Abstract. In this note, we study τ-rigid-finite algebras with radical square zero.

Throughout this note, by an algebra we mean a basic connected finite dimensional algebra over an algebraically closed field K. By a module we mean a finite dimensional right module. Let Λ be an algebra. For a Λ-module M with a minimal projective presentation $P^{-1} \xrightarrow{p} P^0 \rightarrow M \rightarrow 0$, we define a Λ-module τM by an exact sequence

$$0 \rightarrow \tau M \rightarrow \nu P^{-1} \xrightarrow{\nu p} \nu P^0,$$

where $\nu := \text{Hom}_K(\text{Hom}_\Lambda(-, \Lambda), K)$ is the Nakayama functor.

The following module plays an important role in this note.

Definition 1. A Λ-module M is τ-rigid if $\text{Hom}_\Lambda(M, \tau M) = 0$. We denote by τ-rigid the set of isomorphism classes of indecomposable τ-rigid Λ-modules.

In 1980’s, Auslander-Smalø [4] have already studied τ-rigid modules from the viewpoint of torsion theory. Recently, from the perspective of tilting mutation theory, the authors in [2] introduced the notion of (support) τ-tilting modules as a special class of τ-rigid modules. They correspond bijectively with many important objects in representation theory, i.e., functorially finite torsion classes, two-term silting complexes and cluster-tilting objects in a special cases. By the following proposition, finiteness of these objects is induced by that of τ-rigid Λ.

Proposition 2. [5] Let Λ be an algebra. The following are equivalent:

1. The set τ-rigid Λ is finite.
2. There are finitely many isomorphism classes of basic support τ-tilting Λ-modules.

Definition 3. An algebra Λ is called τ-rigid-finite if it satisfies the equivalent conditions in Proposition 2.

Our aim of this note is to study τ-rigid-finite algebras with radical square zero. In the rest of this note, let Λ be an algebra with radical square zero and $Q = (Q_0, Q_1)$ the quiver of Λ, where Q_0 is the vertex set and Q_1 is the arrow set. Namely, $\Lambda = \Lambda_Q$ is the path algebra of a quiver Q modulo the ideal generated by all paths of length 2. In representation theory of algebras with radical square zero, the notion of the separated quiver play a central role. For a quiver $Q = (Q_0, Q_1)$, we define a new quiver $Q^s = (Q_0^s, Q_1^s)$, called the

The detailed version of this paper will be submitted for publication elsewhere.
separated quiver of Q, as follows:

\[Q^*_0 := \{i^+, i^- \mid i \in Q_0\}, \quad Q^*_1 := \{i^+ \to j^- \mid (i \to j) \in Q_1\}. \]

Note that the separated quiver Q^* is bipartite and not connected even if Q is connected.

\[Q: \begin{array}{c|c}
1 & 2 \\
\hline
3 & 1^+ \\
\end{array} \quad \begin{array}{c|c|c}
2^- & 3^+ & Q^*:
1^- & 4 \\
\hline
2 & 3 \\
\end{array} \quad \begin{array}{c|c|c|c|c}
Q^* : 1 & 4^- & 1^- & 4^+ \\
\hline
2^- & 3^+ & 2^+ & 3^- \\
\end{array} \]

The following proposition is well-known result.

Proposition 4. [3, X.2.4] Let Λ be an algebra with radical square zero and KQ^* the path algebra of the separated quiver of the quiver of Λ. Then two algebras Λ and KQ^* are stably equivalent, that is, there is an equivalent between the associated module categories modulo projectives.

We have the following famous theorem characterizing representation-finiteness.

Theorem 5. [6] Let Λ be an algebra with radical square zero and Q the quiver of Λ. The following are equivalent:

1. Λ is representation-finite.
2. The separated quiver Q^* is a disjoint union of Dynkin quivers.

The following theorem is an analog of Theorem 5 for τ-rigid-finiteness. A full subquiver Q' of Q^* is called a single subquiver if, for any $i \in Q_0$, the vertex set Q'_0 contains at most one of i^+ or i^-. A single subquiver.

Theorem 6. [1] Let Λ be an algebra with radical square zero and Q the quiver of Λ. The following are equivalent:

1. Λ is τ-rigid-finite.
2. Each single subquiver of Q^* is a disjoint union of Dynkin quivers.

We give some comment for loops of a quiver.

Remark 7. Let $Q = (Q_0, Q_1)$ be a quiver with a loop ℓ, and $Q' = (Q'_0, Q'_1)$ the quiver with $Q'_0 = Q_0$ and $Q'_1 = Q_1 \setminus \{\ell\}$. Then there is a natural bijection between the set of single subquiver of Q^* and those of Q'^*. Hence Λ_Q is τ-rigid-finite if and only if $\Lambda_{Q'}$ is τ-rigid-finite.

\[Q: \begin{array}{c}
1 \\
\hline
1^- \\
\end{array} \quad Q^*: \begin{array}{c|c|c}
1^+ & 1^- \\
\hline
\end{array} \]

We give a main result of this note. Let $G = (V, E)$ be a connected graph, where V is the vertex set and E is the edge set. We define a quiver $Q_G = ((Q_G)_0, (Q_G)_1)$, called the double quiver of G, as follows:

\[(Q_G)_0 := V, \quad (Q_G)_1 := \{i \to j, \; i \leftarrow j \mid (i, j) \in E\}.\]

For non-negative integers $\ell_1, \ell_2, \ldots, \ell_n$, we define a graph $G := \langle \ell_1, \ldots, \ell_n \rangle$ as follows. G is an n-cycle such that each vertex v_i in the n-cycle is attached to a Dynkin graph A_{ℓ_i} and the degree of v_i is at most three.

Theorem 8. Let G be a connected graph with no loop. Then the following are equivalent:
(1) Λ_{Q_G} is τ-rigid-finite.
(2) G is one of the following graphs:
 (a) Dynkin graphs of type A, D, and E,
 (b) odd-cycles,
 (c) $\langle 1, 0, 0, 0, 0 \rangle$,
 (d) $\langle \ell, 0, 0 \rangle$ $(1 \leq \ell)$,
 (e) $\langle \ell, 1, 0 \rangle$ $(1 \leq \ell \leq 4)$,
 (f) $\langle 2, 2, 0 \rangle$,
 (g) $\langle 1, 1, 1 \rangle$.

We can extend our theorem to the case of quivers/graphs with loops.

Remark 9. Assume that the quiver Q of Λ has a loop. By Remark 7, if there exists a graph G in Theorem 8 (2) such that Q_G is isomorphic to Q up to all loops, then Λ_Q is also τ-rigid-finite.

In the rest of this section, we give a proof of Theorem 8 by removing extended Dynkin graphs from connected single subquivers of the separated quiver. First we remove extended Dynkin graphs of type A from the separated quiver. A graph is called an n-cycle if it is a cycle with exactly n vertices. In particular, it is called an odd-cycle if n is odd, and an even-cycle if n even. We write by Q_s the underlying graph of a quiver Q.

Lemma 10. A graph G contains an even-cycle as a subgraph if and only if there exists a single subquiver Q' of Q^+_G such that Q^+_G is an extended Dynkin graph of type A.

Proof. Since Q^+_G is bipartite, all cycles as a subgraph in Q^+_G are even-cycles. Hence G contains an even-cycle as a subgraph. Conversely, assume that G contains an even-cycle as a subgraph. By taking a minimal even-cycle G' in G as a subgraph, Q^+_G includes G' as a full subgraph. Hence the assertion follows. □

By Lemma 10, we may assume that G contains no even-cycle as a subgraph. Since G is also bipartite, we have the following connection between G and Q^+_G. A spanning tree of...
Proposition 11. Let G be a graph with no even-cycle as a subgraph. Let G' be a graph. Then G' is a subtree of G if and only if there exists a connected single subquiver Q' of Q^*_G such that $Q' = G'$. In particular, there is a naturally one-to-two correspondence between the set of subtrees of G and the set of connected single subquivers of Q^*_G.

Proof. If G' is a subtree of G, then there exists a connected subquiver Q' of Q^*_G with $Q' = G'$. By Lemma 10, Q' is clearly a full subquiver, and hence it is a single subquiver. Conversely, assume that Q' is a single subquiver Q' of Q^*_G with $Q' = G'$. By Lemma 10, Q' is a tree. Since Q' is a full subquiver, Q' is a subtree of G by the definition of separated quivers. □

By Proposition 11, to remove non-Dynkin quivers from single subquivers of the separated quiver, we have only to concentrate on observing subtrees of graphs. For a tree, we have the following result.

Corollary 12. Let G be a tree. Then the following are equivalent:

1. Λ_{Q_G} is τ-rigid-finite.
2. G is a Dynkin graph.

Proof. Assume that G is a tree. G is Dynkin if and only if all subtrees of G are Dynkin. Thus the assertion follows from Theorem 6 and Proposition 11. □

By Corollary 12, we may assume that G contains exactly one odd-cycle and no even-cycles. Namely, G is an odd-cycle such that each vertex v in the odd-cycle is attached to a tree T_v.

We remove extended Dynkin graphs of type \tilde{D} from the separated quiver Q^*_G.

Lemma 13. Fix a positive integer k and $n := 2k + 1$. Let G be an n-cycle such that each vertex v in the n-cycle is attached to a tree T_v. Then G contains an extended Dynkin graph of type \tilde{D} as a subgraph if and only if it satisfies one of the following conditions:

1. There is a vertex v in the n-cycle such that the degree is at least four.
2. There is a vertex v in the n-cycle such that the degree is exactly three and T_v is not Dynkin graph of type A.
3. $k > 1$ and there are at least two vertices in the n-cycle such that the degrees are at least three.

Proof. Clearly, if G satisfies one of the conditions (a), (b), and (c), then it contains an extended Dynkin graph of type \tilde{D}. Conversely, assume that G contains an extended Dynkin graph of type \tilde{D}. Then \tilde{D}_4 has exactly one vertex whose degree is exactly four and \tilde{D}_l has exactly two vertices whose degree is exactly three for any integer $\ell > 4$. We can check that G satisfies one of (a), (b), and (c). □
Fix a positive integer k and $n := 2k + 1$. By Lemma 13, we may assume that G is one of the following graphs:

(a) $\langle \ell_1, 0, \ldots, 0 \rangle$ if $k \geq 2$.
(b) $\langle \ell_1, \ell_2, \ell_3 \rangle$ with $\ell_1 \geq \ell_2 \geq \ell_3$ if $k = 1$.

Finally, we remove extended Dynkin graphs of type \tilde{E} from the separated quiver Q_{ℓ_2}.

Lemma 14. Fix a positive integer k and $n := 2k + 1$. Assume that $G = \langle \ell_1, \ell_2, \cdots, \ell_n \rangle$.

(1) Assume that $k \geq 2$. The following graphs (a), (b) and (c) are the minimal graphs containing extended Dynkin graphs \tilde{E}_6, \tilde{E}_7, and \tilde{E}_8 respectively in the forms $\langle \ell_1, 0, \ldots, 0 \rangle$.

(a) $\langle 2, 0, \ldots, 0 \rangle$ ($k \geq 2$)
(b) $\langle 1, 0, \ldots, 0 \rangle$ ($k \geq 3$)
(c) $\langle 1, 0, \ldots, 0 \rangle$ ($k \geq 4$)

(2) Assume that $k = 1$. The following graphs (d), (e) and (f) are the minimal graphs containing extended Dynkin graphs \tilde{E}_6, \tilde{E}_7, and \tilde{E}_8 respectively in the forms $\langle \ell_1, \ell_2, \ell_3 \rangle$.

(d) $\langle 2, 1, 1 \rangle$.
(e) $\langle 3, 2, 0 \rangle$, $\langle 2, 2, 1 \rangle$.
(f) $\langle 5, 1, 0 \rangle$, $\langle 4, 2, 0 \rangle$, $\langle 4, 1, 1 \rangle$.

\[\text{Diagram for Lemma 14} \]
Proof. We can check from the pictures above.

Now we are ready to prove Theorem 8.

Proof of Theorem 8. If \(G \) is a tree, then the assertion follows from Corollary 12. We assume that \(G \) is not a tree. By the argument above, we have the minimal set of graphs including extended Dynkin graphs of type \(\tilde{A}, \tilde{D}, \) or \(\tilde{E}. \) Thus \(\Lambda_{Q_G} \) is \(\tau \)-rigid-finite if and only if \(G \) is one of nontrivial full subgraphs with the \(n \)-cycle of graphs in Lemma 14. The assertion follows from that \(G \) is the desired graph.

References

Graduate School of Mathematics
Nagoya University
Frocho, Chikusaku, Nagoya 464-8602 Japan

E-mail address: m09002b@math.nagoya-u.ac.jp