A GENERALIZATION OF GOLDIE TORSION THEORY

YASUHIKO TAKEHANA

ABSTRACT. Throughout this paper R is a ring with a unit element, every right R-module is unital and Mod-R is the category of right R-modules. Let \mathcal{C} be a subclass of Mod-R. A torsion theory for \mathcal{C} is a pair of $(\mathcal{T},\mathcal{F})$ of classes of objects of \mathcal{C} such that (i) $\operatorname{Hom}_R(T,F) = 0$ for all $T \in \mathcal{T}, F \in \mathcal{F}$. (ii) If $\operatorname{Hom}_R(M,F) = 0$ for all $F \in \mathcal{F}$, then $M \in \mathcal{T}$. (iii) If $\operatorname{Hom}_R(T,N) = 0$ for all $T \in \mathcal{T}$, then $N \in \mathcal{F}$. Let \mathcal{B} be a subclass of Mod- $R, \mathcal{F} = \{M \in \operatorname{Mod}-R | \operatorname{Hom}_R(B,M) = 0$ for any $B \in \mathcal{B}\}$ and $\mathcal{T} = \{M \in \operatorname{Mod}-R | \operatorname{Hom}_R(M,P) = 0$ for any $P \in \mathcal{T}\}$. Then $(\mathcal{T},\mathcal{F})$ is called to be a torsion theory generated by \mathcal{B} . If \mathcal{B} is the class of all modules M/N such that N is essential in M, a torsion theory generated by \mathcal{B} is called the Goldie torsion theory. In this paper we generalize Goldie torsion theory by using left exact radical σ and study the dualization of this.

1. INTRODUCTION

For a subclass \mathcal{E} of Mod-R and for a short exact sequence $0 \to A \to B \to C \to 0$, it is said that \mathcal{E} is closed under taking extensions if $A, C \in \mathcal{E}$ then $B \in \mathcal{E}$. It is well known that if \mathcal{B} is closed under taking factor modules, direct sums and extensions then $(\mathcal{B}, \mathcal{F})$ is a torsion theory. A torsion theory cogenerated by a subclass of Mod-R is defined dually, as follows. Let \mathcal{B} be a subclass of Mod-R, $\mathcal{T} = \{M \in \text{Mod-}R | \text{Hom}_R(M,B) = 0 \text{ for any} B \in \mathcal{B}\}$ and $\mathcal{F} = \{M \in \text{Mod-}R | \text{Hom}_R(P, M) = 0 \text{ for any } P \in \mathcal{T}\}$. Then $(\mathcal{T}, \mathcal{F})$ is called to be a torsion theory cogenerated by \mathcal{B} . It is well known that \mathcal{B} is closed under taking submodules, direct products and extensions then $(\mathcal{T}, \mathcal{B})$ is a torsion theory. A torsion theory $(\mathcal{T}, \mathcal{F})$ is called to be hereditary if \mathcal{T} is closed under taking submodules. It is well known that $(\mathcal{T}, \mathcal{F})$ is hereditary if and only if \mathcal{F} is closed under taking injective hulls.

A subfunctor of the identity functor of Mod-*R* is called a preradical. For preradical σ , $\mathcal{T}_{\sigma} := \{M \in \text{Mod-}R | \sigma(M) = M\}$ is the class of σ -torsion right *R*-modules, and $\mathcal{F}_{\sigma} := \{M \in \text{Mod-}R | \sigma(M) = 0\}$ is the class of σ -torsion free right *R*-modules. A preradical *t* is called to be idempotent (a radical) if t(t(M)) = t(M)(t(M/t(M))) = 0). It is well known that $(\mathcal{T}_{\sigma}, \mathcal{F}_{\sigma})$ is a torsion theory for an idempotent radical σ . For a torsion theory $(\mathcal{T}, \mathcal{F})$ and a module *M* we put $t(M) = \sum N(N \in T)$ (or equivalently $t(M) = \cap N(M/N \in \mathcal{F})$), then $\mathcal{T} = \mathcal{T}_t$, and $\mathcal{F} = \mathcal{F}_t$, and *t* is called an associated idempotent radical for $(\mathcal{T}, \mathcal{F})$.

A precadical t is called to be left exact if $t(N) = N \cap t(M)$ holds for any module Mand its submodule N. For a precadical σ and a module M and its submodule N, N is called to be σ -dense submodule of M if $M/N \in \mathcal{T}_{\sigma}$. For a precadical σ , t is called σ -left exact precadical if $t(N) = N \cap t(M)$ holds for any module M and its σ -dense submodule N. If N is an essential and σ -dense submodule of M, then N is called to be a σ -essential submodule of M(M) is a σ -essential extension of N. For an idempotent radical σ a

The final version of this paper will be submitted for publication elsewhere.

module M is called to be σ -injective if the functor $\operatorname{Hom}_R(-, M)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $C \in \mathcal{T}_{\sigma}$.

We denote E(M) the injective hull of a module M. For an idempotent radical σ , $E_{\sigma}(M)$ is called the σ -injective hull of a module M, where $E_{\sigma}(M)$ is defined by $E_{\sigma}(M)/M := \sigma(E(M)/M)$. Then even if σ is not left exact, $E_{\sigma}(M)$ is σ -injective and a σ -essential extension of M, is a maximal σ -essential extension of M and is a minimal σ -injective extension of M.

2. σ -hereditary torsion theories and σ -stable torsion theories

Let σ be an idempotent radical. We call a torsion theory $(\mathcal{T}_t, \mathcal{F}_t)$ σ -hereditary if \mathcal{T}_t is closed under taking σ -dense submodules. A σ -hereditary torsion theory is characterized in [1], as follows. A torsion theory $(\mathcal{T}_t, \mathcal{F}_t)$ is σ -hereditary if and only if t is σ -left exact, moreover if σ is left exact then $(\mathcal{T}_t, \mathcal{F}_t)$ is σ -hereditary if and only if \mathcal{F} is closed under taking σ -injective hulls. A torsion theory $(\mathcal{T}, \mathcal{F})$ is called to be stable if \mathcal{T} is closed under taking injective hulls. For a preradical σ , we call a torsion theory $(\mathcal{T}, \mathcal{F})$ σ -stable if \mathcal{T} is closed under taking σ -injective hulls. σ -stable torsion theory is characterized in [3] as follows. A torsion theory $(\mathcal{T}_t, \mathcal{F}_t)$ is σ -stable if and only if for any σ -injective module E, t(E) is also σ -injective(if and only if, for any module M it holds that $E_{\sigma}(t(M)) \subseteq t(E_{\sigma}(M))$).

It is well known that a torsion theory generated by a class of Mod-R closed under taking submodules and quotient modules is hereditary. We generalize this as follows.

Proposition 1. Let σ be a left exact radical and \mathcal{B} a class of modules closed under taking σ -dense submodules and quotient modules. Then a torsion theory generated by \mathcal{B} is σ -hereditary.

Proof. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory generated by \mathcal{B} . We show that \mathcal{F} is closed under taking σ -injective hulls. Let $M \in \mathcal{F}$. We will show that $E_{\sigma}(M) \in \mathcal{F}$. Suppose that $E_{\sigma}(M) \notin \mathcal{F}$, then there exists some $B \in \mathcal{B}$ such that $\operatorname{Hom}_{R}(B, E_{\sigma}(M)) \neq 0$, and so there exists $0 \neq f : B \to E_{\sigma}(M)$, and so $f(B) \neq 0$. As M is essential in $E_{\sigma}(M)$, it follows that $M \cap f(B) \neq 0$. Since \mathcal{B} is closed under taking factor modules, $f(B) \in \mathcal{B}$. Since $f(B)/(M \cap f(B)) \cong (M + f(B))/M \subseteq E_{\sigma}(M)/M \in \mathcal{T}_{\sigma}, M \cap f(B)$ is a σ -dense in f(B). Thus by the assumption of \mathcal{B} it follows that $M \cap f(B) \in \mathcal{B}$. Since $M \in \mathcal{F}, M \cap f(B) \in \mathcal{F}$. Thus $M \cap f(B) \in \mathcal{B} \cap \mathcal{F} \subseteq \mathcal{T} \cap \mathcal{F} = \{0\}$. This is a contradiction to $M \cap f(B) \neq 0$, and so $E_{\sigma}(M) \in \mathcal{F}$.

Proposition 2. Let *E* be a σ -injective module, $\mathcal{B} =: \{M | Hom_R(M, E) = 0\}$ and $\mathcal{F} =: \{M \in Mod-R | Hom_R(B,M) = 0 \text{ for any } B \in \mathcal{B}\}$. Then $(\mathcal{B},\mathcal{F})$ is a σ -hereditary torsion theory.

Proof. It is easily verified that \mathcal{B} is closed under taking quotient modules, direct sums and extensions. Then $(\mathcal{B},\mathcal{F})$ is a torsion theory. We only show that \mathcal{B} is closed under taking σ -dense submodules. Let $M \in \mathcal{B}$ and N be a σ -dense submodule of M. Suppose that $N \notin \mathcal{B}$, then there exists a nonzero $f \in \operatorname{Hom}_R(N, E)$. By the σ -injectivity of E, fextends $f' \in \operatorname{Hom}_R(M, E)$, but this is a contradiction to the fact that $M \in \mathcal{B}$. \Box

Proposition 3. Let σ be a preradical and E be a σ -torsionfree module. We put $\mathcal{T} = \{M \in Mod-R | Hom_R(M, E) = 0\}$ and $\mathcal{F} = \{M \in Mod-R | Hom_R(T, M) = 0 \text{ for any } T \in \mathcal{T}\}$. Then $(\mathcal{T}, \mathcal{F})$ is σ -stable torsion theory. Proof. Since σ is a preradical, \mathcal{T}_{σ} is closed under taking factor modules and \mathcal{F}_{σ} is closed under taking submodules. Since it is easily verified that \mathcal{T} is closed under taking factor modules, direct sums and extensions, it holds that $(\mathcal{T},\mathcal{F})$ is a torsion theory. We only show that \mathcal{T} is closed under taking σ -injective hulls. Suppose that $M \in \mathcal{T}$ and $E_{\sigma}(M) \notin \mathcal{T}$. Then it holds that $\operatorname{Hom}_{R}(M, E) = 0$ and $\operatorname{Hom}_{R}(E_{\sigma}(M), E) \neq 0$. Thus there exists $f \in$ $\operatorname{Hom}_{R}(E_{\sigma}(M), E)$ such that $\operatorname{Im} f \neq 0$. Since $f|_{M} \in \operatorname{Hom}_{R}(M, E) = 0$, it follows that $\ker f \supseteq M$. Since $\mathcal{T}_{\sigma} \ni E_{\sigma}(M)/M \twoheadrightarrow E_{\sigma}(M)/\ker f \cong \operatorname{Im} f \subseteq E \in \mathcal{F}_{\sigma}$. This is a contradiction to the fact that $\operatorname{Im} f \neq 0$. Thus it follows that $E_{\sigma}(M) \in \mathcal{T}$.

3. A generalization of Goldie torsion theory

A torsion theory $(\mathcal{T}, \mathcal{F})$ generated by $\{M/N | N \text{ is essential in } M\}$ is called to be Goldie torsion theory. Goldie torsion theory is hereditary and stable. Let Z(M) denote the singular submodule of a module M. For a module M, $Z_2(M)$ is defined by $Z_2(M)/Z(M) :=$ Z(M/Z(M)). It is well known that $\mathcal{T} = \mathcal{T}_{Z_2}$ and $\mathcal{F} = \mathcal{F}_{Z_2}$.

For a left exact radical σ we call a torsion theory generated by $\{M/N|N \text{ is } \sigma\text{-essential} \text{ in } M\} \sigma$ -Goldie torsion theory.

Theorem 4. For a left exact radical σ , σ -Goldie torsion theory is hereditary and σ -stable.

Proof. Let \mathcal{B} be $\{M/N|N \text{ is an } \sigma\text{-essential submodule of a module } M\}$. It is easily verified that \mathcal{B} is closed under taking submodules and factor modules. A torsion theory $(\mathcal{T},\mathcal{F})$ generated by \mathcal{B} is hereditary by Proposition $1(\sigma = 1)$. We show that \mathcal{T} is closed under taking $\sigma\text{-injective hulls}$. Let M be in \mathcal{T} . Suppose that $E_{\sigma}(M) \notin \mathcal{T}$. Then there exists a module F in \mathcal{F} such that $\operatorname{Hom}_{R}(E_{\sigma}(M), F) \neq 0$. Since $E_{\sigma}(M)/M \in \mathcal{B}$, $\operatorname{Hom}_{R}(E_{\sigma}(M)/M, F) = 0$. Since $M \in \mathcal{T}$ and $F \in \mathcal{F}$, $\operatorname{Hom}_{R}(M, F) = 0$. Then there exists a short exact sequence $0 \to \operatorname{Hom}_{R}(E_{\sigma}(M)/M, F) \to \operatorname{Hom}_{R}(E_{\sigma}(M), F) \to \operatorname{Hom}_{R}(M, F)$. This is a contradiction, and so it follows that $E_{\sigma}(M) \in \mathcal{T}$.

For a module M, we denote $Z_{\sigma}(M) := \{m \in M | mI = 0 \text{ for some } \sigma\text{-essential right ideal } I \text{ of } R\}$. If $m \in Z_{\sigma}(M)$, there exists some $\sigma\text{-essential right ideal } I \text{ of } R$ such that mI = 0, and then $(0:m) \supseteq I$. Since $mR \cong R/(0:m) \ll R/I \in \mathcal{T}_{\sigma} \cap \mathcal{T}_Z$, $mR \in \mathcal{T}_{\sigma} \cap \mathcal{T}_Z$, and so $mR \subseteq \sigma(M) \cap Z(M)$. Thus $Z_{\sigma}(M) \subseteq \sum mR(_{m \in Z_{\sigma}(M)}) \subseteq Z(M) \cap \sigma(M)$. $Z_{\sigma}(M) \subseteq Z(M) \cap \sigma(M)$. Since Z and σ are left exact, $\sigma(Z(M)) = Z(M) \cap \sigma(M) = Z(\sigma(M))$, and so $Z_{\sigma}(M) \subseteq Z(\sigma(M)) = \sigma(Z(M))$. Conversely if $m \in Z(\sigma(M)) = \sigma(Z(M))$, then $R/(0:m) \cong mR \in \mathcal{T}_Z \cap \mathcal{T}_{\sigma}$, and so (0:m) is σ -essential in R. Thus $m \in Z_{\sigma}(M)$, and so $Z(\sigma(M)) = \sigma(Z(M)) \subseteq Z_{\sigma}(M)$.

For a preradical r and a module M, put $r_1(M) := r(M)$. If β is not a limit ordinal, $r_{\beta}(M)/r_{\beta-1}(M) := r(M/r_{\beta-1}(M))$. If β is a limit ordinal, $r_{\beta}(M) := \sum_{\beta > \alpha} r_{\alpha}(M)$. This gives rise to an increasing sequence of preradicals. We put $\overline{r}(M) = \sum_{\beta} r_{\beta}(M)$, then \overline{r} is a smallest radical larger than r. If r is idempotent, then \overline{r} is also idempotent. Thus for an idempotent preradical r, a torsion theory $(\mathcal{T},\mathcal{F})$ generated by \mathcal{T}_r is given that $\mathcal{T} = \mathcal{T}_{\overline{r}}$ and $\mathcal{F} = \mathcal{F}_{\overline{r}}$.

We define $(Z_{\sigma})_2(M)$ by $(Z_{\sigma})_2(M)/Z_{\sigma}(M) := Z_{\sigma}(M/Z_{\sigma}(M)).$

Lemma 5. Let σ be a radical and $\sigma(M) \supseteq N$ for a module M and its submodule N. Then it holds that $\sigma(M/N) = \sigma(M)/N$. **Theorem 6.** For a left exact radical σ , it holds that $\mathbf{Z}_2 \sigma = (Z_{\sigma})_2 = \overline{Z_{\sigma}}$.

Proof. By Lemma 5, $\sigma(M/Z(\sigma(M))) = \sigma(M)/Z(\sigma(M))$. Thus $(Z_{\sigma})_2(M)/Z_{\sigma}(M) = Z_{\sigma}(M/Z_{\sigma}(M)) = Z\{\sigma(M/Z(\sigma(M)))\}$ $= Z(\sigma(M)/Z(\sigma(M))) = Z_2(\sigma(M))/Z(\sigma(M))$. Thus $\mathbb{Z}_2\sigma = (Z_{\sigma})_2$. Since \mathbb{Z}_2 and σ are left exact radicals, $(Z_{\sigma})_2$ is a left exact radical. Since $\overline{Z_{\sigma}}$ is the smallest radical containing Z_{σ} , $(Z_{\sigma})_2 \supseteq \overline{Z_{\sigma}}$. By construction of $\overline{Z_{\sigma}}$, it holds that $(Z_{\sigma})_2 \subseteq \overline{Z_{\sigma}}$, and so $(Z_{\sigma})_2 = \overline{Z_{\sigma}}$, as desired.

Let G be a Goldie torsion functor. The followings are well known. (1) G(M) = M if and only if Z(M) is essential in M. (2) G(M) = 0 if and only if Z(M) = 0. (3) If Z(R) = 0, then G = Z. We can generalize this as follows.

Corollary 7. Let G_{σ} be a σ -Goldie torsion functor. Then the following facts hold.

- (1) $G_{\sigma}(M) = M$ if and only if $\sigma(M) = M$ and Z(M) is essential in M.
- (2) $G_{\sigma}(M) = 0$ if and only if $Z(\sigma(M)) = 0$.
- (3) If $Z(\sigma(R)) = 0$, then $G_{\sigma} = Z_{\sigma}$

4. σ -costable torsion theory and σ -cohereditary torsion theory

From now on, assume that R be a right perfect ring. A right R-module M is called σ -projective if the functor $\operatorname{Hom}_R(M, \)$ preserves the exactness for any exact sequence $0 \to A \to B \to C \to 0$ with $A \in \mathcal{F}_{\sigma}$. For an idempotent radical σ , a short exact sequence $[0 \to K_{\sigma}(M) \to P_{\sigma}(M) \xrightarrow{\pi_M^{\sigma}} M \to 0]$ is called σ -projective cover of a module M when $P_{\sigma}(M)$ is σ -projective, $K_{\sigma}(M)$ is σ -torsion free and $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$. Since R is a right perfect ring and σ is an idempotent radical, σ -projective cover of a module always exists. A torsion theory $(\mathcal{T},\mathcal{F})$ is called costable if \mathcal{F} is closed under taking projective covers. We generalize this in [4]. We call a torsion theory $(\mathcal{T},\mathcal{F})$ σ -costable if \mathcal{F} is closed under taking σ -projective covers.

Proposition 8. Let E be a module such that for any module X and any $f \in Hom_R(E, X)$, f(E) is σ -torsionfree and not small in X. We denote $\mathcal{F} = \{M | Hom_R(E, M) = 0\}$ and $\mathcal{T} = \{M | Hom_R(M, F) = 0 \text{ for any } F \in \mathcal{F}\}$. Then $(\mathcal{T}, \mathcal{F})$ is a σ -costable torsion theory.

Proof. Let M be in \mathcal{F} . Then $\operatorname{Hom}_R(E, M) = 0$. Suppose that $P_{\sigma}(M) \notin \mathcal{F}$. Then $\operatorname{Hom}_R(E, P_{\sigma}(M)) \neq 0$. Thus there exists an $f \in \operatorname{Hom}_R(E, P_{\sigma}(M))$ such that $f(E) \neq 0$. Since $\pi_M^{\sigma} f \in \operatorname{Hom}_R(E, M) = 0$, $f(E) \subseteq K_{\sigma}(M)$ is small in $P_{\sigma}(M)$. Thus f(E) is σ -torsionfree and small in $P_{\sigma}(M)$. This is a contradiction. Thus \mathcal{F} is closed under taking σ -projective covers.

Next we state the dual of Proposition 1. A preradical σ is called epi-preserving if $\sigma(M/N) = (\sigma(M) + N)/N$ holds for any module M and any submodule N of M. If σ is an epipreserving idempotent radical, \mathcal{F}_{σ} is closed under taking factor modules and then $(\mathcal{T},\mathcal{F})$ is called cohereditary. We say that a subclass \mathcal{C} of Mod-R is closed under taking σ -factor modules if : if $M \in \mathcal{C}$ and N is a σ -torsionfree submodule of M then $M/N \in \mathcal{C}$. We call a torsion theory $(\mathcal{T},\mathcal{F})$ σ -cohereditary if \mathcal{F} is closed under taking σ -factor modules.

-149-

Proposition 9. Let σ be an epi-preserving idempotent radical. Let \mathcal{B} be a class of modules closed under taking σ -factor modules and submodules. Then the torsion theory cogenerated by \mathcal{B} is σ -cohereditary.

Proof. Let $(\mathcal{T}, \mathcal{F})$ be a torsion theory cogenerated by \mathcal{B} . We show that \mathcal{T} is closed under taking σ -projective covers. Let $M \in \mathcal{T}$. We show that $P_{\sigma}(M) \in \mathcal{T}$. Suppose that $P_{\sigma}(M) \notin \mathcal{T}$. Then there exists $B \in \mathcal{B}$ such that $\operatorname{Hom}_{R}(P_{\sigma}(M), \mathcal{B}) \neq 0$. Then there exists a nonzero homomorphism $\alpha : P_{\sigma}(M) \to B$. $\mathcal{B} \ni B \supseteq \alpha(P_{\sigma}(M)) \supseteq \alpha(K_{\sigma}(M)) \in \mathcal{F}_{\sigma}$. Since \mathcal{B} is closed under taking σ -factor modules and submodules, $\alpha(P_{\sigma}(M))/\alpha(K_{\sigma}(M)) \in \mathcal{B}$. Then α induces $\widetilde{\alpha} : M \simeq P_{\sigma}(M)/K_{\sigma}(M) \twoheadrightarrow \alpha(P_{\sigma}(M))/\alpha(K_{\sigma}(M)) \in \mathcal{B}$. Since $M \in \mathcal{T}$, it follows that $\alpha(P_{\sigma}(M))/\alpha(K_{\sigma}(M)) = 0$, and so $\alpha(P_{\sigma}(M)) = \alpha(K_{\sigma}(M))$. Therefore it follows that $\alpha^{-1}\{\alpha(P_{\sigma}(M))\} = \alpha^{-1}\{\alpha(K_{\sigma}(M))\}$, and so $P_{\sigma}(M) = \alpha^{-1}(0) + K_{\sigma}(M)$. Since $K_{\sigma}(M)$ is small in $P_{\sigma}(M)$, it follows that $P_{\sigma}(M) = \alpha^{-1}(0)$. But this is a contradiction to the fact that $\alpha \neq 0$. Thus $P_{\sigma}(M) \in \mathcal{T}$.

Proposition 10. Let P be a σ -projective module and \mathcal{B} be $\{M | Hom_R(P, M) = 0\}$. Then a torsion theory generated by \mathcal{B} is σ -cohereditary.

Proof. It is easily verified that \mathcal{B} is closed under taking submodules, direct products and extensions. We only show that \mathcal{B} is closed under taking σ -factor modules. Let $M \in \mathcal{B}$ and $N \in \mathcal{F}_{\sigma}$ be a submodule of M. Suppose that $M/N \notin \mathcal{B}$, then there exists a nonzero $f \in$ $\operatorname{Hom}_{R}(P, M/N)$. Then f extends $f' \in \operatorname{Hom}_{R}(P, M)$ such gf' = f, where g is a canonical epimorphism from M to M/N. This is a contradiction to the fact that $M \in \mathcal{B}$. Thus a torsion theory $(\mathcal{T}, \mathcal{B})$ generated by \mathcal{B} is σ -cohereditary by Proposition 9.

5. Dualization of σ -Goldie torsion theory

A module N is called small if N is a small submodule of some module. It is well known that N is small if and only if N is small in E(M). Now we consider dualizations of σ -Goldie torsion theory.

Theorem 11. Let σ be an epi-preserving idempotent radical. We denote $\mathcal{B} = \{N \in \mathcal{F}_{\sigma} | N \text{ is small in some module } M\} (= \{M \in \mathcal{F}_{\sigma} | M \text{ is small in } E(M)\})$. Then a torsion theory $(\mathcal{T}, \mathcal{F})$ cogenerated by \mathcal{B} is cohereditary and σ -costable.

Proof. It is easily verified that \mathcal{B} is closed under taking direct sums, factor modules and submodules. Thus by Proposition $9(\sigma = 1)$, \mathcal{F} is closed under taking factor modules, and so $(\mathcal{T},\mathcal{F})$ is a cohereditary torsion theory. Next we show that \mathcal{F} is closed under taking σ -projective covers. Let $M \in \mathcal{F}$. Suppose that $P_{\sigma}(M) \notin \mathcal{F}$, then there exists a module X in \mathcal{T} and $\operatorname{Hom}_{R}(X, P_{\sigma}(M)) \neq 0$. Consider the following exact sequence. $0 \to \operatorname{Hom}_{R}(X, K_{\sigma}(M)) \to \operatorname{Hom}_{R}(X, P_{\sigma}(M)) \to \operatorname{Hom}_{R}(X, M)$. Since $X \in \mathcal{T}$ and $M \in \mathcal{F}$, $\operatorname{Hom}_{R}(X, M) = 0$. Since $K_{\sigma}(M)$ is σ -torsion free small submodule of $P_{\sigma}(M)$, $K_{\sigma}(M)$ is in \mathcal{B} . Thus $\operatorname{Hom}_{R}(X, K_{\sigma}(M)) = 0$, and so $\operatorname{Hom}_{R}(X, P_{\sigma}(M)) = 0$. But this is a contradiction, and so it follows that $P_{\sigma}(M) \in \mathcal{F}$.

A module of \mathcal{B} in Theorem 11 is a generalization of small module. Last we give another extension of small modules. We call a module N a σ -small module if there exists a module L and a small σ -dense submodule K of L such that N is isomorphic to K.

Proposition 12. A module N is a σ -small module if and only if N is small in $E_{\sigma}(N)$.

Proof. Let N be a σ -small module. Then there exists a module L and its σ -dense small submodule K such that $N \cong K$. Consider the following diagram.

$$N \xrightarrow{h|_N} K \subseteq^{\circ} L \twoheadrightarrow L/K \in \mathcal{T}_{\sigma}$$

$$\cap \qquad \cap$$

$$E_{\sigma}(N) \xrightarrow{h} E_{\sigma}(K),$$

where h is an isomorphism and $h|_N$ is an isomorphism and an restriction of h to N. Then there exists a $g: L \to E_{\sigma}(K)$ such that $g|_K = 1_K$. Then $K = g(K) \subseteq^{\circ} g(L) \subseteq E_{\sigma}(K)$, and so K is small in $E_{\sigma}(K)$. Thus $h^{-1}(K)$ is small in $h^{-1}(E_{\sigma}(K))$, and so N is small in $E_{\sigma}(N)$. The converse is clear.

Proposition 13. Let \mathcal{B} be the class of all σ -small modules. Then a torsion theory generated by \mathcal{B} is a σ -hereditary torsion theory. A torsion theory cogenerated by \mathcal{B} is a cohereditary torsion theory.

Proof. It is easily verified that \mathcal{B} is closed under taking factor modules and σ -dense submodules, then a torsion theory generated by \mathcal{B} is a σ -hereditary torsion theory by Proposition 1 and Proposition12. A torsion theory cogenerated by \mathcal{B} is a cohereditary torsion theory by Proposition 9.

References

- Y. Takehana, On a generalization of QF-3' modules and hereditary torsion theories, Math. J. Okayama Univ. 54 (2012), 53-63.
- [2] _____, On a generalization of CQF-3' modules and cohereditary torsion theories, Math. J. Okayama Univ. 54 (2012), 65-76.
- [3] _____, On a generalazation of stable torsion theory, Proc. of the 43rd Symposium on Ring Theory and Representation theory, 2011, 71-78.
- [4] _____, On a generalization of costable torsion theory, Proc. of the 44th Symposium on Ring Theory and Representation theory, 2012, 208-215.

GENERAL EDUCATION HAKODATE NATIONAL COLLEGE OF TECHNOLOGY 14-1 TOKURA-CHO HAKODATE HOKKAIDO, 042-8501 JAPAN *E-mail address*: takehana@hakodate-ct.ac.jp