of *R* with respect to \mathfrak{a} .

About basic properties and examples of F-thresholds, see [HMTW]. In this section, we summarize basic properties of the diagonal F-thresholds $c^{\mathfrak{m}}(\mathfrak{m})$.

- **Example 10.** (1) Let (R, \mathfrak{m}) be a regular local ring of positive characteristic. Then $c^{\mathfrak{m}}(\mathfrak{m}) = \dim R.$
 - (2) Let $k[X_1, \ldots, X_d]^{(r)}$ be the *r*-th Veronese subring of a polynomial ring $S = k[X_1, \ldots, X_d]$. Put $\mathfrak{m} = (X_1, \ldots, X_d)^r R$. Then $c^{\mathfrak{m}}(\mathfrak{m}) = \frac{r+d-1}{r}$.
 - (3) ([MOY, Corollary 2.4]) If (R, \mathfrak{m}) is a local ring with dim R = 1, then $c^{\mathfrak{m}}(\mathfrak{m}) = 1$.

Example 11. ([MOY, Theorem 2]) Let $S = k[X_1, \ldots, X_m, Y_1, \ldots, Y_n]$ be a polynomial ring over k in m + n variables, and put $\mathfrak{n} = (X_1, \ldots, X_m, Y_1, \ldots, Y_n)S$. Take a binomial $f = X_1^{a_1} \cdots X_m^{a_m} - Y_1^{b_1} \cdots Y_n^{b_n} \in S$, where $a_1 \ge \cdots \ge a_m, b_1 \ge \cdots \ge b_n$. Let $R = S_{\mathfrak{n}}/(f)$ be a binomial hypersurface local ring with the unique maximal ideal \mathfrak{m} . Then

$$c^{\mathfrak{m}}(\mathfrak{m}) = m + n - 2 + \frac{\max\{a_1 + b_1 - \min\{\sum_{i=1}^m a_i, \sum_{j=1}^n b_j\}, 0\}}{\max\{a_1, b_1\}}$$

In [CM], we gave a formula of $c^{\mathfrak{m}}(\mathfrak{m})$ of Hibi rings.

Theorem 12 (see [CM]). Let P be a finite poset, and R = R(P) the Hibi ring made from P. Let $\mathfrak{m} = R_+$ be the graded maximal ideal of R. Then

$$c^{\mathfrak{m}}(\mathfrak{m}) = \operatorname{rank}^* P + 2.$$

-102-

3. F-pure thresholds of Hibi Rings

In this section, we recall the definition of the F-pure threshold and give a formula of the F-pure thresholds of Hibi rings. This formula is given by Chiba.

The F-pure threshold, which was introduced by [TW], is an invariant of an ideal of an F-finite F-pure ring. F-pure threshold can be calculated by computing generalized test ideals (see [HY]), and [BI] showed how to compute generalized test ideals in the case of toric rings and its monomial ideals. Since Hibi rings are toric rings, we can compute F-pure thresholds of the homogeneous maximal ideal of arbitrary Hibi rings, and will be described in terms of poset.

Definition 13 (see [TW]). Let R be an F-finite F-pure ring of characteristic p > 0, \mathfrak{a} a nonzero ideal of R, and t a non-negative real number. The pair (R, \mathfrak{a}^t) is said to be F-pure if for all large $q = p^e$, there exists an element $d \in \mathfrak{a}^{\lceil t(q-1) \rceil}$ such that the map $R \longrightarrow R^{1/q}$ $(1 \mapsto d^{1/q})$ splits as an R-linear map. Then the F-pure threshold fpt(\mathfrak{a}) is defined as follows:

$$\operatorname{fpt}(\mathfrak{a}) = \sup\{t \in \mathbb{R}_{>0} \mid (R, \mathfrak{a}^t) \text{ is } F\text{-pure}\}.$$

Hara and Yoshida [HY] introduced the generalized test ideal $\tau(\mathfrak{a}^t)$ (*t* is a non negative real number). Then fpt(\mathfrak{a}) can be calculated as the minimum jumping number of $\tau(\mathfrak{a}^c)$, that is,

$$\operatorname{fpt}(\mathfrak{a}) = \sup\{t \in R_{\geq 0} \mid \tau(\mathfrak{a}^t) = R\}.$$

Chiba gave a formula of $fpt(\mathfrak{m})$ of Hibi ring R = R(P).

Theorem 14 (see [CM]). Let P be a finite poset, and R = R(P) the Hibi ring made from P. Let $\mathfrak{m} = R_+$ be the graded maximal ideal of R. Then

$$\operatorname{fpt}(\mathfrak{m}) = \operatorname{rank}_* P + 2.$$

4. -a(R) of Hibi Rings and Characterization of Hibi Rings which satisfy $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R) = \operatorname{fpt}(\mathfrak{m})$

The first main theorem of this article is the following:

Theorem 15 (see [CM], [BH]). Let P be a poset, and R = R(P) the Hibi ring made from P. Let $\mathfrak{m} = R_+$ the unique graded maximal ideal of R. Then

$$c^{\mathfrak{m}}(\mathfrak{m}) = \operatorname{rank}^* P + 2,$$

 $-a(R) = \operatorname{rank} P + 2,$
 $\operatorname{fpt}(\mathfrak{m}) = \operatorname{rank}_* P + 2,$

where a(R) is a-invariant of R (see [GW]). In particular, $c^{\mathfrak{m}}(\mathfrak{m}) \geq -a(R) \geq \operatorname{fpt}(\mathfrak{m})$.

In this section, we give a characterization of Hibi rings which satisfy $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R) = \operatorname{fpt}(\mathfrak{m})$, that is, we consider the following question:

Question: When does $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R) = \operatorname{fpt}(\mathfrak{m})$ hold for Hibi rings?

Hirose, Watanabe and Yoshida [HWY] showed that for any homogeneous affine toric ring R with the unique graded maximal ideal \mathfrak{m} , R is Gorenstein if and only if $\operatorname{fpt}(\mathfrak{m}) = -a(R)$. Hence we need to study Hibi rings which satisfy $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R)$.

Let P_1 , P_2 be posets and let $R_1 = R(P_1)$, $R_2 = R(P_2)$ be Hibi rings made from P_1 , P_2 respectively. In order to give an answer of the above question, we observe the tensor products and Segre products of R_1 and R_2 (see [Hib], [HeHiR]).

Firstly, we define some notions.

Definition 16. A ring R is *trivial* if R can be made by the following operations : starting from polynomial rings, repeated applications of tensor products and Segre products.

Definition 17. (see [HeHiR]) A poset P is *simple* if there is no element of P which is comparable with any other element of P.

Tensor Products:

Let P be a not simple poset. Then there exists $p \in P$ such that p is comparable with any other element of P. Put $P_1 = \{q \in P \mid q < p\}$ and $P_2 = \{q \in P \mid q > p\}$. Then

$$R(P) \simeq R_1 \otimes R_2$$

holds. Moreover, it is easy to see that

$$\operatorname{rank}^* P = \operatorname{rank}^* P_1 + \operatorname{rank}^* P_2 + 2,$$

$$\operatorname{rank} P = \operatorname{rank} P_1 + \operatorname{rank} P_2 + 2,$$

$$\operatorname{rank}_* P = \operatorname{rank}_* P_1 + \operatorname{rank}_* P_2 + 2.$$

Hence we have

$$\operatorname{rank}^* P = \operatorname{rank}_* P$$

$$\operatorname{rank}^* P_1 = \operatorname{rank} P_1 = \operatorname{rank}_* P_1$$
 and $\operatorname{rank}^* P_2 = \operatorname{rank} P_2 = \operatorname{rank}_* P_2$.

Segre Products:

Let P be a not connected (that is, its Hasse diagram is not connected) poset. Then there exist two non-empty subposets P_1 and P_2 of P such that the elements of P_1 and P_2 are incomparable. Then

$$R(P) \simeq R_1 \# R_2$$

holds. Moreover, it is easy to see that

$$\operatorname{rank}^* P = \max\{\operatorname{rank}^* P_1, \operatorname{rank}^* P_2\},$$

$$\operatorname{rank} P = \max\{\operatorname{rank} P_1, \operatorname{rank} P_2\},$$

$$\operatorname{rank}_* P = \min\{\operatorname{rank}_* P_1, \operatorname{rank}_* P_2\}.$$

Hence we have

$$\operatorname{rank}^* P_1 = \operatorname{rank} P_1$$
 and $\operatorname{rank}^* P_2 = \operatorname{rank} P_2 \implies \operatorname{rank}^* P = \operatorname{rank} P$

and

$$\operatorname{rank} P = \operatorname{rank}_* P \quad \Rightarrow \quad \operatorname{rank} P_1 = \operatorname{rank}_* P_1 \quad \text{and} \quad \operatorname{rank} P_2 = \operatorname{rank}_* P_2$$

-104-

holds. If P is pure, then the converses of the above assertion are also true, that is

$$\operatorname{rank}^* P = \operatorname{rank} P = \operatorname{rank}_* P$$

\$

 $\operatorname{rank}^* P_1 = \operatorname{rank} P_1 = \operatorname{rank}_* P_1$ and $\operatorname{rank}^* P_2 = \operatorname{rank} P_2 = \operatorname{rank}_* P_2$

holds since $\operatorname{rank} P = \operatorname{rank} P_1 = \operatorname{rank} P_2$.

By using these observation, we prove the following proposition.

Proposition 18. Let P be a finite poset, and R = R(P) the Hibi ring made from P. Let $\mathfrak{m} = R_+$ be the graded maximal ideal of R. Then if R is trivial, then rank^{*}P = rankP, that is, $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R)$. Moreover, if P is pure, the converse is also true.

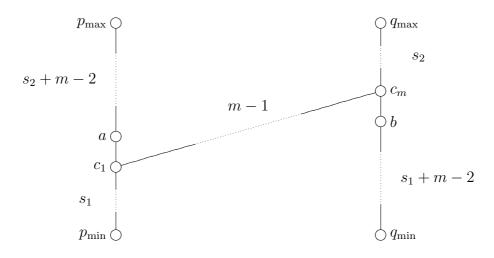
Proof. The first assertion is clear from the above observation and the fact that $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R)$ if R is a polynomial ring.

We prove that the converse is true if P is pure. Assume that R is *not* trivial. From the above observation, we may assume that P is simple and connected.

Firstly, we refer the following lemma.

Lemma 19. ([HeHiR, Lemma 3.5]) Every simple and connected poset P possesses a saturated ascending chain $A = c_1 \rightarrow c_m$ ($m \ge 2$) together with $a, b \in P$ satisfying the following condition : (i) $c_m > b$; (ii) $a > c_1$; (iii) $c_1 \not\le b$; (iv) $a \not\le c_m$.

Hence, it is enough to show that rank^{*}P > rankP under the situation as in Lemma 3.5. We consider three paths $C_1 = p_{\min} \rightarrow p_{\max}$, $C_2 = p_{\min} \rightarrow q_{\max}$ and $C_3 = q_{\min} \rightarrow q_{\max}$ as the following:



We put length $(p_{\min} \to c_1) = s_1$ and length $(c_m \to q_{\max}) = s_2$. Since P is pure, rank $P = \text{length}C_1 = \text{length}C_2 = \text{length}C_3 = s_1 + s_2 + m - 1$.

-105-

Hence we have

 $length(a \to p_{max}) = s_2 + m - 2, \quad length(q_{min} \to b) = s_1 + m - 2.$

Let $C = q_{\min} \rightarrow c_m \rightarrow c_1 \rightarrow p_{\max}$ be a path. Then it is easy to show that C satisfies a condition (*). Moreover,

length*C =
$$(s_2 + m - 1) + (s_1 + m - 1)$$

= $s_1 + s_2 + 2m - 2$
> $s_1 + s_2 + m - 1$
= rankP

since $m \ge 2$. Therefore we have rank^{*} $P > \operatorname{rank} P$.

In [HeHiR], Herzog, Hibi and Restuccia introduced the notion of strongly Koszulness for homogeneous k-algebra, and they proved that a Hibi ring is strongly Koszul if and only if it is trivial(see [HeHiR, Theorem 3.2]). Moreover, from [HWY], we can see that for any Hibi ring R = R(P) with the unique graded maximal ideal \mathfrak{m} , rank $P = \operatorname{rank}_* P$ if and only if P is pure. Therefore, we get the following theorem:

Theorem 20 (see [CM], [HeHiR]). Let P be a finite poset, and R = R(P) the Hibi ring made from P. Let $\mathfrak{m} = R_+$ be the graded maximal ideal of R. The the following assertions are equivalent:

- (1) R is trivial and Gorenstein.
- (2) R is strongly Koszul and Gorenstein.
- (3) R satisfies $c^{\mathfrak{m}}(\mathfrak{m}) = -a(R) = \operatorname{fpt}(\mathfrak{m})$.
- (4) P satisfies rank^{*}P = rankP = rank_{*}P.

References

- [BH] W. Bruns and J. Herzog, On the computation of a-invariants, manuscripta math., 77 (1992), 201– 213.
- [Bl] M. Blickle, Multiplier ideals and modules on toric varieties, Math. Z, 248 (2004), 113–121.
- [CM] T. Chiba and K. Matsuda, Characterization of Gorenstein strongly Koszul Hibi rings by Finvariants, arXiv:1201.5691.
- [GW] S. Goto and K.-i. Watanabe, On graded rings, I, J. Math. Soc. Japan 30(2) (1978), 179–213.
- [HeHiR] J. Herzog, T. Hibi and G. Restuccia, Strongly Koszul algebras, Math. Scand., 86 (2000), 161–178.
 [Hib] T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in "Com-
- mutative Algebra and Combinatorics" (M. Nagata and H. Matsumura, eds.) Adv. Stud. Pure Math. 11, North Holland, Amsterdam, (1987), 93–109.
- [Hir] D. Hirose, Formulas of F-thresholds and F-jumping coefficients on toric rings, Kodai Math. J., 32 (2009), 238–255.
- [HMTW] C. Huneke, M. Mustață, S. Takagi and K.-i. Watanabe, F-thresholds, tight closure, integral closure, and multiplicity bounds, Michigan Math. J., 57 (2008), 461–480.
- [HY] N. Hara and K. Yoshida, A generalization of tight closure and multiplier ideals, Trans. Amer. Math, 355 (2003), 3143–3174.
- [HWY] D. Hirose, K.-i. Watanabe and K. Yoshida, F-thresholds vs. a-invariants for homogeneous toric rings, preprint.
- [MOY] K. Matsuda, M. Ohtani and K. Yoshida, Diagonal F-thresholds on binomial hypersurfaces, Communications in Algebra, 38 (2010), 2992–3013.

[MTW] M. Mustață, S. Takagi and K.-i. Watanabe, F-thresholds and Bernstein-Sato polynomials, European Congress of Mathematics, 341–364, Eur. Math. Soc., Zürich.

[St] R. Stanley, Two Poset Polytopes, Discrete & Computational Geometry, 1 (1986), 9–23.

[TW] S. Takagi and K.-i. Watanabe, On F-pure thresholds, J. Algebra, 282 (2004), 278–297.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FUROCHO, CHIKUSAKU 464-8602 JAPAN *E-mail address*: d09003p@math.nagoya-u.ac.jp