τ -RIGID-FINITE ALGEBRAS WITH RADICAL SQUARE ZERO

TAKAHIDE ADACHI

ABSTRACT. In this note, we study τ -rigid-finite algebras with radical square zero.

Throughout this note, by an algebra we mean a basic connected finite dimensional algebra over an algebraically closed field K. By a module we mean a finite dimensional right module. Let Λ be an algebra. For a Λ -module M with a minimal projective presentation $P^{-1} \xrightarrow{p} P^0 \to M \to 0$, we define a Λ -module τM by an exact sequence

$$0 \to \tau M \to \nu P^{-1} \stackrel{\nu p}{\to} \nu P^{0}$$

where $\nu := \operatorname{Hom}_{K}(\operatorname{Hom}_{\Lambda}(-,\Lambda), K)$ is the Nakayama functor.

The following module plays an important role in this note.

Definition 1. A Λ -module M is τ -rigid if $\operatorname{Hom}_{\Lambda}(M, \tau M) = 0$. We denote by τ -rigid Λ the set of isomorphism classes of indecomposable τ -rigid Λ -modules.

In 1980's, Auslander-Smalo [4] have already studied τ -rigid modules from the viewpoint of torsion theory. Recently, from the perspective of tilting mutation theory, the authors in [2] introduced the notion of (support) τ -tilting modules as a special class of τ -rigid modules. They correspond bijectively with many important objects in representation theory, *i.e.*, functorially finite torsion classes, two-term silting complexes and clustertilting objects in a special cases. By the following proposition, finiteness of these objects is induced by that of τ -rigidA.

Proposition 2. [5] Let Λ be an algebra. The following are equivalent:

- (1) The set τ -rigid Λ is finite.
- (2) There are finitely many isomorphism classes of basic support τ -tilting Λ -modules.

Definition 3. An algebra Λ is called τ -*rigid-finite* if it satisfies the equivalent conditions in Proposition 2.

Our aim of this note is to study τ -rigid-finite algebras with radical square zero. In the rest of this note, let Λ be an algebra with radical square zero and $Q = (Q_0, Q_1)$ the quiver of Λ , where Q_0 is the vertex set and Q_1 is the arrow set. Namely, $\Lambda = \Lambda_Q$ is the path algebra of a quiver Q modulo the ideal generated by all paths of length 2. In representation theory of algebras with radical square zero, the notion of the separated quiver play a central role. For a quiver $Q = (Q_0, Q_1)$, we define a new quiver $Q^s = (Q_0^s, Q_1^s)$, called the

The detailed version of this paper will be submitted for publication elsewhere.

separated quiver of Q, as follows:

$$Q_0^s := \{i^+, i^- \mid i \in Q_0\}, \quad Q_1^s := \{i^+ \to j^- \mid (i \to j) \in Q_1\}.$$

Note that the separated quiver Q^s is bipartite and not connected even if Q is connected.

The following proposition is well-known result.

Proposition 4. [3, X.2.4] Let Λ be an algebra with radical square zero and KQ^s the path algebra of the separated quiver of the quiver of Λ . Then two algebras Λ and KQ^s are stably equivalent, that is, there is an equivalent between the associated module categories modulo projectives.

We have the following famous theorem characterizing representation-finiteness.

Theorem 5. [6] Let Λ be an algebra with radical square zero and Q the quiver of Λ . The following are equivalent:

- (1) Λ is representation-finite.
- (2) The separated quiver Q^s is a disjoint union of Dynkin quivers.

The following theorem is an analog of Theorem 5 for τ -rigid-finiteness. A full subquiver Q' of Q^s is called a *single subquiver* if, for any $i \in Q_0$, the vertex set Q'_0 contains at most one of i^+ or i^- .

Theorem 6. [1] Let Λ be an algebra with radical square zero and Q the quiver of Λ . The following are equivalent:

- (1) Λ is τ -rigid-finite.
- (2) Each single subquiver of Q^s is a disjoint union of Dynkin quivers.

We give some comment for loops of a quiver.

Remark 7. Let $Q = (Q_0, Q_1)$ be a quiver with a loop ℓ , and $Q' = (Q'_0, Q'_1)$ the quiver with $Q'_0 = Q_0$ and $Q'_1 = Q_1 \setminus \{\ell\}$. Then there is a natural bijection between the set of single subquiver of Q^s and those of Q'^s . Hence Λ_Q is τ -rigid-finite if and only if $\Lambda_{Q'}$ is τ -rigid-finite.

$$Q: 1 \bigcirc Q^s: 1^+ \longrightarrow 1^-$$

We give a main result of this note. Let G = (V, E) be a connected graph, where V is the vertex set and E is the edge set. We define a quiver $Q_G = ((Q_G)_0, (Q_G)_1)$, called the double quiver of G, as follows:

$$(Q_G)_0 := V, \ (Q_G)_1 := \{i \to j, \ i \leftarrow j \mid (i-j) \in E\}.$$

For non-negative integers $\ell_1, \ell_2, \ldots, \ell_n$, we define a graph $G := \langle \ell_1, \ldots, \ell_n \rangle$ as follows. G is an *n*-cycle such that each vertex v_i in the *n*-cycle is attached to a Dynkin graph A_{l_i} and the degree of v_i is at most three.

Theorem 8. Let G be a connected graph with no loop. Then the following are equivalent: -2-

We can extend our theorem to the case of quivers/graphs with loops.

Remark 9. Assume that the quiver Q of Λ has a loop. By Remark 7, if there exists a graph G in Theorem 8 (2) such that Q_G is isomorphic to Q up to all loops, then Λ_Q is also τ -rigid-finite.

In the rest of this section, we give a proof of Theorem 8 by removing extended Dynkin graphs from connected single subquivers of the separated quiver. First we remove extended Dynkin graphs of type \tilde{A} from the separated quiver. A graph is called an *n*-cycle if it is a cycle with exactly *n* vertices. In particular, it is called an *odd-cycle* if *n* is odd, and an *even-cycle* if *n* even. We write by \overline{Q} the underlying graph of a quiver Q.

Lemma 10. A graph G contains an even-cycle as a subgraph if and only if there exists a single subquiver Q' of Q_G^s such that $\overline{Q'}$ is an extended Dynkin graph of type \tilde{A} .

Proof. Since Q_G^s is bipartite, all cycles as a subgraph in Q_G^s are even-cycles. Hence G contains an even-cycle as a subgraph. Conversely, assume that G contains an even-cycle as a subgraph. By taking a minimal even-cycle G' in G as a subgraph, \overline{Q}_G^s includes G' as a full subgraph. Hence the assertion follows.

By Lemma 10, we may assume that G contains no even-cycle as a subgraph. Since G is also bipartite, we have the following connection between G and Q_G^s . A spanning tree of -3-

G is a subgraph of G that includes all of the vertices of G and is a tree. A subtree of G is a connected full subgraph of a spanning tree of G.

Proposition 11. Let G be a graph with no even-cycle as a subgraph. Let G' be a graph. Then G' is a subtree of G if and only if there exists a connected single subquiver Q' of Q_G^s such that $\overline{Q'} = G'$. In particular, there is a naturally one-to-two correspondence between the set of subtrees of G and the set of connected single subquivers of Q_G^s .

Proof. If G' is a subtree of G, then there exists a connected subquiver Q' of Q_G^s with $\overline{Q'} = G'$. By Lemma 10, Q' is clearly a full subquiver, and hence it is a single subquiver. Conversely, assume that Q' is a single subquiver Q' of Q_G^s with $\overline{Q'} = G'$. By Lemma 10, $\overline{Q'}$ is a tree. Since Q' is a full subquiver, $\overline{Q'}$ is a subtree of G by the definition of separated quivers.

By Proposition 11, to remove non-Dynkin quivers from single subquivers of the separated quiver, we have only to concentrate on observing subtrees of graphs. For a tree, we have the following result.

Corollary 12. Let G be a tree. Then the following are equivalent:

- (1) Λ_{Q_G} is τ -rigid-finite.
- (2) G is a Dynkin graph.

Proof. Assume that G is a tree. G is Dynkin if and only if all subtrees of G are Dynkin. Thus the assertion follows from Theorem 6 and Proposition 11. \Box

By Corollary 12, we may assume that G contains exactly one odd-cycle and no evencycles. Namely, G is an odd-cycle such that each vertex v in the odd-cycle is attached to a tree T_v .

We remove extended Dynkin graphs of type \tilde{D} from the separated quiver Q_G^s .

Lemma 13. Fix a positive integer k and n := 2k + 1. Let G be an n-cycle such that each vertex v in the n-cycle is attached to a tree T_v . Then G contains an extended Dynkin graph of type \tilde{D} as a subgraph if and only if it satisfies one of the following conditions:

- (a) There is a vertex v in the n-cycle such that the degree is at least four.
- (b) There is a vertex v in the n-cycle such that the degree is exactly three and T_v is not Dynkin graph of type A.
- (c) k > 1 and there are at least two vertices in the n-cycle such that the degrees are at least three.

Proof. Clearly, if G satisfies one of the conditions (a), (b), and (c), then it contains an extended Dynkin graph of type \tilde{D} . Conversely, assume that G contains an extended Dynkin graph of type \tilde{D} . Then \tilde{D}_4 has exactly one vertex whose degree is exactly four and \tilde{D}_l has exactly two vertices whose degree is exactly three for any integer $\ell > 4$. We can check that G satisfies one of (a), (b), and (c).

Fix a positive integer k and n := 2k + 1. By Lemma 13, we may assume that G is one of the following graphs:

(a) $\langle \ell_1, 0, ..., 0 \rangle$ if $k \ge 2$. (b) $\langle \ell_1, \ell_2, \ell_3 \rangle$ with $\ell_1 \ge \ell_2 \ge \ell_3$ if k = 1.

Finally, we remove extended Dynkin graphs of type \tilde{E} from the separated quiver Q_G^s .

Lemma 14. Fix a positive integer k and n := 2k + 1. Assume that $G = \langle \ell_1, \ell_2, \cdots, \ell_n \rangle$.

- (1) Assume that $k \geq 2$. The following graphs (a), (b) and (c) are the minimal graphs containing extended Dynkin graphs \tilde{E}_6 , \tilde{E}_7 , and \tilde{E}_8 respectively in the forms $\langle \ell_1, 0, \ldots, 0 \rangle$.
 - (a) $\langle 2, 0, \dots, 0 \rangle$ $(k \ge 2)$
 - (b) $\langle 1, 0, \dots, 0 \rangle$ $(k \ge 3)$
 - (c) $\langle 1, 0, \dots, 0 \rangle$ $(k \ge 4)$

- (2) Assume that k = 1. The following graphs (d), (e) and (f) are the minimal graphs containing extended Dynkin graphs Ẽ₆, Ẽ₇, and Ẽ₈ respectively in the forms (l₁, l₂, l₃).
 (d) (2, 1, 1).
 - (e) $\langle 3, 2, 0 \rangle$, $\langle 2, 2, 1 \rangle$.
 - (f) $\langle 5, 1, 0 \rangle$, $\langle 4, 2, 0 \rangle$, $\langle 4, 1, 1 \rangle$.
- -5-

Proof. We can check from the pictures above.

Now we are ready to prove Theorem 8.

Proof of Theorem 8. If G is a tree, then the assertion follows from Corollary 12. We assume that G is not a tree. By the argument above, we have the minimal set of graphs including extended Dynkin graphs of type \tilde{A} , \tilde{D} , or \tilde{E} . Thus Λ_{Q_G} is τ -rigid-finite if and only if G is one of nontrivial full subgraphs with the *n*-cycle of graphs in Lemma 14. The assertion follows from that G is the desired graph.

References

- [1] T. Adachi, Characterizing τ -rigid-finite algebras with radical square zero, arXiv:1401.1438.
- [2] T. Adachi, O. Iyama, I. Reiten, τ -tilting theory, Compos. Math. 150 (2014), no.3, 415–452.
- [3] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of artin algebras, Cambridge studies in advanced mathematics 36, Cambridge university Press (1995).
- [4] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981) 426–454.
 Addendum; J. Algebra 71 (1981), 592–594.
- [5] L. Demonet, O. Iyama, G. Jasso, τ -rigid-finite algebras and g-vectors, in preparation.
- [6] P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6 (1972), 309.

GRADUATE SCHOOL OF MATHEMATICS NAGOYA UNIVERSITY FROCHO, CHIKUSAKU, NAGOYA 464-8602 JAPAN *E-mail address*: m09002b@math.nagoya-u.ac.jp