Notation

One point extension of a quiver algebra defined by two cycles and a quantum-like relation

Daiki Obara

12 October 2013

- k : field,
- A : finite dimensional \boldsymbol{k}-algebra,
- $A^{e}:=A \otimes_{k} A^{\mathrm{op}}$: enveloping algebra,
- $\mathrm{HH}^{n}(A) \cong \operatorname{Ext}_{A^{e}}^{n}(A, A)$: Hochschild cohomology group of A,
- $\mathrm{HH}^{*}(A) \cong \oplus_{n \geq 0} \mathrm{HH}^{n}(A)$: Hochschild cohomology ring of A with Yoneda product,
- \mathcal{N} : ideal of $\mathrm{HH}^{*}(A)$ generated by all homogeneous nilpotent elements.
- $\mathrm{HH}^{*}(A) / \mathcal{N}$: Hochschild cohomology ring of \boldsymbol{A} modulo nilpotence.

The support variety of M

Definition [[SnSo(2004)], Definision 3.3]
The support variety of A-module M is given by

$$
V(M)=\left\{m \in \operatorname{MaxSpec} \operatorname{HH}^{*}(A) / \mathcal{N} \mid \operatorname{AnnExt}_{A}^{*}(\boldsymbol{M}, \boldsymbol{M}) \subseteq m^{\prime}\right\}
$$

where $\operatorname{AnnExt}_{A}^{*}(M, M)$ is the annihilator of $\operatorname{Ext}_{A}^{*}(M, M)$ and m^{\prime} is the preimage of m in $\mathrm{HH}^{*}(A)$.

Question [Sn(2009)]

Whether we can give necessary and sufficient conditions on a finite dimensional algebra for the Hochschild cohomology ring modulo nilpotence to be finitely generated as an algebra?

- Koenig and Nagase produced many examples of finite dimensional algebras A with a stratifying ideal for which $\mathrm{HH}^{*}(A) / \mathcal{N}$ is finitely generated as an algebra. (See [KN(2009)])

$$
\begin{aligned}
& \text { Stratifying ideal } \\
& \text { Let } e \text { be an idempotent of } A \text {. If the two sided ideal } A e A \text { satisfies the } \\
& \text { following conditions, this ideal is called a stratifying ideal. } \\
& \text { - The multiplication map } A e \otimes_{e A e} e A \rightarrow A e A \text { is an isomorphism. } \\
& \text { - For all } n \geq 1 \text {, } \operatorname{Tor}_{n}^{e A e}(A e, e A)=0 \text {. }
\end{aligned}
$$

With respect to sufficient condition, it is shown that $\mathrm{HH}^{*}(A) / \mathcal{N}$ is finitely generated as an algebra for various classes of algebras by many authors as follows:

- Any block of a group ring of a finite group (See [Ev(1961)], [V(1959)])
- Any block of a finite dimensional cocommutative Hopf algebra (See [FSu(1997)])
- Finite dimensional algebras of finite global dimension (See [$\mathrm{Ha}(1989)]$)
- Finite dimensional self-injective algebras of finite representation type over an algebraically closed field (See [GSnSo(2003)])
- Finite dimensional monomial algebras (See [GSnSo(2006)])
- A class of special biserial algebras (See [SnT(2010)])
- A Hecke algebra (See [ScSn])

Quiver algebra defined by two cycles and a quantum-like

 relationLet $s, t \geq 1$ be integers. We consider the quiver algebra $A_{q}=k Q / I_{q}$. Q : the quiver with $s+t-1$ vertices and $s+t$ arrows as follows:

I_{q} : the ideal of $k Q$ generated by

$$
X^{s a}, X^{s} Y^{t}-q Y^{t} X^{s}, Y^{t b}
$$

where $X:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{s}, Y:=\beta_{1}+\beta_{2}+\cdots+\beta_{t}$, integers $a, b \geq 2$ and q is non-zero element in k.

Quantum complete intersection

In the case $s=t=1, A_{q}=k\langle x, y\rangle /\left\langle x^{a}, x y-q y x, y^{b}\right\rangle$ is a quantum complete intersection. This algebra is self-injective algebra.

- In the case $a=b=2$, the Hochschild cohomology ring of A_{q} was determined by [BGMS(2005)] for any element q in k.
- In the case $a, b \geq 2$, the Hochschild cohomology ring of A_{q} was determined by $[\mathrm{BE}(2008)]$ where q is not a root of unity.
- In [BO(2008)], Bergh and Oppermann showed that A_{q} holds the finiteness conditions if and only if q is a root of unity.

Projective resolution of A_{q}

We have the A^{e}-projective resolution of A_{q} :

$$
\cdots P_{n} \xrightarrow{d_{n}} P_{n-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} A_{q} \rightarrow 0 .
$$

where

$$
\begin{aligned}
P_{2 n} & =\coprod_{l=0}^{2 n} A e_{1} \otimes e_{1} A \oplus \coprod_{i=2}^{s} A e_{a(i)} \otimes e_{a(i)} A \oplus \coprod_{j=2}^{t} A e_{b(j)} \otimes e_{b(j)} A, \\
P_{2 n+1} & =\coprod_{l=1}^{2 n} A e_{1} \otimes e_{1} A \oplus \coprod_{i=1}^{s} A e_{a(i+1)} \otimes e_{a(i)} A \oplus \coprod_{j=1}^{t} A e_{b(j+1)} \otimes e_{b(j)} A .
\end{aligned}
$$

Daiki Obara 0

One point extension of a quiver alcscrad defined by two

Hochschild cohomology ring of A_{q} modulo nilpotence

Let q an r-th root of unity in k and \bar{z} the remainder when we divide z by r for any integer z. Then we have $0 \leq \bar{z} \leq r-1$.

Theorem 1

Let $s, t \geq 2$. Then $\mathrm{HH}^{*}\left(A_{q}\right) / \mathcal{N}$ is isomorphic to the polynomial ring of two variables:

$$
\operatorname{HH}^{*}\left(A_{q}\right) / \mathcal{N} \cong \begin{cases}k\left[x^{2 r}, y^{2 r}\right] & \text { if } \bar{a} \neq 0, \bar{b} \neq 0 \\ k\left[x^{2}, y^{2 r}\right] & \text { if } \bar{a} \neq 0, \bar{b}=0 \\ k\left[x^{2 r}, y^{2}\right] & \text { if } \bar{a}=0, \bar{b} \neq 0 \\ k\left[x^{2}, y^{2}\right] & \text { if } \bar{a}=\bar{b}=0\end{cases}
$$

where $x^{n}=e_{1,0}+\sum_{j=2}^{t} e_{b(j)}, y^{n}=e_{1, n}+\sum_{i=2}^{s} e_{a(i)}$ in $\operatorname{HH}^{n}\left(A_{q}\right)$.

Theorem 2

In the case where q is not a root of unity, $\operatorname{HH}^{*}\left(A_{q}\right) / \mathcal{N} \cong k$.

Hochschild cohomology group

Let the following sequence be an A^{e}-projective resolution of A :

$$
\cdots \rightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} A \rightarrow 0
$$

Then we have the complex:

$$
0 \rightarrow \operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{0}, \boldsymbol{A}\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{\boldsymbol{A}^{e}}\left(\boldsymbol{P}_{1}, \boldsymbol{A}\right) \xrightarrow{d_{2}^{*}} \cdots
$$

Hochschild cohomology group

The n-th Hochschild cohomology group of A is defined by

$$
\operatorname{HH}^{n}(\boldsymbol{A})=\operatorname{Ext}_{\boldsymbol{A}^{e}}^{n}(\boldsymbol{A}, \boldsymbol{A})=\operatorname{Ker} \boldsymbol{d}_{\boldsymbol{n}+1}^{*} / \operatorname{Im} \boldsymbol{d}_{\boldsymbol{n}}^{*}
$$

where $d_{n}^{*}=\operatorname{Hom}_{A^{e}}\left(d_{n}, A\right)$ for $n \geq 1$.

Projective resolution of $\boldsymbol{A}_{\boldsymbol{q}}$

And we have the following complex:

$$
0 \rightarrow \operatorname{Hom}_{A^{e}}\left(P_{0}, A\right) \xrightarrow{d_{1}^{*}} \operatorname{Hom}_{A^{e}}\left(P_{1}, A\right) \xrightarrow{d_{2}^{*}} \operatorname{Hom}_{A^{e}}\left(P_{2}, A\right) \rightarrow \cdots,
$$

where

$$
\begin{aligned}
\operatorname{Hom}_{A^{e}}\left(P_{2 n}, A\right) & \cong \coprod_{l=0}^{2 n} e_{1} A e_{1} \oplus \coprod_{i=2}^{s} e_{a(i)} A e_{a(i)} \oplus \coprod_{j=2}^{t} e_{b(j)} A e_{b(j)}, \\
\operatorname{Hom}_{A^{e}}\left(P_{2 n+1}, A\right) & \cong \coprod_{l=1}^{2 n} e_{1} A e_{1} \oplus \coprod_{i=1}^{s} e_{a(i+1)} A e_{a(i)} \oplus \coprod_{j=1}^{t} e_{b(j+1)} A e_{b(j)} .
\end{aligned}
$$

One point extension of \boldsymbol{A}_{q}

We consider the algebra $B=k \Gamma / I_{q, v, u} . \Gamma$: the quiver with $s+t$ vertices and $s+t+1$ arrows as follows:

$I_{q, v, u}$: the ideal of $k \Gamma$ generated by

$$
X^{s a}, X^{s} Y^{t}-q Y^{t} X^{s}, Y^{t b}, \gamma X^{s v+u}
$$

for $a, b \geq 2,0 \leq v \leq a-1,0 \leq u \leq s-1$ and $(v, u) \neq(0,0)$ where we set $X:=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{s}$ and $Y:=\beta_{1}+\beta_{2}+\cdots+\beta_{t}$.

Projective resolusion of one point extension algebra

$\begin{aligned} \text { - } & B=\left(\begin{array}{cc}k & M \\ 0 & A\end{array}\right): \text { one point extension algebra of } A \text { by the } A \text {-module } \\ & M .\end{aligned}$

- $\mathcal{F}: \operatorname{Mod} \boldsymbol{A}^{e} \rightarrow \operatorname{Mod} \boldsymbol{B}^{e}$: the natural functors given by $\mathcal{F}(Q)=\left(\begin{array}{cc}0 & M \\ 0 & A\end{array}\right) \otimes_{A} Q$.
- $\mathcal{G}: \operatorname{Mod} \boldsymbol{A} \rightarrow \operatorname{Mod} \boldsymbol{B}^{\boldsymbol{e}}:$ the natural functors given by $\mathcal{G}(\boldsymbol{L})=\left(\begin{array}{ll}0 & \boldsymbol{L} \\ \mathbf{0} & \mathbf{0}\end{array}\right)$.
- A^{e}-projective resolution of $A: \cdots \rightarrow Q_{n} \xrightarrow{\delta_{n}} \cdots \xrightarrow{\delta_{1}} Q_{0} \xrightarrow{\delta_{0}} A \rightarrow 0$.
- A-projective resolution of $M: \cdots \rightarrow L_{n} \xrightarrow{r_{n}} \cdots \xrightarrow{r_{7}} L_{0} \xrightarrow{r_{0}} M \rightarrow 0$.

We give an explicit projective bimodule resolution of a one point extension algebra by using the following Theorem.

Projective resolution of B

Remark

The following sequence is a minimal projective resolution of M.

$$
\cdots \rightarrow L_{2 n} \xrightarrow{r_{2 n}} L_{2 n-1} \xrightarrow{r_{2 n-1}} \cdots \rightarrow L_{1} \xrightarrow{r_{1}} L_{0} \xrightarrow{r_{0}} M \rightarrow 0
$$

where $L_{2 n}=e_{1} A_{q}, L_{2 n+1}=e_{a(s+1-u)} A_{q}$ for $n \geq 0, r_{0}$ is a natural epimorphism and for $n \geq 1$,

$$
\begin{aligned}
r_{2 n-1}\left(e_{a(s+1-u)}\right) & =X^{s v+u} e_{a(s+1-u)} \\
r_{2 n}\left(e_{1}\right) & =X^{s(a-v-1)+s-u} e_{1} .
\end{aligned}
$$

Then we have the following B^{e}-module:

$$
\begin{aligned}
\mathcal{G}\left(L_{2 n}\right) & =B e_{2} \otimes e_{1} B \\
\mathcal{G}\left(L_{2 n+1}\right) & =B e_{2} \otimes e_{a(s+1-u)} B .
\end{aligned}
$$

Projective resolution of B

Let $P_{n}^{*}:=\operatorname{Hom}_{B^{e}}\left(P_{n}, B\right)$. We have the following complex:

$$
0 \rightarrow P_{1}^{*} \xrightarrow{d_{1}^{*}} P_{2}^{*} \xrightarrow{d_{2}^{*}} P_{3}^{*} \rightarrow \cdots \rightarrow P_{2 n}^{*} \xrightarrow{d_{2 n}^{*}} P_{2 n+1}^{*} \rightarrow \cdots,
$$

where

$$
P_{2 n}^{*} \cong \coprod_{l=0}^{2 n} e_{1} B e_{1} \oplus \coprod_{i=2}^{s} e_{a(i)} B e_{a(i)} \oplus \coprod_{j=2}^{t} e_{b(j)} B e_{b(j)} \oplus e_{2} B e_{a(s+1-u)}
$$

$P_{2 n+1}^{*} \cong \coprod_{l=1}^{2 n} e_{1} B e_{1} \oplus \coprod_{i=1}^{s} e_{a(i+1)} B e_{a(i)} \oplus \coprod_{j=1}^{t} e_{b(j+1)} B e_{b(j)} \oplus e_{2} B e_{1}$.

Projective resolusion of one point extension algebra

Theorem [GMS(2003)]

We have a B^{e}-projective resolution of B :

$$
\cdots \rightarrow P_{n} \xrightarrow{d_{n}} P_{n-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{d_{0}} B \rightarrow 0 .
$$

- $P_{0}=\mathcal{F}\left(Q_{0}\right) \oplus\left(B e^{\prime} \otimes e^{\prime} B\right)$ where $e^{\prime}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in B$.

$$
P_{n}=\mathcal{F}\left(Q_{n}\right) \oplus \mathcal{G}\left(L_{n-1}\right)
$$

- $d_{0}=\left(\mathcal{F}\left(\delta_{0}\right), i d_{B e^{\prime} \otimes e^{\prime} B}\right)$.

$$
d_{n}=\left(\begin{array}{cc}
\mathcal{F}\left(\delta_{n}\right) & \sigma_{n} \\
0 & -\mathcal{G}\left(r_{n-1}\right)
\end{array}\right) \text { for } n \geq 1
$$

- $\sigma_{n}: \mathcal{G}\left(L_{n-1}\right) \rightarrow \mathcal{F}\left(Q_{n-1}\right)$ is a B^{e}-homomorphism such that $\mathcal{F}\left(\delta_{n}\right) \circ \sigma_{n+1}=\sigma_{n} \circ \mathcal{G}\left(\eta_{n}\right)$,
- σ_{0} is the natural monomorphism.

Projective resolution of B

We have the B^{e}-projective resolution of B :

$$
\cdots P_{n} \xrightarrow{d_{n}} P_{n-1} \rightarrow \cdots \rightarrow P_{1} \xrightarrow{d_{1}} P_{0} \xrightarrow{\pi} B \rightarrow 0
$$

where

$$
\begin{aligned}
& d_{1}: \varepsilon^{1 \prime} \mapsto \gamma \varepsilon_{0}^{0}-\varepsilon^{0 \prime} \gamma, \\
& d_{2 n}: \varepsilon^{2 n+1 \prime} \mapsto \gamma \varepsilon_{2 n}^{2 n}-\varepsilon^{2 n \prime} X^{s(a-1-v)+s-u}, \\
& d_{2 n+1}: \varepsilon^{2 n \prime} \mapsto \sum_{l=0}^{v-1} \sum_{l^{\prime}=0}^{s-1} \gamma X^{s l+l^{\prime}} \varepsilon_{a\left(s-l^{\prime}\right)}^{2 n-1} X^{s(v-l)+u-1-l^{\prime}} \\
& +\sum_{l^{\prime}=0}^{u-1} \gamma X^{s v+l^{\prime}} \varepsilon_{a\left(s-l^{\prime}\right)}^{2 n-1} X^{u-1-l^{\prime}}-\varepsilon^{2 n-1^{\prime}} X^{s v+u},
\end{aligned}
$$

where we set $\varepsilon_{0}^{0}=\varepsilon_{2 n}^{2 n}=e_{1} \otimes e_{1}, \varepsilon_{a(i)}^{2 n+1}=e_{a(i+1)} \otimes e_{a(i)}, \varepsilon^{0 \prime}=e_{2} \otimes e_{2}$, $\varepsilon^{2 n \prime}=e_{2} \otimes e_{a(s+1-u)}$ and $\varepsilon^{2 n+1 \prime}=e_{2} \otimes e_{1}$ for $n \geq 0$.

Main result

Theorem 3

If $s, t \geq 2$ and q is an r-th root of unity then

$$
\mathrm{HH}^{*}(B) / \mathcal{N} \cong\left\{\begin{array}{l}
k \oplus k\left[x^{2 r}, y^{2 r}\right] x^{2 r} \text { if } \bar{a} \neq 0, \bar{b} \neq 0 \\
k \oplus k\left[x^{2}, y^{2 r}\right] x^{2} \text { if } \bar{a} \neq 0, \bar{b}=0 \\
k \oplus k\left[x^{2 r}, y^{2}\right] x^{2 r} \text { if } \bar{a}=0, \bar{b} \neq 0 \\
k \oplus k\left[x^{2}, y^{2}\right] x^{2} \text { if } \bar{a}=\bar{b}=0
\end{array}\right.
$$

where $x^{n}=e_{1,0}+\sum_{j=2}^{t} e_{b(j)}$ in $\mathrm{HH}^{n}(B)$ and $y^{n}=e_{1, n}+\sum_{i=2}^{s} e_{a(i)}$.
This is not finitely generated as an algebra.

Example 1

In the case $s=t=1, \operatorname{HH}^{*}(B) / \mathcal{N}$ is determined in [$\left.\operatorname{Sn}(2009)\right] . \Gamma$ is the quiver

and $I=\left\langle\alpha^{2}, \beta^{2}, \alpha \beta-\beta \alpha, \alpha \gamma\right\rangle$. Snashall showed the following Theorem.

$$
\mathrm{HH}^{*}(B) / \mathcal{N} \cong \begin{cases}k \oplus k[x, y] x & \text { if } \operatorname{char} k=2 \\ k \oplus k\left[x^{2}, y^{2}\right] x^{2} & \text { if char } k \neq 2\end{cases}
$$

Γ is the quiver

and $I_{1}=\left\langle\alpha^{2}, \beta^{2}, \alpha \beta-\beta \alpha, \gamma \alpha, \gamma \beta\right\rangle$.
Remark
The minimal A-projective resolution of $S(1)$ given by

$$
r_{n}: A^{n+1} \rightarrow A^{n}:\left\{\begin{array}{l}
e_{1,1} \mapsto e_{1,1} \alpha \\
e_{1,2 l_{1} \mapsto e_{1,2 l_{1}-1} \beta-e_{1,2 l_{1}} \alpha} \\
e_{1,2 l_{2}+1} \mapsto e_{1,2 l_{2}-1} \beta+e_{1,2 l_{2}+1} \alpha \\
e_{1, n+1} \mapsto e_{1, n} \beta
\end{array}\right.
$$

Theorem 5

Let $D=k \Gamma / I_{1}$.

$$
\mathrm{HH}^{*}(\boldsymbol{D}) / \mathcal{N} \cong \boldsymbol{k}
$$

Theorem 6

Let $E=k \Delta / I_{2}$.

$$
\mathrm{HH}^{*}(\boldsymbol{E}) / \mathcal{N} \cong \begin{cases}k \oplus k[x, y] x & \text { if char } k=2 \\ k \oplus k\left[x^{2}, y^{2}\right] x^{2} & \text { if char } k \neq 2\end{cases}
$$

Example 2

Γ is the quiver

and $I=\left\langle\alpha^{2}, \beta^{2}, \alpha \beta-\beta \alpha\right\rangle$. Then we have the minimal A-projective resolution of $\boldsymbol{A}_{\boldsymbol{A}}$.

$$
0 \rightarrow A \rightarrow A \rightarrow 0 .
$$

Theorem 4

Let $C=k \Gamma / I$.

$$
\mathrm{HH}^{*}(C) / \mathcal{N} \cong \begin{cases}k[x, y] & \text { if char } k=2 \\ k\left[x^{2}, y^{2}\right] & \text { if char } k \neq 2\end{cases}
$$

Daiki Obara ()

Example 4

Let Δ be the quiver

and $I_{2}=\left\langle\alpha^{2}, \beta^{2}, \alpha \beta-\beta \alpha, \gamma_{1} \alpha, \gamma_{2} \gamma_{1}\right\rangle$.

Remark

The following sequence is a minimal A-projective resolution of $S(2)$.

$$
\cdots \rightarrow e_{1} B \xrightarrow{r_{n}} e_{1} B \xrightarrow{r_{n-1}} \cdots \rightarrow e_{1} B \xrightarrow{r_{1}} e_{2} B \xrightarrow{r_{0}} S(2) \rightarrow 0
$$

where r_{0} is a natural epimorphism and

$$
\begin{aligned}
& r_{1}\left(e_{1}\right)=\gamma_{1} \\
& r_{n}\left(e_{1}\right)=\alpha \text { for } n \geq 2
\end{aligned}
$$

References

- Bergh, P. A., Erdmann, K., Homology and cohomology of quantum complete intersections, Algebra Number Theory 2 (2008), 501-522.
- Bergh, P. A., Oppermann, S., Cohomology of twisted tensor products, J. Algebra 320 (2008), 3327-3338.
- Buchweitz, R.-O., Green, E. L., Madsen, D., Solberg, Ø., Finite Hochschild cohomology without finite global dimension, Math. Res. Lett. 12 (2005), 805-816.
- Green, E. L., Marcos, E. N., Snashall, N., The Hochschild cohomology ring of a one point extension, Comm. Algebra 31 (2003), 2019-2037.
- Obara. D.. Hochschild cohomology of quiver algebras defined by two cycles and a quantum-like relation, Comm. Algebra 40 (2012), 1724-1761.
- Snashall, N., Support varieties and the Hochschild cohomology ring modulo nilpotence, Proceedings of the 41st Symposium on Ring Theory and Representation Theory, Shizuoka, Japan, Sept. 5-7, 2008;
Fujita, H., Ed.; Symp. Ring Theory Represent. Theory Organ.
Comm., Tsukuba, 2009, 68-82.
- Snashall, N., Solberg, Ø., Support varieties and Hochschild cohomology rings, Proc. London Math. Soc. 88 (2004), 705-732.
- Solberg, Ø., Support varieties for modules and complexes, Trends in representation theory of algebras and related topics (2006), Amer. Math. Soc., 239-270.
- Xu, F., Hochschild and ordinary cohomology rings of small categories, Adv. Math. 219 (2008), 1872-1893.

