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Abstract. In this note, we study τ -rigid-finite algebras with radical square zero.

Throughout this note, by an algebra we mean a basic connected finite dimensional alge-
bra over an algebraically closed field K. By a module we mean a finite dimensional right
module. Let Λ be an algebra. For a Λ-module M with a minimal projective presentation

P−1 p→ P 0 →M → 0, we define a Λ-module τM by an exact sequence

0→ τM → νP−1 νp→ νP 0,

where ν := HomK(HomΛ(−,Λ), K) is the Nakayama functor.
The following module plays an important role in this note.

Definition 1. A Λ-module M is τ -rigid if HomΛ(M, τM) = 0. We denote by τ -rigidΛ
the set of isomorphism classes of indecomposable τ -rigid Λ-modules.

In 1980’s, Auslander-Smalo [4] have already studied τ -rigid modules from the viewpoint
of torsion theory. Recently, from the perspective of tilting mutation theory, the authors
in [2] introduced the notion of (support) τ -tilting modules as a special class of τ -rigid
modules. They correspond bijectively with many important objects in representation
theory, i.e., functorially finite torsion classes, two-term silting complexes and cluster-
tilting objects in a special cases. By the following proposition, finiteness of these objects
is induced by that of τ -rigidΛ.

Proposition 2. [5] Let Λ be an algebra. The following are equivalent:

(1) The set τ -rigidΛ is finite.
(2) There are finitely many isomorphism classes of basic support τ -tilting Λ-modules.

Definition 3. An algebra Λ is called τ -rigid-finite if it satisfies the equivalent conditions
in Proposition 2.

Our aim of this note is to study τ -rigid-finite algebras with radical square zero. In the
rest of this note, let Λ be an algebra with radical square zero and Q = (Q0, Q1) the quiver
of Λ, where Q0 is the vertex set and Q1 is the arrow set. Namely, Λ = ΛQ is the path
algebra of a quiverQmodulo the ideal generated by all paths of length 2. In representation
theory of algebras with radical square zero, the notion of the separated quiver play a
central role. For a quiver Q = (Q0, Q1), we define a new quiver Qs = (Qs

0, Q
s
1), called the
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separated quiver of Q, as follows:

Qs
0 := {i+, i− | i ∈ Q0}, Qs

1 := {i+ → j− | (i→ j) ∈ Q1}.
Note that the separated quiver Qs is bipartite and not connected even if Q is connected.
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The following proposition is well-known result.

Proposition 4. [3, X.2.4] Let Λ be an algebra with radical square zero and KQs the path
algebra of the separated quiver of the quiver of Λ. Then two algebras Λ and KQs are
stably equivalent, that is, there is an equivalent between the associated module categories
modulo projectives.

We have the following famous theorem characterizing representation-finiteness.

Theorem 5. [6] Let Λ be an algebra with radical square zero and Q the quiver of Λ. The
following are equivalent:

(1) Λ is representation-finite.
(2) The separated quiver Qs is a disjoint union of Dynkin quivers.

The following theorem is an analog of Theorem 5 for τ -rigid-finiteness. A full subquiver
Q′ of Qs is called a single subquiver if, for any i ∈ Q0, the vertex set Q′

0 contains at most
one of i+ or i−.

Theorem 6. [1] Let Λ be an algebra with radical square zero and Q the quiver of Λ. The
following are equivalent:

(1) Λ is τ -rigid-finite.
(2) Each single subquiver of Qs is a disjoint union of Dynkin quivers.

We give some comment for loops of a quiver.

Remark 7. Let Q = (Q0, Q1) be a quiver with a loop ℓ, and Q′ = (Q′
0, Q

′
1) the quiver

with Q′
0 = Q0 and Q′

1 = Q1 \ {ℓ}. Then there is a natural bijection between the set of
single subquiver of Qs and those of Q′s. Hence ΛQ is τ -rigid-finite if and only if ΛQ′ is
τ -rigid-finite.

Q : 1
xx

Qs : 1+ // 1−

We give a main result of this note. Let G = (V,E) be a connected graph, where V is
the vertex set and E is the edge set. We define a quiver QG = ((QG)0, (QG)1), called the
double quiver of G, as follows:

(QG)0 := V, (QG)1 := {i→ j, i← j | (i− j) ∈ E}.
For non-negative integers ℓ1, ℓ2, . . . , ℓn, we define a graph G := ⟨ℓ1, . . . , ℓn⟩ as follows. G
is an n-cycle such that each vertex vi in the n-cycle is attached to a Dynkin graph Ali

and the degree of vi is at most three.

Theorem 8. Let G be a connected graph with no loop. Then the following are equivalent:
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(1) ΛQG
is τ -rigid-finite.

(2) G is one of the following graphs:
(a) Dynkin graphs of type A, D, and E,
(b) odd-cycles,
(c) ⟨1, 0, 0, 0, 0⟩,
(d) ⟨ℓ, 0, 0⟩ (1 ≤ ℓ),
(e) ⟨ℓ, 1, 0⟩ (1 ≤ ℓ ≤ 4),
(f) ⟨2, 2, 0⟩,
(g) ⟨1, 1, 1⟩.

⟨1, 0, 0, 0, 0⟩
⟨ℓ, 0, 0⟩ ⟨ℓ, 1, 0⟩ ⟨2, 2, 0⟩ ⟨1, 1, 1⟩
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We can extend our theorem to the case of quivers/graphs with loops.

Remark 9. Assume that the quiver Q of Λ has a loop. By Remark 7, if there exists a
graph G in Theorem 8 (2) such that QG is isomorphic to Q up to all loops, then ΛQ is
also τ -rigid-finite.

In the rest of this section, we give a proof of Theorem 8 by removing extended Dynkin
graphs from connected single subquivers of the separated quiver. First we remove ex-
tended Dynkin graphs of type Ã from the separated quiver. A graph is called an n-cycle
if it is a cycle with exactly n vertices. In particular, it is called an odd-cycle if n is odd,
and an even-cycle if n even. We write by Q the underlying graph of a quiver Q.

Lemma 10. A graph G contains an even-cycle as a subgraph if and only if there exists a
single subquiver Q′ of Qs

G such that Q′ is an extended Dynkin graph of type Ã.

Proof. Since Qs
G is bipartite, all cycles as a subgraph in Qs

G are even-cycles. Hence G
contains an even-cycle as a subgraph. Conversely, assume that G contains an even-cycle
as a subgraph. By taking a minimal even-cycle G′ in G as a subgraph, Qs

G includes G′ as
a full subgraph. Hence the assertion follows. □
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By Lemma 10, we may assume that G contains no even-cycle as a subgraph. Since G
is also bipartite, we have the following connection between G and Qs

G. A spanning tree of
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G is a subgraph of G that includes all of the vertices of G and is a tree. A subtree of G
is a connected full subgraph of a spanning tree of G.

Proposition 11. Let G be a graph with no even-cycle as a subgraph. Let G′ be a graph.
Then G′ is a subtree of G if and only if there exists a connected single subquiver Q′ of Qs

G

such that Q′ = G′. In particular, there is a naturally one-to-two correspondence between
the set of subtrees of G and the set of connected single subquivers of Qs

G.

Proof. If G′ is a subtree of G, then there exists a connected subquiver Q′ of Qs
G with

Q′ = G′. By Lemma 10, Q′ is clearly a full subquiver, and hence it is a single subquiver.
Conversely, assume that Q′ is a single subquiver Q′ of Qs

G with Q′ = G′. By Lemma 10,
Q′ is a tree. Since Q′ is a full subquiver, Q′ is a subtree of G by the definition of separated
quivers. □

By Proposition 11, to remove non-Dynkin quivers from single subquivers of the sepa-
rated quiver, we have only to concentrate on observing subtrees of graphs. For a tree, we
have the following result.

Corollary 12. Let G be a tree. Then the following are equivalent:

(1) ΛQG
is τ -rigid-finite.

(2) G is a Dynkin graph.

Proof. Assume that G is a tree. G is Dynkin if and only if all subtrees of G are Dynkin.
Thus the assertion follows from Theorem 6 and Proposition 11. □

By Corollary 12, we may assume that G contains exactly one odd-cycle and no even-
cycles. Namely, G is an odd-cycle such that each vertex v in the odd-cycle is attached to
a tree Tv.

• • v1
CC

CC
{{
{{

• •

v2 v3 • •

We remove extended Dynkin graphs of type D̃ from the separated quiver Qs
G.

Lemma 13. Fix a positive integer k and n := 2k+1. Let G be an n-cycle such that each
vertex v in the n-cycle is attached to a tree Tv. Then G contains an extended Dynkin
graph of type D̃ as a subgraph if and only if it satisfies one of the following conditions:

(a) There is a vertex v in the n-cycle such that the degree is at least four.
(b) There is a vertex v in the n-cycle such that the degree is exactly three and Tv is

not Dynkin graph of type A.
(c) k > 1 and there are at least two vertices in the n-cycle such that the degrees are

at least three.

Proof. Clearly, if G satisfies one of the conditions (a), (b), and (c), then it contains an
extended Dynkin graph of type D̃. Conversely, assume that G contains an extended
Dynkin graph of type D̃. Then D̃4 has exactly one vertex whose degree is exactly four
and D̃l has exactly two vertices whose degree is exactly three for any integer ℓ > 4. We
can check that G satisfies one of (a), (b), and (c). □
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Fix a positive integer k and n := 2k + 1. By Lemma 13, we may assume that G is one
of the following graphs:

(a) ⟨ℓ1, 0 . . . , 0⟩ if k ≥ 2.
(b) ⟨ℓ1, ℓ2, ℓ3⟩ with ℓ1 ≥ ℓ2 ≥ ℓ3 if k = 1.

Finally, we remove extended Dynkin graphs of type Ẽ from the separated quiver Qs
G.

Lemma 14. Fix a positive integer k and n := 2k + 1. Assume that G = ⟨ℓ1, ℓ2, · · · , ℓn⟩.

(1) Assume that k ≥ 2. The following graphs (a), (b) and (c) are the minimal
graphs containing extended Dynkin graphs Ẽ6, Ẽ7, and Ẽ8 respectively in the forms
⟨ℓ1, 0, . . . , 0⟩.
(a) ⟨2, 0, . . . , 0⟩ (k ≥ 2)
(b) ⟨1, 0, . . . , 0⟩ (k ≥ 3)
(c) ⟨1, 0, . . . , 0⟩ (k ≥ 4)

(a) ℓ1 = 2 (b) ℓ1 = 1 if k ≥ 3 (c) ℓ1 = 1 if k ≥ 4
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(2) Assume that k = 1. The following graphs (d), (e) and (f) are the minimal
graphs containing extended Dynkin graphs Ẽ6, Ẽ7, and Ẽ8 respectively in the forms
⟨ℓ1, ℓ2, ℓ3⟩.
(d) ⟨2, 1, 1⟩.
(e) ⟨3, 2, 0⟩, ⟨2, 2, 1⟩.
(f) ⟨5, 1, 0⟩, ⟨4, 2, 0⟩, ⟨4, 1, 1⟩.
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Proof. We can check from the pictures above. □
Now we are ready to prove Theorem 8.

Proof of Theorem 8. If G is a tree, then the assertion follows from Corollary 12. We
assume that G is not a tree. By the argument above, we have the minimal set of graphs
including extended Dynkin graphs of type Ã, D̃, or Ẽ. Thus ΛQG

is τ -rigid-finite if and
only if G is one of nontrivial full subgraphs with the n-cycle of graphs in Lemma 14. The
assertion follows from that G is the desired graph. □

References

[1] T. Adachi, Characterizing τ -rigid-finite algebras with radical square zero, arXiv:1401.1438.
[2] T. Adachi, O. Iyama, I. Reiten, τ -tilting theory, Compos. Math. 150 (2014), no.3, 415–452.
[3] M. Auslander, I. Reiten, S. O. Smalø, Representation theory of artin algebras, Cambridge studies in

advanced mathematics 36, Cambridge university Press (1995).
[4] M. Auslander, S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981) 426–454.

Addendum; J. Algebra 71 (1981), 592–594.
[5] L. Demonet, O. Iyama, G. Jasso, τ -rigid-finite algebras and g-vectors, in preparation.
[6] P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103; correction, ibid. 6

(1972), 309.

Graduate School of Mathematics
Nagoya University
Frocho, Chikusaku, Nagoya 464-8602 Japan

E-mail address: m09002b@math.nagoya-u.ac.jp

–6–


