SOURCE ALGEBRAS AND COHOMOLOGY OF BLOCK IDEALS OF FINTIE GROUP ALGEBRAS

HIROKI SASAKI

SHINSHU UNIVERSITY

The 46th Symposium on Ring Theory and Representation Theory

Tokyo University of Science

12nd October, 2013

We shall argue under the following situation:

 $\bullet G$ is a finite group

1. Blocks

1. Blocks

Theorem. (1)

• k is an algebraically closed field of characteristic $p \mid |G|$

B is a block ideal of *kG* with a defect group *D*:
(1) *B* is an indecomposable ideal | *kG*,
(2) the indecomposable *k*[*G* × *G*^{op}]-module *B* has vertex Δ(*D*).

Definition. (1) *X* is a source module of *B*:

an indec. $k[G \times D^{\text{op}}]$ -direct summand of *B* with vtx $\Delta(D)$. (2) $A = X^* \otimes_B X$ is a source algebra of *B*.

Theorem (Puig). A and B are Morita equivalent.

Problem. To know module structure of $A = X^* \otimes_B X$.

Note that A is isomorphic to a direct sum of some k[DgD]s because

 $A \mid kG = \bigoplus_{DgD \in D \setminus G/D} k[DgD].$

 $A \simeq \left(\bigoplus_{g \in N_G(D, b_D)/DC_G(D)} k[Dg] \right) \oplus N,$

where N is a direct sum of k[DxD]s with $x \in G \setminus N_G(D)$.

(2) No two of $k[Dg]s, g \in N_G(D, b_D)/DC_G(D)$, are isomorphic.

1. Blocks

2

4

6

Definition. (1) \exists ! block ideal b_D of $C_G(D)$ associated with X. (D, b_D) is a Sylow B-subpair.

(2) Brauer category $\mathcal{F}_{(D,b_D)}(B, X)$:

- object (Q, b_Q) of $Q \leq D$ and a block b_Q of $kC_G(Q)$
- morphism $(Q, b_Q) \rightarrow (R, b_R)$; conjugation by an element in *G*.

Definition (Linckelmann [2]). The cohomology ring of *B* w.r.t *D* and *X*:

 $H^*(G, B; X) = \{ \zeta \in H^*(D, k) \mid \zeta \text{ is } \mathcal{F}_{(D, b_D)}(B, X) \text{-stable} \}.$

Theorem 1 (Linckelmann [2], Sasaki [3]). For $\zeta \in H^*(D, k)$

 $\zeta \in H^*(G, B; X) \iff \delta_D \zeta \in HH^*(kD)$ is A-stable.

1. Blocks

2. Trace maps

Theorem 2 (Sasaki, 2013). Let $(P, b_P), (Q, b_Q) \subseteq (D, b_D)$; assume that $C_D(P)$ is a defect group of b_P or $C_D(Q)$ is a defect group of b_Q . For $g \in G$ with ${}^g(P, b_P) = (Q, b_Q)$ if the map

 $t_q: H^*(D, k) \to H^*(D, k); \zeta \mapsto \operatorname{tr}^D \operatorname{res}_Q {}^g \zeta$

does not vanish, then the following hold:

(1) $Q = D \cap {}^{g}D$; hence $t_g = t_{DgD}$,

(2) the (kD, kD)-bimodule k[DgD] is isomorphic to a direct summand of the source algebra A,

(3) a (kD, kD)-bimodule k[Dg'D] is isomorphic to k[DgD] if and only if Dg'D = DcgD for some $c \in C_G(Q)$.

2. Trace maps

The transfer map t is described as follows:

$$t: H^*(D, k) \to H^*(D, k); \zeta \mapsto \sum_{A \simeq \bigoplus_{D \in D} k[D \in D]} \operatorname{tr}^D \operatorname{res}_{D \cap gD} {}^g \zeta.$$

However we do not know

- which k[DgD] is isomorphic to a direct summand of A,
- how to determine the multiplicity of a direct summand of A isomorphic to k[DgD]

so that it would be so difficult to write down the map t explicitly. The following are observations. -----

2. TRACE MAPS FOR COHOMOLOGY RINGS OF BLOCKS

We have had almost no information on N above!

The (kD, kD)-bimodule A induces a transfer map on $H^*(D, k)$:

$$\begin{array}{c} H^{*}(D, k) \xrightarrow{\delta_{D}} HH^{*}(kD) \\ t \downarrow \qquad \bigcirc \qquad \downarrow t_{A} \\ H^{*}(D, k) \xrightarrow{\delta_{D}} HH^{*}(kD) \end{array}$$

Conjecture.

$$H^*(G,B;X) = t(H^*(D,k))$$

Example. If $N_G(D, b_D)$ controls the fusion of subpairs in (D, b_D) , then the above do hold. For example

- D is abelian,
- D is normal in G, and so on.
- 3. Tame blocks

3. BLOCKS OF TAME REPRESENTATION TYPE

Hereafter we let p = 2 and let *B* be a block of tame representation type with defect group *D*.

The defect group D is one of the followings:

dihedral 2-group

$$\langle x, y | x^{2^{n-1}} = y^2 = 1, yxy^{-1} = x^{-1} \rangle, n \ge 3$$

• generalized quaternion 2-group

$$\langle x, y | x^{2^{n-2}} = y^2 = z, z^2 = 1, yxy^{-1} = x^{-1} \rangle, n \ge 3$$

semidihedral 2-group

$$\langle x, y \mid x^{2^{n-1}} = y^2 = 1, yxy^{-1} = x^{-1+2^{n-2}} \rangle, n \ge 4.$$

5

1

3

- 7

3. Tame blocks

In Kawai–Sasaki [1] we calculated cohomology rings of 2-blocks of tame representation type and of blocks with defect groups isomorphic to wreathed 2-groups of rank 2. We constructed a transfer map

$$\operatorname{Tr}_{D}^{B}: H^{*}(D, k) \to H^{*}(D, k)$$

such that

3. Tame blocks

$$\operatorname{Tr}_D^B H^*(D, k) = H^*(G, B, X).$$

Let us assume that D is a semidihedral 2-group:

$$D = \langle x, y \mid x^{2^{n-1}} = y^2 = 1, yxy^{-1} = x^{-1+2^{n-2}} \rangle, n \ge 4$$

and take subgroups E, $V \leq D$ as

 $E \simeq$ four-group, $V \simeq$ quaternion group.

Theorem 2 tells us the following.

Theorem 3. (1) *M* | *A*

(2) The transfer map in [1]

 $\mathsf{Tr}^{\mathcal{B}}_{D}: H^*(D,k) \to H^*(D,k); \zeta \mapsto \zeta + \mathsf{tr}^{D} \operatorname{res}_{\mathcal{E}} {}^{g_0} \zeta + \mathsf{tr}^{D} \operatorname{res}_{V} {}^{g_1} \zeta$

is induced by M.

Moreover, a detailed analysis for fusion of subpairs shows us that the source algbra A induces the transfer map t_A as follows:

 $t_A: H^*(D, k) \to H^*(D, k); \zeta \mapsto \zeta + I_0 \operatorname{tr}^D \operatorname{res}_E {}^{g_0}\zeta + I_1 \operatorname{tr}^D \operatorname{res}_V {}^{g_1}\zeta.$

Remark. (1) The coefficients *I*₀ and *I*₁ are still unknown!(2) Similar results hold for othe blocks of tame representation type.

4. wreathed 2-blocks

12

Let us define $\operatorname{Tr}_{D}^{B}$: $H^{*}(D, k) \rightarrow H^{*}(D, k)$ as

 $\begin{aligned} \mathsf{Tr}^{\mathcal{B}}_{\mathcal{D}} &: \zeta \mapsto \zeta + \mathsf{tr}^{\mathcal{D}} \operatorname{res}_{\mathcal{U}} {}^{g_0} \zeta + \mathsf{tr}^{\mathcal{D}} \operatorname{res}_{\mathcal{V}} {}^{g_1} \zeta \\ &\quad + \mathsf{tr}^{\mathcal{D}} \operatorname{res}_{\mathcal{V} \cap {}^{g_1} \mathcal{U}} {}^{g_1 g_0} \zeta + \mathsf{tr}^{\mathcal{D}} \operatorname{res}_{\mathcal{U} \cap {}^{g_0} \mathcal{V}} {}^{g_0 g_1} \zeta \\ &\quad + \mathsf{tr}^{\mathcal{D}} \operatorname{res}_{\mathcal{V} \cap {}^{g_1} \mathcal{U} \cap {}^{g_1} {}^{g_1} \mathcal{V}} {}^{g_1 g_0 g_1} \zeta \end{aligned}$

Then it follows that

$$\operatorname{Im} \operatorname{Tr}_{D}^{B} = H^{*}(G, B; X).$$

• The first five terms above come from direct summands of A but

• Theorem 2 cannnot be applied to the last one; it is unknown whether the last one is induced by a direct summand of *A* or not.

Please erase out the last sentense in my abstract!

3. Tame blocks

Let

8

10

 $(E, b_E), (V, b_V) \subseteq (D, b_D).$

The inertia groups $N_G(E, b_E)/C_G(E)$ and $N_G(V, b_V)/VC_G(V)$ determine the fusion of subpairs. Let us assume here that

$$N_G(E, b_E)/C_G(E) \simeq \operatorname{GL}(2, 2), N_G(V, b_V)/VC_G(V) \simeq \operatorname{GL}(2, 2)$$

and choose elements $g_0 \in N_G(E, b_E)$ and $g_1 \in N_G(V, b_V)$ such that (1) g_0 induces an automorphism of *E* of order 3 and (2) g_1 induces an outer automorphism *V* of order 3. Let us define a (kD, kD)-bimodule *M* by

$$M = kD \oplus k[Dg_0D] \oplus k[Dg_1D]$$

 4. wreathed 2-blocks
 11

 4. BLOCKS WITH WREATHED DEFECT GROUPS

Here we assume that *D* is a wreathed 2-group of rank 2:

$$D = \langle a, b, t \mid a^{2''} = b^{2''} = t^2 = 1, ab = ba, tat = b \rangle, n \ge 2$$

We can specify the subgroups $U, V \leq D$ such that the Inertial quotients of (U, b_U) , $(V, b_V) \subseteq (D, b_D)$, which are both isomorphic to GL(2, 2), determine the fusion of subpais. We assume here that

$$N_G(U,b_U)/C_G(U)\simeq \mathrm{GL}(2,2),\ N_G(V,b_V)/VC_G(V)\simeq \mathrm{GL}(2,2)$$

and choose elements $g_0 \in N_G(U, b_U)$ and $g_1 \in N_G(V, b_V)$ such that (1) g_0 induces an automorphism of U of order 3 and (2) g_1 induces an outer automorphism V of order 3.

13

REFERENCES

- H. Kawai and H. Sasaki, Cohomology algebras of 2-blocks of finite groups with defect groups of rank two, J. Algebra **306** (2006), no. 2, 301–321.
- [2] M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups, Algebr. Represent. Theory 2 (1999), 107–135.
- [3] H. Sasaki, Cohomology of block ideals of finite group algebras and stable elements, Algebr. Represent. Theory 16 (2013), 1039–1049.

9