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1. Blocks 1

1. BLOCK IDEALS

We shall argue under the following situation:

•G is a finite group

• k is an algebraically closed field of characteristic p
∣∣∣ |G |

• B is a block ideal of kG with a defect group D:

(1) B is an indecomposable ideal | kG,

(2) the indecomposable k[G ×Gop]-module B has vertex Δ(D).

Definition. (1) X is a source module of B:

an indec. k[G × Dop]-direct summand of B with vtx Δ(D).

(2) A = X∗ ⊗B X is a source algebra of B.

Theorem (Puig). A and B are Morita equivalent.
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Definition. (1) ∃! block ideal bD of CG(D) associated with X.

(D,bD) is a Sylow B-subpair.

(2) Brauer category F(D,bD)(B,X):

• object (Q,bQ) of Q � D and a block bQ of kCG(Q)

• morphism (Q,bQ) → (R,bR); conjugation by an element in

G.

Definition (Linckelmann [2]). The cohomology ring of B w.r.t D and

X:

H∗(G,B;X) = { ζ ∈ H∗(D,k) | ζ is F(D,bD)(B,X)-stable}.

Theorem 1 (Linckelmann [2], Sasaki [3]). For ζ ∈ H∗(D,k)

ζ ∈ H∗(G,B;X) ⇐⇒ δDζ ∈ HH∗(kD) is A-stable.

1. Blocks 3

Problem. To know module structure of A = X∗ ⊗B X.

Note that A is isomorphic to a direct sum of some k[DgD]s because

A | kG =

⊕

DgD∈D\G/D

k[DgD].

Theorem. (1)

A 	

⎛
⎜⎝

⊕

g∈NG(D,bD)/DCG(D)

k[Dg]

⎞
⎟⎠ ⊕N,

where N is a direct sum of k[DxD]s with x ∈ G � NG(D).

(2) No two of k[Dg]s, g ∈ NG(D,bD)/DCG(D), are isomorphic.

We have had almost no information on N above!
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Theorem 2 (Sasaki, 2013). Let (P, bP ), (Q,bQ) ⊆ (D,bD); assume

that CD(P ) is a defect group of bP or CD(Q) is a defect group of bQ.

For g ∈ G with g(P, bP ) = (Q,bQ) if the map

tg : H∗(D,k) → H∗(D,k); ζ �→ trD resQ
gζ

does not vanish, then the following hold:

(1) Q = D ∩ gD ; hence tg = tDgD,

(2) the (kD, kD)-bimodule k[DgD] is isomorphic to a direct sum-

mand of the source algebra A,

(3) a (kD, kD)-bimodule k[Dg′D] is isomorphic to k[DgD] if and only

if Dg′D = DcgD for some c ∈ CG(Q).
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2. TRACE MAPS FOR COHOMOLOGY RINGS OF BLOCKS

The (kD, kD)-bimodule A induces a transfer map on H∗(D,k):

H∗(D,k)
δD

t

�

HH∗(kD)

tA

H∗(D,k)
δD

HH∗(kD)

.

Conjecture.

H∗(G,B;X) = t(H∗(D,k)).

Example. If NG(D,bD) controls the fusion of subpairs in (D,bD), then

the above do hold. For example

• D is abelian,

• D is normal in G, and so on.
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The transfer map t is described as follows:

t : H∗(D,k) → H∗(D,k); ζ �→
∑

A	
⊕

DgD k[DgD]

trD resD∩ gD
gζ.

However we do not know

• which k[DgD] is isomorphic to a direct summand of A,

• how to determine the multiplicity of a direct summand of A iso-

morphic to k[DgD]

so that it would be so difficult to write down the map t explicitly.

The following are observations.
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3. BLOCKS OF TAME REPRESENTATION TYPE

Hereafter we let p = 2 and let B be a block of tame representation

type with defect group D.

The defect group D is one of the followings:

• dihedral 2-group

〈x, y | x2n−1
= y2

= 1, yxy−1
= x−1 〉, n � 3;

• generalized quaternion 2-group

〈x, y | x2n−2
= y2

= z, z2
= 1, yxy−1

= x−1 〉, n � 3;

• semidihedral 2-group

〈x, y | x2n−1
= y2

= 1, yxy−1
= x−1+2n−2

〉, n � 4.
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In Kawai–Sasaki [1] we calculated cohomology rings of 2-blocks of

tame representation type and of blocks with defect groups isomor-

phic to wreathed 2-groups of rank 2. We constructed a transfer map

TrBD : H∗(D,k) → H∗(D,k)

such that

TrBD H∗(D,k) = H∗(G,B,X).

Let us assume that D is a semidihedral 2-group:

D = 〈x, y | x2n−1
= y2

= 1, yxy−1
= x−1+2n−2

〉, n � 4

and take subgroups E, V � D as

E 	 four-group, V 	 quaternion group.
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Let

(E,bE), (V, bV ) ⊆ (D,bD).

The inertia groups NG(E,bE)/CG(E) and NG(V, bV )/VCG(V ) deter-

mine the fusion of subpairs. Let us assume here that

NG(E,bE)/CG(E) 	 GL(2,2), NG(V, bV )/VCG(V ) 	 GL(2,2)

and choose elements g0 ∈ NG(E,bE) and g1 ∈ NG(V, bV ) such that

(1) g0 induces an automorphism of E of order 3 and

(2) g1 induces an outer automorphism V of order 3.

Let us define a (kD, kD)-bimodule M by

M = kD ⊕ k[Dg0D] ⊕ k[Dg1D].
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Theorem 2 tells us the following.

Theorem 3. (1) M | A

(2) The transfer map in [1]

TrBD : H∗(D,k) → H∗(D,k); ζ �→ ζ + trD resE
g0ζ + trD resV

g1ζ

is induced by M.

Moreover, a detailed analysis for fusion of subpairs shows us that the

source algbra A induces the transfer map tA as follows:

tA : H∗(D,k) → H∗(D,k); ζ �→ ζ + l0 trD resE
g0ζ + l1 trD resV

g1ζ.

Remark. (1) The coefficients l0 and l1 are still unknown!

(2) Similar results hold for othe blocks of tame representation type.
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4. BLOCKS WITH WREATHED DEFECT GROUPS

Here we assume that D is a wreathed 2-group of rank 2:

D = 〈a, b, t | a2n
= b2n

= t2
= 1, ab = ba, tat = b 〉, n ≥ 2.

We can specify the subgroups U, V � D such that the Inertial quo-

tients of (U,bU), (V, bV ) ⊆ (D,bD), which are both isomorphic to

GL(2,2), determine the fusion of subpais. We assume here that

NG(U,bU)/CG(U) 	 GL(2,2), NG(V, bV )/VCG(V ) 	 GL(2,2)

and choose elements g0 ∈ NG(U,bU) and g1 ∈ NG(V, bV ) such that

(1) g0 induces an automorphism of U of order 3 and

(2) g1 induces an outer automorphism V of order 3.
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Let us define TrBD : H∗(D,k) → H∗(D,k) as

TrBD : ζ �→ ζ + trD resU
g0ζ + trD res V

g1ζ

+ trD res V∩ g1U
g1g0ζ + trD resU ∩ g0V

g0g1ζ

+ trD res V∩ g1U ∩ g1g0V
g1g0g1ζ.

Then it follows that

Im TrBD = H∗(G,B;X).

• The first five terms above come from direct summands of A but

• Theorem 2 cannnot be applied to the last one; it is unknown

whether the last one is induced by a direct summand of A or not.

Please erase out the last sentense in my abstract!
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